

D6.1: Collection of all SWP deliverables
(with nature=R) produced during months 1-12

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Main Deliverable

Deliverable reference number IST-027635/D6.1/PUBLIC | 1.10

Deliverable title Collection of all SWP deliverables (with
nature=R) produced during months 1-12

WP contributing to the deliverable WP6

Due date Apr 2007

Actual submission date Apr 2007

Responsible Organisation POL

Authors
See the cover page of each included internal
deliverable

Abstract Collection of all internal deliverables (with
nature=R) produced during months 1-12:

D06a.1: Preliminary DRM system
specification

D06e.1: MFA Requirements and Specification

D06e.3: Intermediate MFA System
Specification

NOTE: a general explanation section has
been added and sections 1, 3.6.1,
3.6.2 of D06a.1 have been updated

Keywords

Dissemination level Public

Revision PUBLIC | 1.10

Instrument IP Start date of the
project 1st November 2005

Thematic Priority IST Duration 42 months

1 Introduction
This section has been added on request from the EC reviewers. Its purpose is to clarify
the relationships between Workpackage 2 and Workpackage 6, namely how the
requirements set in the former have impact on the latter. In particular this section
explains which elements from Trusted Computing (TC) technology are used in WP6 to
meet the requirements specified in WP2.

2 Workpackage 6's context and purpose
WP6 is related to applications that make use of Trusted Computing and virtualisation
technologies to reach security goals difficult to achieve using other technologies or
obtainable at a higher price. The foundations of such technologies are hardware and
software components: (1) the Trusted Platform Module (TPM) which is a low cost chip
shipped with most of recent platforms together with the (2) new generation of Intel
and AMD processors and chipsets that provide hardware assistance for virtualisation
and hardware support for the platform integrity protection and measurement and (3)
open source Virtual Machine Monitors (VMM) like Xen and Fiasco, an implementation
of L4 micro-kernel family.
Since the core workpackages (WP3 to WP5) are in charge to design and develop a
security framework (OpenTC) based on the mentioned technologies, WP6's purpose is
to show which security benefits can be achieved using such framework in different
application areas.

Moreover two of five WP6 applications are special cases: Encryption File Service (EFS,
in Sub-workpackage 6.d) and MultiFactor Authentication (MFA, Sub-workpackage 6.e)
are applications that show the use of the technology but they can be also considered
as components to be shipped with the framework.

3 Use of TC technology in Sub-workpackages 6.a and 6.e

3.1 SWP06.a: Interoperable DRM solution based on MPEG-21

This subsection applies to the following internal deliverable:

– D06a.1 Preliminary DRM system specification (included in main deliverable D6.1)

The objective of this Sub-workpackage is to design and develop a DRM system capable
to balance the rights and obligations of all involved stakeholders (i.e. the end user and
the content provider) to support a more fair use of DRM. Some relevant requirements
for the stakeholders are:

– (content provider) guarantee that the user's system will play the multimedia
content only in accordance with the terms of the license

– (user) support for user rights for playing the content on different devices, sharing
the content among a limited number of close users and re-selling the content

– (user) user is in control of his platform: no hidden software needs to be installed by
the content provider to protect the content from unauthorized uses

One key element to meet these requirements is the support for interoperable (i.e.
standard) formats for both encrypted contents and licenses. Instead, the technological
elements provided by OpenTC framework to satisfy the mentioned requirements are:

– open design and open source system: this allows the inspection by the users'
community to verify that hidden components are not present (see for example the
case of like the Sony rootkit)

– TPM on the user platform for collecting the integrity measurements of the platform
and software components; these measurements will be used for

– remote attestation performed by the content provider to check the integrity
of the user's platform before sending the decryption keys

– secure storage for keys and other relevant data which are bound to a good
status of the user's platform (sealing), represented by specific sets of
measurements

– isolation provided by virtualisation for separating the DRM code and the player into
protected containers, to guarantee that license parsing and content decryption are
performed separately in secure environments

– cryptographic services and support for PKI

For further details about the technical requirements from other workpackages, namely
properties and services provided by OpenTC framework to this application, see main
deliverable D02.2 (the updated version of D02.1), section 11.2.1.

3.2 SWP06.e: MultiFactor Authentication (MFA)

This subsection applies to the following internal deliverables:

– D06e.1 MFA Requirements and Specification (included in main deliverable D6.1)

– D06e.2 MFA Intermediate Specification (included in main deliverable D6.1)

– D06e.3 MFA Concept Prototype (included in main deliverable D6.2)

The objective of this Sub-workpackage is to design and develop a MultiFactor
Authentication (MFA) system for client-server applications, namely a system that
provides an additional factor for making the authentication stronger when accessing a
service through a network.

This is an application of TC technology but not an end-user one: it is instead a
subsystem that can be integrated in other systems or frameworks like OpenTC to
enhance the robustness of the authentication.

For instance, the usual password-based authentication scheme for a user, cannot be
considered robust, even though performed through a robust protocol. In fact the
passwords can be stoled through a social engineering attack no matter which is the
robustness of the authentication system. MFA can be used to increase the

The requirements for the parties involved in a networked interaction (client and
server) for having a more robust authentication mechanism are

– the use of an additional factor based on the TPM to implement the platform
authentication;

– only users from registered client platforms can access a service

– the user can can verify the identity integrity of the platform providing the
service

– seamless integration into existing systems and authentication subsystems

MFA is designed to be a general purpose subsystem that can be used with a variety
systems. However there are specific uses for OpenTC. Given the the high level of
assurance that OpenTC should provide, MFA can be used as component of OpenTC
framework for allowing its remote management only from a registered workstations.
However it can also be used completely contained within an OpenTC framework
running on single physical platform for accessing network services provided by some
Virtual Machines to other Virtual Machines.

The technological elements provided by OpenTC framework to satisfy such
requirements are:
– TPM on the client for performing the signature over a random challenge with a

protected key to authenticate the user's platform

– TPM on the server for locally encrypting the MFA policy database and bind it to a
good status of the platform (sealing)

– isolation provided by virtualisation for separating the security critical service for
remote management service - for instance sshd for management from a remote
console - which is security critical from the other applications and services

For further details about the MFA see D02.2 (the updated version of D02.1), section
11.6.

The Concept Prototype (see internal deliverable D6e.2) is an example to experiment
and show that is possible to add a further authentication based on the TPM to an
existing network applications (like ssh/sshd) and authentication framework (like Linux
PAM). Therefore only part of the planned features/capabilities have been included in
this preliminary prototype: for instance the mutual authentication has not been
implemented.

The final prototype, instead will be a featured component that will provide an API for
remote access to the service; the preliminary specification of such API has been as
“MFA intermediate specifications” (see internal deliverable D6e.3).

4 List of abbreviations
Listing of term definitions and abbreviations used in the overview documents and
architectural design specification (IT expressions and terms from the application
domain).

Abbreviation Explanation
API Application Programming Interface
DRM Digital Right Management
MFA MultiFactor Authentication
PKI Public Key Infrastructure
WP Workpackage
SWP Sub-Workpackage
TC Trusted Computing

5 Referenced Documents

/1/ PAM
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-
PAM_ADG.html http://msdn.microsoft.com
Version 0.99.6.0, 5. August 2006.

/2/ OpenTC: D02.2 Requirements Definition and Specification (April 2007)

http://msdn.microsoft.com/

WP06a Preliminary DRM system specification

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Internal document

Deliverable reference number IST-027635/D06a.1/FINAL | 1.10

Deliverable title Preliminary DRM system specification

WP contributing to the deliverable WP6

Due date Apr 2007

Actual submission date Apr 2007

Responsible Organisation LDV,Lehrstuhl für Datenverarbeitung, TUM

Authors Florian Schreiner, Chun Hui Suen
Abstract

Keywords DRM, fair, interoperable, MPEG-21

Dissemination level Public

Revision FINAL | 1.10

Instrument IP Start date of the
project 1st November 2005

Thematic Priority IST Duration 42 months

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Table of Contents
1 .Introduction... 5
2 .Use Cases.. 5
2.1 Overview.. 5
2.2 Description of Use Cases.. 6

3 .Design Specifications... 13
3.1 Architecture.. 13
3.2 Player API... 13
3.2.1 Registration... 13
3.2.2 Content Key Handling.. 14
3.2.3 Legacy Player Application.. 14

3.3 Manager API... 15
3.4 Application loader.. 15
3.5 Core Manager... 15
3.6 License Manager.. 15
3.6.1 License Interpreter.. 16
3.6.2 License Translation Manager .. 16

3.7 State Management... 17
3.8 Sealed store... 18
3.8.1 Key store... 18
3.8.2 License store... 18

3.9 Utility library... 18
3.1 0OS Services.. 19

4 .Component Interaction.. 20
4.1 Functional parts of the DRM Core .. 20
4.2 Sequence diagram... 21
4.3 DRM system and XEN/L4 virtualization environments.. 22
4.3.1 DRM components and compartments..22
4.3.2 Interfaces between compartments.. 23

5 .Requirements from other Partners...24
6 .Technical API Specification.. 25
6.1 External Interfaces... 25
6.1.1 class PlayerInterface.. 25
6.1.2 class ManagementInterface... 26
6.1.3 class Utility.. 26

6.2 Internal Interfaces.. 27
6.2.1 Class DatabaseManager.. 27
6.2.2 Class InterpreterInterface.. 28
6.2.3 class SystemState... 29
6.2.4 class CoreManager.. 29
6.2.5 class LicenseManager.. 29
6.2.6 class LicenseTranslationManager.. 30
6.2.7 class StateManager... 31

6.3 Helper Classes.. 32
6.3.1 class ItemReference.. 32
6.3.2 class ItemState.. 32
6.3.3 class Key.. 32
6.3.4 class License.. 33
6.3.5 class PlayerState... 33
6.3.6 class REL.. 34

Open_TC Deliverable D06a.1 2/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

7 .Annex A : C++ Header definition... 36
8 .Glossary of Abbreviations.. 38
9 .References... 39

Open_TC Deliverable D06a.1 3/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

List of figures
Figure 1: System Overview... 13
Figure 2: License Translation.. 17
Figure 3: Internal and external components of DRM Core.. 20
Figure 4: Sequence diagram for media playback... 21
Figure 5: Virtualization of the DRM Core...22
Figure 6: Interface Chain.. 23

Open_TC Deliverable D06a.1 4/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

1. Introduction

This document collects the preliminary specifications of a DRM system to be
developed as sample application for the OpenTC framework. These specifications
define the scope of system, describe its functional requirements and its design. The
design sections of this document are mainly focused on the definition of the system
architecture by depicting the system modules, the function of each of them and the
related interactions.

The formats for the data exchanged between the external modules, like the between
the OpenTC Player and DRM Core, have not yet been defined. Moreover the
interactions with the services provided by OpenTC framework are just outlined and
exposed in terms of requirements, since the definition of the interfaces to those
services is still an ongoing activity within the workpackages three to five. The exact
details of these interactions and definition of the formats for the data exchanged
between the components of the DRM system will be included in the final
specifications.

The principal scope of the OpenTC DRM system will be the protection of multimedia
content. Generalization of the DRM system for the protection of other contents, such
as personal data, secret information or medical records of the patients, would be
possible through extension of the OpenTC DRM system. However, specific
implementation of such generalization will not be implemented in this sub-
workpackage.

This document is organized into 9 sections. Section 2 describes the functional
requirements in terms of use cases while sections 3 and 4 include the design
specifications of the system. Section 5 shows the requirements for this application
within the OpenTC System. Section 6 describes a preliminary API used to access the
DRM Core, and its key functions. Section 7 is a normative API definition in C++, while
sections 8 and 9 provide glossary and references to the terms and technologies used
in the DRM system.

2. Use Cases

2.1 Overview

The Interoperable DRM system application scenario describes a DRM system that is
based on Trusted Computing and MPEG-21 for protecting multimedia content. The
system can be divided in 2 main parts: the DRM Core and the secure application.

The DRM-core is an operating system component that handles the content licenses
and the content keys. It exposes this functionality through an application
programming interface (DRM Core-API) to applications. The DRM-core is responsible
for parsing licenses, deciding on whether access to requested content is allowed and
managing the content keys.

The secure application in the simplest case a media player. The application uses the
DRM Core-API provided by the DRM-core to gain access to protected content. After a
verification process, the application receives the content key from the DRM Core and
is able to render the content.

The user can perform different actions with the secure application. Every action

Open_TC Deliverable D06a.1 5/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

triggers a process between the application and the DRM Core. For the DRM system we
differentiate between these 5 main actions:

– Initialization of the system

– Download content

– View / Play Content

– Renew License

– Transfer License

In the following sections these different use cases are explained in detail. They
describe step by step, what happens when the user intends to perform an action.

2.2 Description of Use Cases

Use Case Unique ID / UC 10 /

Title Initialization of the system

Description The administrator initializes the DRM
System within the OpenTC framework.

Actors Administrator

Preconditions The OpenTC framework was started.

Postconditions The DRM Core was initialized.

Comment

Normal Flow 1. The Administrator installs a DRM-
Core and starts it in a separate
compartment.

2. The Administrator installs user
space applications, that can be
executed in the secure
environment for rendering of the
content.

3. The administrator establishes the
following requirements:
• Trusted I/O Channels: We need

a secure audio and video output
path for rendering content.

• Access to the trusted services
from the compartment,
especially to the DRM Core and
the TSS Stack. Access to the
Core will be limited by its API.

• Ability to display an application
in a Window-System, which is
started in the secure
environment. An efficient
method for video rendering
should also be supported in a

Open_TC Deliverable D06a.1 6/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

secure manner (for example
Overlay).

• Integrity measurement of all
applications and plugIns that
can be used to reproduce
content in a secure way.

Open_TC Deliverable D06a.1 7/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Use Case Unique ID / UC 20 /

Title Download content

Description The user downloads a content.

Actors User

Preconditions The OpenTC framework was started and
the DRM Core is running in a secure
environment.

Postconditions The content keys and the license are kept
secure in the sealed storage.

Comment

Normal Flow 1. The user downloads a container file
either from a provider or another
user. The file consists of the
multimedia content. The
downloading and the storage can
be unsecured, because the data is
always encrypted.
The license can also be transferred
in this step. It doesn't need to be
protected, since it is signed by the
content provider.

2. The user initializes the secure
environment.

3. The user starts the player
application for the retrieval of the
content keys.

4. The player application establishes a
secured connection to the provider
for exchanging the content keys.

5. The DRM Core starts a mutual
authentication round. The keys may
only be transferred when the
existence of a trusted DRM-core
within a secure environment is
detected at the receiver side, thus
the download procedure may start
after a successful authentication.
The authentication is planned to be
based on remote attestation and
generation of attestation identity
keys (AIKs) by the TPM.

6. The DRM Core exchanges the
content keys. The keys are
managed by the DRM-core, which
stores them in a central key store
along with a Digital Item Identifier
(DII). The same identifier resides in

Open_TC Deliverable D06a.1 8/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

the license within the content
container. The content key
download procedure may be
separate to the content download
procedure, but always takes place
under the DRM-core's control.

7. The license for the content is
checked and preprocessed. The
important information of the license
is stored in the sealed store.

Open_TC Deliverable D06a.1 9/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Use Case Unique ID / UC 30 /

Title View / Play content

Description The user tells the player that he wants to
view the content of a protected file.

Actors User

Preconditions The OpenTC framework was started and
the player application and DRM Core are
running in a secure environment.

Postconditions

Comment

Normal Flow 1. The user starts a player application,
which runs in the secure
environment.

2. The user triggers the application to
access a protected media file for
rendering.

3. The player application registers
with the DRM-Core. Then it asks the
DRM-core through the API to enable
access to the protected information
by handing out the content key
from the key store.

4. The Core is presented with the
content's license from the
container file along with the
requested action (e.g. play, print,
modify etc.) and decides on
whether access is granted or not. If
yes, the DII is used to query the
key store for the content key. The
key store itself is an encrypted file
and is protected by sealing its key
to a trusted system configuration.
Thus, the core can only access the
key store when the system is in a
known trusted state.

5. Then the DRM-Core hands out the
content key to the application. It
poses no threat since the system
and the player application are
trusted.

Open_TC Deliverable D06a.1 10/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Use Case Unique ID / UC 40 /

Title Renew License

Description Generally licenses are valid until a final
date. After this date, the license expires
and the user has to renew his license from
a license server.

Actors User

Preconditions The OpenTC framework was started and
the DRM Core is running in a secure
environment.

Postconditions New license is stored securely in the
sealed storage.

Comment

Normal Flow 1. The user triggers the license
renewal and the player application
connects to the content provider.

2. The DRM-Core performs an
authentication procedure similar to
that in the download procedure.

3. The player application replaces the
existing license by a new one.

Open_TC Deliverable D06a.1 11/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Use Case Unique ID / UC 50 /

Title Transfer License

Description Licenses are transferred to other
computers or are translated to other DRM-
Systems.

Actors User

Preconditions The OpenTC framework was started and
the DRM Core is running in a secure
environment. Manager application and
target DRM system are running in a
secure environment.

Postconditions Transferred license is stored secure in
target DRM system.

Comment

Normal Flow 1. The user initiates a transfer.
2. Then the Manager application

establishes a secure and
authenticated connection between
the two systems. The license and
content key are transmitted
securely. A similar authentication
procedure as in the download and
renew license use case is required.

3. In case a different DRM system
needs to be supported, the existing
license must be translated by the
DRM Core. The translation may also
require a re-encryption of the
content. Furthermore, the
translated license has to be signed
by the DRM Core, which will use the
TPM to enable trust to its signature.

4. The player application transmits
the content itself. This is not a
security problem, since the
transferred data is always
encrypted.

Open_TC Deliverable D06a.1 12/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

3. Design Specifications

3.1 Architecture

The diagram below shows the major components which make up the OpenTC DRM
system. The entire system can be divided into 3 sections, namely applications running
in userspace, the DRM Core which is running in a secure compartment, and security
services provided by the operating system and compartment management. The
precise separation of the system components among different secured compartments
is explained in section 4.3. The following sections will explain the individual
components of the system in detail.

3.2 Player API

3.2.1 Registration

Each Player who wants to access a protected content must register with the DRM Core
first. During Registration a mutual authentication is performed, so that the Player and
DRM Core validate the integrity and security status of the other party.

Additionally, the Core gets some information about the player, e.g. the version number
or process information, so that the Core can distinguish between multiple Players on
the same machine. After the authentication the capability negotiation follows, where
the Core negotiates a common rule set with the Player instance. This rule set defines
the REL commands, that both, Player and Core, have a common understanding of. This
mechanism enables the Core to discover, which commands the player supports and in

Open_TC Deliverable D06a.1 13/39

Figure 1: System Overview

License
Manager
(License

Interpretation
& Translation)

Player
API

Manager
API

Core
Manager

Sealed storage
(Key/License

Store)

Application
Loader

Sealing Secure Time Attestation Crypto. Lib.Measurement

Player
Manager

GUI I/O

OS-Services

DRM
Core

Userspace Applications

Utility Library

State
Management

D06a.1 Preliminary DRM System Specification FINAL | 1.10

what way the Core can control the Player.

This restriction description can be done by using the subset of REL commands related
to representing conditions on operations, time and state. This allows a well defined
command set to be used, without defining a new standard. The specific command set
is not defined in this preliminary document.

After successful registration, the player is considered trustworthy to handle the
protected content in a correct and predictable way.

3.2.2 Content Key Handling

After a successful registration the player can request the content key for a particular
protected content. This triggers a process of retrieving the associated license(s) of the
selected content and interpretation of this license. The Core then comes to the
decision if the player is allowed to access the content or not. This “Result” is described
in a XML format similar to the MPEG-21 REL and is transmitted to the Player.

If the Result is positive and the Player is generally allowed to access the content.
Together with a positive Result, the Core also transmits the content key so that the
Player can decrypt the content.

Furthermore the Result may contain several additional conditions, which have to be
enforced during the process of rendering. The content provider can define these
conditions to specify in what way the content can be rendered. An example condition
would be that the player should play only the first 10 seconds of a song. The player
has to understand these conditions in order to be able to enforce it correctly.

The capabilities of the player for these conditions are negotiated during the
registration, so the Core knows which conditions the player is able to enforce. For
example during the registration, the player informs the core, that he is able to enforce
the rule “play only the first x seconds” and the Core saves this property in an internal
storage. When a license is validated and this rule should be applied for the value 10,
then the Core generates a Result, which contains the rule that states “play only the
first 10 seconds”.

Decryption Modules are needed, when the Player receives a positive Result and then
wants to decrypt a specific content. Generally every content can use its own
encryption algorithm depending on the producer of the content. If the Player wants to
decrypt these contents, he needs access to all corresponding encryption libraries. This
functionality is provided by the Utility Library, which the player can use to get access
to a corresponding implementation of the encryption algorithm. The Utility Library is a
part of the API and provides a standardised interface for essential algorithms. The
mechanism within the Utility Library is explained in section 3.9.

3.2.3 Legacy Player Application

All specifications in the API are standardized and can be used by the player
applications. Generally the Player should be compatible to the DRM-System to know
the API of the core and how to handle content. Legacy players, which cannot access
the API directly, are also supported by our architecture. Players of that kind are not
aware of the DRM Core, but maybe favored by users for whatever reason. These cases
are handled by an IO-Socket interface, in which the handling of license authentication
and interpretation occurs transparent to the application.

Open_TC Deliverable D06a.1 14/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

For the player, the whole process is similar to a normal file access. The player only has
to support the content’s type and be connected to the IO-Socket through a plug-in.
The player receives the unprotected content from the socket and can render it. The IO-
socket in this case converts and forwards requests through the API to the DRM Core.
Since all applications, including the legacy ones, run in the secured environment,
handing out the content key or the decrypted content itself is no problem, since it is
guaranteed that the applications cannot compromise it.

3.3 Manager API

Manager API provides an interface to management features of the DRM Core, such as
inserting new licenses into the DRM Core and requesting for attestation keys. The
Manager GUI uses this API (defined in ManagementInterface), so that playback and
administrative functions of the DRM Core are clearly separated.

3.4 Application loader

The initial loading of the DRM Core needs to be done in a secure manner. This should
be handled by the compartment and device manager, which will check the integrity of
the compartment image before loading the DRM Core. In addition to the main image, a
secure persistent storage is used to provide secure storage for the DRM Core, that will
be discussed in sections 4.3.1 and 4.3.2.

3.5 Core Manager

The central component of the system is the Core Manager. It's tasks are the central
management of the different parts of the DRM-Core. It coordinates the requests from
the application layer and forwards them to the appropriate components. It also
contains the error handling e.g. fail over, treatment of invalid data, error logging and
exception handling.

3.6 License Manager

The core manager implements the interface to the Player and Manager GUI, and
coordinates the management and enforcement of licenses. When the player wants to
decrypt a protected content for a particular action, it sends a request to the core
manager, with a reference to the protected content and the request parameters. This
request contains the rights and the corresponding license, which have to be verified. A
request may also consist of multiple licenses.

Upon request from the player, the DRM Core makes the appropriate query to the key /
license storage, and sends the complete request to the license manager. In this case
the License Interpreter has to verify each license and determine if the right may be
granted over the content.

Depending on the license type, this is performed by the appropriate license
interpreter, generating an internal representation of the license. When the license is
positively authorized, the content key is retrieved from the key storage and returned
to the player with appropriate player restriction description.

When this player restriction needs to be adapted, or if a license is requested, then the
query is passed to the license translation manager.

Open_TC Deliverable D06a.1 15/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

3.6.1 License Interpreter

The licenses, that are stored in the sealed storage are in an XML format. Before these
licenses can be interpreted, license parsing needs to be carried out. This process maps
a license into an internal representation suitable for interpretation.

The parsing process takes place in two steps. First, the formal integrity of the received
data is validated, for e.g. XML-formatted licenses this includes schema- or DTD-
validation.

In the second step the authenticity and integrity of the data must be validated. The
most utilized approach is using digital signatures on the license, like XML dsig,
together with X509 based certification chains. To leave the possibility to extend the
concept to new formats, the signature checking uses the utility library as plug-in
architecture for the verification.

After the parsing of the license, the interpretation can be performed. In this process
the internal representation of the license is matched against the operation request
from the player application. The matching returns either a positive or negative result.
A positive result implies that the player application is allowed to decrypt and render
the specified content. However, depending on the license, a positive result may also
include additional restrictions which the player must support and enforce.

The OpenTC license model strives to support the concept of a “fair” DRM system as
well, meaning that the resulting systems will be beneficial not only for the content
provider, but also the consumer of a content. It is thus planned that all participants in
the system will be treated equally, so that every participant can either act like a
content consumer or a content provider. A content provider can use the system to
protect his own creation against any misuse.
Nevertheless the content provider can still decide to restrict the usage of the content
in an “unfair” way. This decision isn't based on a technical problem, but rather a
consequence of the business model. In order to have a fair usage of DRM, each
participant has to consider carefully its business model. The business model should
provide different added-value to the user, by granting additional rights to the user. We
foresee the following rights, which would support a “fairer” usage of DRM:

● copy

● burn

● sell

With the right to “copy” the consumer can create a limited amount of private copies.
By transferring these copies, the content can be shared with a small number of
OpenTC devices, which belong to the domain of the user. This domain has to be
defined beforehand, with a specified maximum number of devices.

In the same way, the right “burn” grants the user to save the content on a disc. “Sell”
means, that a consumer can sell the content to another user. With these technical
possibilities, the DRM works almost transparently to the consumer.

3.6.2 License Translation Manager

In order to support interoperability between different systems, we propose to include a
license translation system, to support the translation of licenses between different
license description schemes, e.g. Open Mobile Alliance (OMA) REL, Digital Video

Open_TC Deliverable D06a.1 16/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Broadcast Content Protection or Content Management DVB-CPCM. This allows content
to be received from or exported to foreign DRM systems or to external devices which
do not support the MPEG-21 REL license format.

This enables a seamless experience for the user, by allowing multimedia content to
easily move between different interoperable systems and devices.

The parsing of the license to be translated is first performed, which creates an internal
representation of the license. This is then handed to the translation engine with the
required translation requirements, such as target license language and profile.

Requirements for the translation system are:

● Element name translation / adaptation

● Restructuring of license elements to a legal structure in the other language

● Contractive translation of unsupported elements

Figure 2 shows the translation between two license languages. Element renaming can
be handled trivially, but restructuring and contractive translation (where an alternative
description must be generated that best matches the original element) of elements
not found in the original language, will require intelligent rules for such
transformation.

The proposed solution is to use an expert system architecture to transform a
knowledge representation of the original license into another license language.
Transformation rules can be built to translate the element names, make appropriate
contractive translation of elements which are not found in the target language, and an
output phase which generates the output license in a different structure.

3.7 State Management

The State Manager is responsible for managing system and license-related states.
System states are a general framework to access information related to the DRM

Open_TC Deliverable D06a.1 17/39

Figure 2: License Translation

grant agreement

play print Time
condition play print

Time
condition *

Time
condition *

E lement rename

R es tructure &
contractive trans lation

D06a.1 Preliminary DRM System Specification FINAL | 1.10

system (such as current player capabilities and credentials) and machine-related
parameters (such as time and location). License-related states are used to store
persistent information needed for license interpretation (such as playback counter).

3.8 Sealed store

The sealed store consists of two parts: the key store and the license store.

3.8.1 Key store

A particularly important component of the core is the key store. The key store contains
the keys which are used to access (namely decrypt) the protected content in the
system. The DRM Core ensures that a content key is given out only when a requested
action is allowed by the license. The key store is organised as a table which contains
keys and unique content identifiers. The same identifiers are used in the licenses to
reference content. Respective technologies are part of the MPEG-21 standard. The key
store is implemented as a secure database, which is decrypted by the core when a
secure environment is established. This is done with the help of the TPM, which seals
the key storage master key, so that it can only be accessed when the system is in a
secure state. The core itself is thus only able to retrieve the master key when the
system has not been compromised.

3.8.2 License store

As described previously, License Interpretation Manager relies on an internal
representation of licenses. The structure of this Internal license store is similar to the
structure defined in MPEG-21. To speed up the evaluation of licenses by the License
Interpretation Manager, each single syntactic object of a license, namely principal,
digital item, grant and condition, is mapped to a specific internal object representation
that is optimized for the evaluation process. The internal storage offers some basic
search methods on the storage objects for selecting certain items based on different
criteria or for matching two items against each other. The license is also stored in the
secure database, to protect against any unauthorized change to the license outside of
the DRM Core. Regarding the semantic of the stored elements, we strictly use values
from the RDD-Standard issued within the MPEG-21 framework.

3.9 Utility library

In order to support an extensible DRM system, a utility library is provided to both the
player application and the DRM Core. This utility library provides a centralized
mechanism in which new tools for decoding, encryption, decryption, signing, and so
on, can be retrieved and made available.

The Player Application can request a decryption tool from the Utility library to be able
to decode the content. The DRM Core may also need cryptographic tools, for signature
verification or self-signing generated licenses (for instance, in the case of license
translation from another DRM system).

The Utility library follows the concept of MPEG-21 IPMP tools, in which tools for specific
functions can be identified and automatically retrieved for the target platform. This
allows the DRM Core and player to support new media (new codecs) and licenses (new
cryptographic tools) when newer tools become available.

Open_TC Deliverable D06a.1 18/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

An important security aspect is that this utility library itself must be verified
beforehand, and must run within a secured environment. Mechanism to verify the
integrity of the retrieved tools, such as tool signing, must be implemented to ensure
that no security weakness is exposed through the new tool.

3.10 OS Services

The necessary OS services required by the DRM Core are secure time, sealing,
compartment measurement, attestation, cryptographic libraries. Secure time
mechanism provides a trustworthy source of time, on which time-related license
conditions can be verified.

Sealing of the license and key stores of the DRM Core, and measurement of the DRM
Core compartment should be performed by the OS compartment manager, prior to the
starting of the DRM Core compartment.

Services to aid the attestation of the DRM Core to services on the Internet, such as the
generation of AIK keys, need to be provided by the underlying OS.

Standard cryptographic libraries are also necessary in order to perform decryption and
hash operations as required by the DRM Core and Player application.

Open_TC Deliverable D06a.1 19/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

4. Component Interaction

4.1 Functional parts of the DRM Core

The DRM Core consists of five key functional parts: The Core Manager, License
Manager, License Translation Manager, State Manager and Database Manager. The
Database Manager is a component that provides the access to the sealed storage.
Figure 3 shows the inter-relations of the different modules.

The Core Manager provides the API's to the user level applications. The Core Manager
is directly connected to the License Manager, the State Manager and the Database
Manager.

The License Manager can process licenses and then decides to which component the
license should be forwarded. If a license shall be interpreted, he uses the License
Interpreter, which parses the license and compares it to a given set of conditions. The
License Translation Manager is used, if a license has to be converted to or from other
DRM-Systems. The Manager can either import or export a license from another
compatible system.

The State Manager contains the current states of the applications and contents. It
monitors all players that are connected to the DRM Core and provides state
information about players, system and digital items.

The Database Manager has a connection to the key store and the license store. The
Core Manager can request specific keys and licenses from the Database Manager,
which are then retrieved from the key store or the license store.

Open_TC Deliverable D06a.1 20/39

Figure 3: Internal and external components of DRM Core

Core Manager

Player Interface Manager Interface

OpenTC Player Manager GUI

Database Manager

S tate Manager
License
Manager

License
Translation
Manager

License
Interpreter

S ealed & encrypted
storage

Key store

License store

DRM Core

Utility Library

D06a.1 Preliminary DRM System Specification FINAL | 1.10

4.2 Sequence diagram

Figure 4 shows the sequence diagram for interaction between the player and different
components within the DRM Core. The player application first performs an initial

Open_TC Deliverable D06a.1 21/39

Figure 4: Sequence diagram for media playback

D06a.1 Preliminary DRM System Specification FINAL | 1.10

handshake with the DRM Core by reporting its playback capabilities, and receives as a
response a PlayerID, which the DRM Core uses to identify different players
connected to the core. Upon the player requesting to decrypt a digital item, the core
manager handles the request and calls the appropriate modules within the DRM Core
to process the request. Upon success, the content key is retrieved and returned to the
player.

4.3 DRM system and XEN/L4 virtualization environments

4.3.1 DRM components and compartments

In order to take advantage of the secure application isolation provided by the
virtualization framework in OpenTC, higher security can be achieved by separating the
player application and DRM Core into separate compartments. Figure 5 shows virtual
machine partitioning of different components. The DRM Core as described in section 3
runs in a protected compartment, while the OpenTC Player runs in a different
protected compartment. Since the information traffic between the DRM Core and
player is not high, this is not a big performance penalty. The hypervisor, and OS
components such as kernel and drivers are not described in this document. Sealed
storage protects the key and license stores described in sections 3.8.1 and 3.8.2.

For the rendering of the content, the player needs access to device drivers/kernel
modules. This access is controlled by security policies which only allows
communication with signed device drivers/kernel modules in the service compartment.
This enforces the secure output path criteria. The DRM Core has access to a secure
storage provided by the service compartment. Sealing is used to encrypt this storage,
such that the DRM Core can only access it when the OS and the DRM Core are not
modified.

Open_TC Deliverable D06a.1 22/39

Figure 5: Virtualization of the DRM Core

Hypervisor

S ervice
Compartment

Protected
Compartment1

Protected
Compartment2

Unprotected
Compartment

kernel

S ealed
storage

DRM
Core

S ecure
Application

kernel kernel kernel

S igned
drivers

D06a.1 Preliminary DRM System Specification FINAL | 1.10

4.3.2 Interfaces between compartments

A generic way to achieve communication between two compartments is the definition
of a network RPC between them. This form is used for the connection from the secured
application to the DRM Core. The security policy of the channel can be defined via an
interface from the operating system. Furthermore some rules of the license may have
to be applied, e.g. the content may not be rendered at the same time in more than
one player application. This RPC standard will not be defined in this preliminary
specification, but will be based on a standard RPC protocol, with a similar API as
described in section 3.2.

The interface between the DRM Core and secure sealed storage is implicit, in that it is
achieved by mounting secure mount points within the compartment of the DRM Core.
This is controlled by the compartment and device manager in service compartment.
The sealed storage is used for the storage of the licenses and the content keys.

Open_TC Deliverable D06a.1 23/39

Figure 6: Interface Chain

S ealed
storage

DRM
Core

S ecure
Application

Mounted
directory

Network
RPC

D06a.1 Preliminary DRM System Specification FINAL | 1.10

5. Requirements from other Partners
The secure application is generally a media player that uses the DRM Core-API to
render protected content. The application needs to be secure, because it is allowed to
decrypt the content. To maintain the security of the system, the player application
should run in a separate compartment, whose integrity and authenticity were checked
before its execution.

Furthermore the DRM system expects the presence of an underlying trusted system
and requires the following services from it:

● Secure Environment. The DRM Core and the media player application may
only execute when a secured environment is present. Thus, the underlying
system must provide:

● Memory isolation and protection of processes running in the secure
environment.

● Secure audio and video output paths to certified (signed) hardware
drivers and/or hardware. No unauthorized application or service
should be able to read from this output path. Optionally cryptographic
protection between the driver and the hardware can also be applied
when supported by the hardware.

● A means to measure the integrity of the DRM system and associated
applications. This implies the existence of a method for measuring
applications before they are loaded and executed.

● Cryptographic services. The DRM Core requires several cryptographic
services which have to be provided by the underlying system:

● A Trusted Software Stack (TSS), supporting AIK generation and
sealing. AIKs are required for authentication/remote attestation
purposes, while sealing is used to lock cryptographic keys to specific
system configurations. The core can thus ensure that content keys
are only accessible when the systems integrity is ensured.

● Sealed Storage. The DRM Core will use sealed storage for its license
and key databases.

● A system-wide database of certificates of root certification authorities,
along with services to verify certificates.

● Central policy management. Operation of the DRM Core and the media
player application will be subject to an operation policy of whatever kind. It
would be beneficial if the underlying system can provide a system-wide policy
management facility, so that DRM-related configuration can be seamlessly
integrated into the management tool.

Open_TC Deliverable D06a.1 24/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6. Technical API Specification

This section describes the API of critical classes and interfaces within the DRM Core.
This specification is based on the C++ language. Namespace used for the project is
defined to be de_tum_ldv_opentc.

6.1 External Interfaces

Class interfaces which are to be accessed / called from outside the DRM Core are defined in this
section.

6.1.1 class PlayerInterface

This class provides the main external interface to the OpenTC player. It is defined virtual and is
implemented by the CoreManager class.

6.1.1.1 playerInit()
Function: Initialize the player with an XML description of the playercapabilities

Parameter:
Name Type Description
playerCapabilities string XML string describing player capabilities

Return value:
Type Description
int integer identifier representing the particular

player

6.1.1.2 getDecryptionKey()
Function: Get content key from the DRM Core. This is the main operation used by the

player application to inform the DRM Core of a start of an digital item
operation (e.g. “Play”) and to obtain the appropriate content key.

Parameter:
Name Type Description
playerID int integer identifier representing the particular

player from playerInit()
item ItemReference Reference to digital item

Return value: none

6.1.1.3 getSupportedREL()
Function: Query the DRM Core for supported REL languages

Parameter: none

Return value:
Type Description
list<REL> List of languages supported by the Core

Open_TC Deliverable D06a.1 25/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6.1.2 class ManagementInterface

This class provides a second external interface for administrative functions to the DRM Core, such
as license management and controlling attestation.

6.1.2.1 insertLicense()
Function: insert a signed license from a mutually attested source into the DRM Core

for a particular digital item

Parameter:
Name Type Description
license string XML string of license
relType REL REL language identifier
item ItemReference Reference to digital item

Return value: none

6.1.2.2 getAttestationKey()
Function: Obtain an attestation key to download trusted content from a trusted
source

Parameter:
Name Type Description
playerID int integer identifier representing the particular

player from playerInit()
relType REL REL language identifier
serverURL string URL string of attestation server

Return value:
Type Description
Key Attestation key

6.1.3 class Utility

This is a utility class which provides a common mechanism for downloading tools for
commonly used functions, such as decryption and decoding, for both the DRM Core
and player.

6.1.3.1 getTool()
Function: Function to retrieve a specific tool for a specific platform and application,

using a unique XML tool description

Parameter:
Name Type Description
toolDescription string XML tool description (based on MPEG-IPMP)

Return value:
Type Description
function ptr pointer to tool function

Open_TC Deliverable D06a.1 26/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6.2 Internal Interfaces

This section defines class interfaces used between important modules within the DRM Core,
supporting a more modular approach.

6.2.1 Class DatabaseManager

This is an internal interface used to connect to the secure database supporting the DRM Core. It is
used for persistent secure storage of licenses, states (of digital items) and content keys for the
respective digital items.

6.2.1.1 getLicense()
Function: Retrieve license for a particular digital item

Parameter:
Name Type Description
item ItemReference Reference to digital item

Return value:
Type Description
License License object

6.2.1.2 setState()
Function: Save state for a particular digital item

Parameter:
Name Type Description
item ItemReference Reference to digital item
state ItemState Item state to modify

Return value: none

6.2.1.3 deleteLicense()
Function: delete license for a particular digital item (and all corresponding states and

keys)

Parameter:
Name Type Description
item ItemReference Reference to digital item

Return value: none

6.2.1.4 getItemState()
Function: Retrieve the state for a particular digital item

Parameter:
Name Type Description
item ItemReference Reference to digital item

Return value:

Open_TC Deliverable D06a.1 27/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Type Description
ItemState Item state retrieved

6.2.1.5 getDecryptionKey()
Function: Retrieve content key for a particular digital item

Parameter:
Name Type Description
item ItemReference Reference to digital item

Return value:
Type Description
Key content key

6.2.2 Class InterpreterInterface

This is an internal interface used for every module which works as a license interpreter (to parse
and decide if a player is allowed to play, and under what conditions) This is implemented by the
MPEG21Interpreter class which provides interpretation for MPEG-21 licenses.

6.2.2.1 interpretLicense()
Function: Interpret license from a generic license object, given the entire authorization

request parameters. When positively authorized, a player restriction
description is returned as string, otherwise an exception is raised.

Parameter:
Name Type Description
licenseGroup list<License> List of all license objects to interpret together
item ItemReference Reference to digital item
state ItemState Item state
system SystemState System state
operation string Operation taken on Digital Item

Return value:
Type Description
string XML string of playback restriction description

6.2.2.2 getSupportedLanguage()
Function: Query the interpretation module for the supported REL language in run-time.

Parameter: none

Return value:
Type Description
REL supported REL language

Open_TC Deliverable D06a.1 28/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6.2.3 class SystemState

This class is an extraction of the possible system states, such as secure time, platform and owner
credentials.

6.2.3.1 checkSysteState()
Function: Query a particular system state

Parameter:
Name Type Description
state string String ID of state to retrieve

Return value:
Type Description
string Value of system state

6.2.4 class CoreManager

This class is inherited from PlayerInterface and ManagementInterface, and implements
the PlayerInterface and ManagementInterface. It is the main entry point for both the
OpenTC player and Manager GUI.

6.2.5 class LicenseManager

This is a manager class to a license management module, which handles interpretation and
translation of licenses, in different REL languages.

6.2.5.1 interpretLicense()
Function: Interpret the license given the full authorization request parameters.

Parameter:
Name Type Description
licenseGroup list<License> List of all license objects to interpret together
item ItemReference Reference to digital item
operation string Operation taken on Digital Item

Return value:
Type Description
string XML string of playback restriction description

Exceptions:
Type Description
ERROR_LICENSE_INVALID License is invalid
ERROR_OPERATION_DISALLOWED Operation is completely not allowed

6.2.5.2 translateLicense()
Function: Translate the license into another REL language, with a restriction

description string (describing the capabilities of the target player)

Parameter:

Open_TC Deliverable D06a.1 29/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Name Type Description
sourceLicense License Input license object to be translated
targetLicenseLang REL REL language to translate to
targetRestrictions string XML string of output license

Return value:
Type Description
License License object after translation

6.2.5.3 getSupportSourceLanguages()
Function: Query for all supported input REL languages

Parameter: none

Return value:
Type Description
REL supported input REL language

6.2.5.4 getSupportTargetLanguages()
Function: Query for all supported output REL languages

Parameter: none

Return value:
Type Description
REL supported output REL language

6.2.6 class LicenseTranslationManager

This is a manager class to handle translation of licenses to different REL languages, under given
constrains.

6.2.6.1 translateLicense()
Function: Translate license to another supported REL language

Parameter:
Name Type Description
sourceLicense License Input license object to be translated
targetLicenseLang REL REL language to translate to
targetRestrictions string XML string of output license

Return value:
Type Description
License License object after translation

6.2.6.2 getSupportSourceLanguages()
Function: Query for all supported REL languages

Open_TC Deliverable D06a.1 30/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Parameter: none

Return value:
Type Description
list<REL> List of all supported source REL languages

6.2.7 class StateManager

This is a manager class to handle user states(limits for operations) for each digital items.

6.2.7.1 checkLimit()
Function: Retrieve limit for a particular operation on a particular digital item

Parameter:
Name Type Description
item ItemReference Reference to digital item
operation string Operation taken on Digital Item

Return value:
Type Description
int limit for operation

6.2.7.2 decrementLimit()
Function: Decrease limit for a particular operation on a particular digital item

Parameter:
Name Type Description
item ItemReference Reference to digital item
operation string Operation taken on Digital Item

Return value:
Type Description
int new limit after decrement

6.2.7.3 getSystemState()
Function: Get a particular system state

Parameter:
Name Type Description
state string String ID of state to retrieve

Return value:
Type Description
string value of state

Open_TC Deliverable D06a.1 31/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6.3 Helper Classes

This section defines commonly used helper classes.

6.3.1 class ItemReference

Class to encapsulate the reference to a particular digital item. Contains the fields:

● int DI
● string URL

6.3.2 class ItemState

Class to encapsulate a single state object

● int item_ID
● string state

6.3.3 class Key

Class to represent a content key of generic type

6.3.3.1 Key()
Function: Construct the key object of a particular type and length

Parameter:
Name Type Description
keyLength int Length of key in bytes
keyType int integer key type based on the KeyType

enumeration definition. (See 6.3.3)
key char* binary data to store in Key object

6.3.3.2 getKey()
Function: Retrieve binary data of the key

Parameter: none

Return value:
Type Description
char* binary data of Key

6.3.3.3 getKeyType()
Function: Retrieve the key type

Parameter: none

Return value:
Type Description
int integer representing key type based on the

KeyType enumeration definition. (See 6.4.3.4)

6.3.3.4 KeyType enumeration

Open_TC Deliverable D06a.1 32/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

Name Description
KEY_DES64 DES 64-bit key
KEY_AES128 AES 128-bit key
KEY_AES256 AES 256-bit key

6.3.3.5 getLength()
Function: Retrieve the key length

Parameter: none

Return value:
Type Description
int length of key (in bytes)

6.3.4 class License

Class to represent licenses of generic type

6.3.4.1 License()
Function: Construct the license object

Parameter:
Name Type Description
rel REL REL language of license
text string XML string of license

6.3.4.2 isRELType()
Function: Check if license is of a particular type

Parameter:
Name Type Description
type string Name of REL language to check with

Return value:
Type Description
string pointer to tool function

6.3.4.3 getString()
Function: Retrieve string representation of license

Parameter: none

Return value:
Type Description
string string representation of license

6.3.5 class PlayerState

Class to store data related to player initialized and authenticated by the DRM Core

Open_TC Deliverable D06a.1 33/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6.3.5.1 PlayerState()
Function: Construct the object

Parameter:
Name Type Description
id int integer identifier representing the particular

player from playerInit()

6.3.5.2 getPlayerID()
Function: Retrieve the player ID issued to the player

Parameter: none

Return value:
Type Description
int integer identifier representing the particular

player from playerInit()

6.3.5.3 getPlayerState()
Function: Retrieve a particular player state

Parameter:
Name Type Description
state string player state to retrieve

Return value:
Type Description
string value of player state

6.3.5.4 setPlayerState()
Function: Set a particular player state

Parameter:
Name Type Description
state string player state to modify
value string value of player state

Return value: none

6.3.6 class REL

Class to represent a particular REL language type.

6.3.6.1 REL()
Function: Constructor using a string descriptor

Parameter:
Name Type Description
language string Name of REL language

Open_TC Deliverable D06a.1 34/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

6.3.6.2 getName()
Function: Retrieve string name of REL language

Parameter: none

Return value:
Type Description
string Name of REL language

Open_TC Deliverable D06a.1 35/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

7. Annex A : C++ Header definition

class PlayerInterface {

public:
virtual int playerInit(const std::string& playerCapabilities) = 0;
virtual void getDecryptionKey(int playerID, const ItemReference& item,
const std::string& operation, std::string& playbackRestriction,Key& key) = 0;
virtual const std::list<REL> getSupportedREL() = 0;

};

class ManagementInterface {
virtual void insertLicense(const std::string& license, const REL& relType,
const ItemReference& item) = 0;
virtual void getAttestationKey(int playerID, const REL& relType,
const std::string& serverURL, Key& key) = 0;//TODO - change Key&

};

class Utility {
public:
void* getTool(std::string toolDescription);

};

class DatabaseManager {
public:

DatabaseManager();
const License getLicense(const ItemReference& item);
void setLicense(const ItemReference& item,const License& license,const ItemState&

state);
void setState(const ItemReference& item,const ItemState& state);
void deleteLicense(const ItemReference& item);
ItemState getItemState(const ItemReference& item);
const Key getDecryptionKey(const ItemReference& item);

};

class InterpreterInterface{
public:

virtual std::string interpretLicense(std::list<License> licenseGroup,
const ItemReference& item, const ItemState& state,const SystemState& system,
const std::string& operation) = 0;
virtual const REL& getSupportedLanguage() = 0;

};

class SystemState {
std::string checkSysteState(const std::string& state);

};

class CoreManager : public PlayerInterface, public ManagementInterface {
LicenseManager licManager;
DatabaseManager dbManager;

public:
CoreManager();
int playerInit(const std::string& playerCapabilities);
void insertLicense(const std::string& license, const REL& relType,
const ItemReference& item);
void getDecryptionKey(int playerID, const ItemReference& item,
const std::string& operation, std::string& playbackRestriction,Key& key)
throw (std::exception);
void getAttestationKey(int playerID, const REL& relType,
const std::string& serverURL, Key& key);
const std::list<REL> getSupportedREL();

};

class LicenseManager{
MPEG21Interpreter mpeg21Interpreter;

public:
std::string interpretLicense(const std::list<License>& licenseGroup,
const ItemReference& item, const std::string& operation)
throw(ERROR_LICENSE_INVALID,ERROR_OPERATION_DISALLOWED);

Open_TC Deliverable D06a.1 36/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

License translateLicense(License sourceLicense, const REL& targetLicenseLang,
const std::string& targetRestrictions);
const REL& getSupportSourceLanguages();
const REL& getSupportTargetLanguages();

};

class LicenseTranslationManager{
public:

License translateLicense(License sourceLicense, const REL& targetLicenseLang,
const std::string& targetRestrictions);
const std::list<REL> getSupportSourceLanguages();

};

class StateManager {
int checkLimit(const ItemReference& item, const std::string& operation);
int decrementLimit(const ItemReference& item, const std::string& operation);
std::string& getSystemState(std::string state);

};

class ItemReference {
public:

int DI;
std::string URL;

};

class ItemState {
public:

int item_ID;
std::string state;

};

class Key{
private:

int keyLength;
int keyType;
const char *data;

public:
Key(int keyLength, int keyType, const char *key);
const char* getKey() const;
int getKeyType() const;
int getLength() const;
enum { KEY_DES64, KEY_AES128 , KEY_AES256 };

};

class License{
private:
std::string RELtext;
REL relType;

public:
License(const REL& rel, const std::string& text);
bool isRELType(std::string type) const;
bool isRELType(REL type) const;
const std::string& getString() const;

};

class PlayerState {
private:

int playerID;
public:

PlayerState(int id);
int getPlayerID();
std::string checkPlayerState(const std::string& state);

};

class REL {
std::string RELName;

public:
REL();
REL(std::string language);
const std::string& getName() const;

};

Open_TC Deliverable D06a.1 37/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

8. Glossary of Abbreviations

Abbreviation Explanation

API Application programming interface

DI Digital Item

DII Digital Item Identifier

DRM Digital Rights Management

DVB-CPCM Digital Video Broadcast – Copy Protection
and Content Management

dsig Digital signature

DTD Document Type Definition

GUI Graphical User Interface

I/O Input / Output

IPMP Intellectual Property Management and
Protection

MPEG Motion Pictures Experts Group

OMA Open Mobile Alliance

OpenTC Open Trusted Computing

OS Operating System

RDD Rights Data Dictionary

REL Rights Expression Language

TPM Trusted Platform Module

TSS Trusted Software Stack

UC Use Case

XML Extensible Markup Language

Open_TC Deliverable D06a.1 38/39

D06a.1 Preliminary DRM System Specification FINAL | 1.10

9. References
[1] MPEG: MPEG-21 Multimedia Framework Part 1: Vision, Technologies and

Strategy. Reference: ISO/IEC TR 21000-1:2004. From ISO/IEC JTC 1.29.17.11.

[2] MPEG: MPEG-21 Multimedia Framework Part 3: Digital Item Identification.
Reference: ISO/IEC TR 21000-3:2003. From ISO/IEC JTC 1.29.17.03.

[3] MPEG: MPEG-21 Multimedia Framework Part 4: Intellectual Property
Management and Protection Components. Reference: ISO/IEC TR 21000-4. From
ISO/IEC JTC 1.29.17.04.

[4] MPEG: MPEG-21 Multimedia Framework Part 5: Rights Expression Language.
Reference: ISO/IEC FDIS 21000-5:2004. From ISO/IEC JTC 1/SC 29/WG 11.

[5] MPEG: MPEG-21 Multimedia Framework Part 6: Rights Data Dictionary.
Reference: ISO/IEC TR 21000-6:2004. From ISO/IEC JTC 1.29.17.06.

[6] Open Mobile Alliance (2005): DRM Specification Candidate Version 2.0.
http://www.openmobilealliance.org/release_program/drm_v2_0.html

Open_TC Deliverable D06a.1 39/39

http://www.openmobilealliance.org/release_program/drm_v2_0.html

D06e.1 MFA Requirements and Specification

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Internal deliverable

Deliverable reference number IST-027635/D06e.1/FINAL | 1.00

Deliverable title MFA Requirements and Specification

WP contributing to the deliverable WP06e.1

Due date Apr 2006 - M06

Actual submission date Sept 12, 2006

Responsible Organisation INTEK

Authors Irina Beliakova, Vladimir Bashmakov
Abstract The goal of this application is to demonstrate

the secure access to remote server that in
addition to “what-you-know” information
(password) requires the platform
authentication through the use of TPM

Keywords MFA, OPEN_TC, TPM

Dissemination level Public

Revision FINAL | 1.00

Instrument IP Start date of the
project 1st November 2005

Thematic Priority IST Duration 42 months

MFA Requirements and Specification FINAL | 1.00

Table of Contents
1 Introduction ... 5
2 Threat analysis.. 5
3 Functional requirements... 7

3.1 Roles and Actors.. 7
3.2 Use cases... 8
3.2.1 Client/server Installation of MFA components.. 8

3.2.2 Client Initialization.. 10
3.2.3 Platform registration...11
3.2.4 Platform unregistration...12
3.2.5 User Registration.. 13
3.2.6 Client logon.. 14
3.2.7 Client logoff.. 15
3.2.8 User/platform authentication..16
3.2.9 Using a remote server secure application/service.. 17
3.2.10 Server policy configuration... 18
3.2.11 Platform registration on the server...19
3.2.12 Server logon session.. 20
4 High level design... 21

4.1 Client operations.. 21
4.2 Server functionality.. 21
4.3 MFA system architecture.. 23

5 Required services from sublayers... 24
6 Environment requirements ... 24
7 Platform requirements... 25
8 List of abbreviations.. 25
9 Referenced Documents... 25

Open_TC Deliverable 06e.1 2/25

MFA Requirements and Specification FINAL | 1.00

List of figures
Figure 1: MFA system architecture... 22

Open_TC Deliverable 06e.1 3/25

MFA Requirements and Specification FINAL | 1.00

1 Introduction
The TPM MultiFactor Authentication (MFA) system is an application of the Trusted
Computing technology and shows the benefits of such technology for ensuring that
only a user who owns a registered platform equipped with a TPM may have access to
the remote computer resources.

As long as an authorized system is used to access corporate resources, the entire
infrastructure can be thought of as protected. Even if somebody's credentials have
been stolen, the intruder will have to operate from a trusted corporate platform to gain
the access to the resources.

The multifactor authentication, including both the user and TPM-based platform
authentication, covers up these threats. The access to the network is granted only if
both elements - user and platform - are successfully authenticated.

This document contains the MFA requirements and high level architecture specification
for a preliminary release of the MFA system.

2 Threat analysis
Different threat types could be categorized by the general attacker goal:

● Spoofing. Spoofing is the attempt to gain access to a system by using a false
identity. This can be accomplished by using stolen user credentials or a false IP
address. After the attacker successfully gains access as a legitimate user or
host, the elevation of privileges or abuse using authorization can begin.

● Tampering. Tampering is the unauthorized modification of data, for example as
it flows over a network between two computers.

● Repudiation. Repudiation is the ability of users (legitimate or otherwise) to
deny that they performed specific actions or transactions. Without adequate
auditing, the repudiation attacks are difficult to prove.

● Information disclosure. Information disclosure is the unwanted exposure of
private data. For example, a user views the contents of a table or file he or she
is not authorized to open or monitors data passed in a plain text over a network.
Some examples of information disclosure vulnerabilities include the use of
hidden form fields, comments embedded in Web pages that contain database
connection strings and connection details and weak exception handling that can
lead to internal system level details being revealed to the client. Any of this
information can be very useful to the attacker.

● Denial of service. Denial of service is the process of making a system or
application unavailable. For example, a denial of service attack might be
accomplished by bombarding a server with requests to consume all available
system resources or by passing it malformed input data that can make an
application process crash.

● Elevation of privilege. Elevation of privilege occurs when a user with limited
privileges assumes the identity of a privileged user to gain privileged access to
an application. For example, an attacker with limited privileges might elevate
his or her privilege level to compromise and take control of a highly privileged
and trusted process or account.

Open_TC Deliverable 06e.1 4/25

MFA Requirements and Specification FINAL | 1.00

Each threat category has a corresponding set of countermeasure techniques that
should be used to reduce the risk of attacks. These countermeasures are summarized
in the following table:

Threat Typical Countermeasures

Spoofing the
user identity

● Use strong authentication
● Do not store secrets in plain text
● Do not pass credentials in plain text over the wire

authentication
● Protect authentication cookies with Secure Sockets Layer

(SSL)

Tampering with
data

● Use data hashing and signing
● Use digital signatures
● Use strong authorization
● Use tamper-resistant protocols across communication links
● Secure communication links with protocols that provide

message integrity

Repudiation ● Create secure audit trails
● Use digital signatures

Information
disclosure

● Use strong authorization
● Use strong encryption
● Secure communication links with protocols that provide

message confidentiality
● Do not store secrets (for example, passwords) in plain text

Denial of service ● Use resource and bandwidth throttling techniques
● Validate and filter input

Elevation of
privilege

● Follow the principle of least privilege
● Use least privileged service accounts to run processes and

access resources

Open_TC Deliverable 06e.1 5/25

MFA Requirements and Specification FINAL | 1.00

3 Functional requirements

3.1 Roles and Actors

● User: the entity that performs the requests for using the remote services and
wants to be authenticated. In some scenarios the user and the administrator
may be the same person.

● Administrator: the system administrator on the server/client side installs the
software and performs all system operations.

● Authentication: in computer security authentication is the process of
attempting to verify the identity of the sender of a communication such as a
request to log in. The sender being authenticated may be a person.

● MFA: Multifactor Authentication. The general idea of a MFA architecture is to
use several types of credentials to authenticate the user during the logon to
remote server computers in order to enforce a strong authentication security. In
our case MFA is two-factor authentication system: user identity and TPM-
equipped platform identity.

● Login: login is the process of receiving access to a computer system by
identification of the user in order to obtain credential to permit access. It is an
integral part of computer security procedure. Logon to system with multifactor
authentication uses two credentials: user password and TPM-equipped platform
identity to permit access to resources.

Open_TC Deliverable 06e.1 6/25

MFA Requirements and Specification FINAL | 1.00

3.2 Use cases

3.2.1 Client/server Installation of MFA components

Use case unique ID /UC 10/

Title Client/server Installation of MFA
components

Authors Irina Beliakova, Vladimir Bashmakov
 (INTEK)

Use case revision number 01

Use case revision date 2006-11-15

Short description/purpose(s) The client and server components are
installed on two systems by the system
administrator. After the installation is
completed the user has access to the
client computer components and the
system administrator has access to server
computer components.

Roles Administrator

Includes ● An installed and running Open_TC
framework on the client and server
platform.

● Multifactor authentication services
require fully a implemented Trusted
Software Stack (TSS) for Linux
according to TCG specification. TSS
stack must support basic TCG
functionality including the
generation of Attestation Identities
Keys (AIK), extending and retrieving
the values of the TPM Platform
Configuration Registers (PCRs).

● The security services such as
OpenSSL.

● Crypto/PKI services.

● OpenTC Certificate Authority (CA) to
provide the cryptographic certificate
infrastructure.

Preconditions (none)

Postcondition The demo applications of the OTC security
architecture can be used.

Open_TC Deliverable 06e.1 7/25

MFA Requirements and Specification FINAL | 1.00

Normal Flow The administrator executes and completes
the installation procedure.

Open_TC Deliverable 06e.1 8/25

MFA Requirements and Specification FINAL | 1.00

3.2.2 Client Initialization

Use case unique ID /UC 100/

Title Client initialization

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The administrator starts the utility to
initialize the TPM and create an AIK.

Roles Administrator

Preconditions This TPM platform has not been initialized
before; UC 10 should be done before this
action.

Postcondition Initialized platform can be used to log on
into the remote server.

Normal Flow 1. The authorized administrator
invokes the initialize utility
to take the TPM ownership.

2. An AIK is created inside the local
repository.

3. A request for an AIK certificate is
built and sent to the OpenTC
Privacy CA.

4. The AIK is activated and the AIK
certificate is being retrieved.

5. OpenTC Privacy CA holds the copy
of this certificate for the
authentication purposes, and the
platform as the unique identifier.

Open_TC Deliverable 06e.1 9/25

MFA Requirements and Specification FINAL | 1.00

3.2.3 Platform registration

Use case unique ID /UC 110/

Title Platform registration

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The administrator registers the TPM-
equipped platform with remote server.

Rationale
In a physically separated environment
this is similar to registering a computing
platform from a network.

Roles Administrator (client/server)

Preconditions UC 100 should be done before this action

Postcondition User from the client trusted platform can
remote log on to the server

Normal Flow

 1. The administrator invokes the
platform registration utility.

 2. The system authenticates the
administrator.

 3. The administrator selects the
server to register to.

 4. The system registers the TPM
platform credentials, created in UC
100, with selected remote server.

Open_TC Deliverable 06e.1 10/25

MFA Requirements and Specification FINAL | 1.00

3.2.4 Platform unregistration

Use case unique ID /UC 120/

Title Platform unregistration

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The administrator unregisters the TPM-
equipped platform with remote server.

Rationale
In a physically separated environment
this is similar to unregistering a
computing platform from a network.

Roles Administrator (client/server)

Preconditions UC 110 has been done before this action

Postcondition
User from the client trusted platform
cannot remote log on anymore to the
server

Normal Flow

 5. The administrator invokes the
platform unregistration utility.

 6. The system authenticates the
administrator.

 7. The administrator selects the
server to register to.

 8. The system unregisters the TPM
platform credentials, registered in
UC 110, with selected remote
server.

Open_TC Deliverable 06e.1 11/25

MFA Requirements and Specification FINAL | 1.00

3.2.5 User Registration

The possibility of a new user registration relies solely on the existing infrastructure on
the client and remote server. The MFA system does not intend to interfere in any way
the security practices existing in the infrastructure.

On the server the user rights and access policy are controlled by the operational
system.

Open_TC Deliverable 06e.1 12/25

MFA Requirements and Specification FINAL | 1.00

3.2.6 Client logon

Use case unique ID /UC 200/

Title Client logon

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The user wishes to use a remote service.

Roles User

Includes /UC 220/ User Authentication

Preconditions 1. The client user is going to log on
from the client computer already
registered.

2. /UC 400/ should be done before this
action

Normal Flow 1. The user notifies the local system
(client) that s/he wishes to use a
service running in a remote
computer.

2. The user enters the user name and
name or address of the remote
server running the wanted service.

3. According to the security policy the
remote system authenticates the
user (see /UC 220/).

4. A session with the remote service is
started.

Open_TC Deliverable 06e.1 13/25

MFA Requirements and Specification FINAL | 1.00

3.2.7 Client logoff

Use case unique ID /UC 210/

Title Client logoff

Authors Irina Beliakova, Vladimir Bashmakov

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The user wishes to end current working
session with the remote server.

Roles User

Includes (none)

Preconditions The user has already started a session
with the server (see /UC 200/).

Postcondition The user cannot use the server anymore
without performing a new logon session.

Normal Flow 1. The user notifies the local system
(client) that s/he wishes to end a
session.

2. The user will be disconnected from
the server.

Open_TC Deliverable 06e.1 14/25

MFA Requirements and Specification FINAL | 1.00

3.2.8 User/platform authentication

Use case unique ID (per WP or SWP) /UC 220/

Title User/platform authentication

Authors Irina Beliakova. Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s)

The client asks the remote server to
authenticate the user/TPM-equipped
platform according to the policy set for
the user

Roles User

Includes (none)

Preconditions /UC 400/ should be done before this
action.

Normal Flow

1. The system asks the user for
authentication data.

2. The user enters data.
3. The remote system authenticates

the user and TPM-equipped
platform.

Open_TC Deliverable 06e.1 15/25

MFA Requirements and Specification FINAL | 1.00

3.2.9 Using a remote server secure application/service

Use case unique ID /UC 300/

Title Using a remote server secure
application/service

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The user starts a session with the remote
secure application/service

Roles User

Includes /UC 200/ Client logon
/UC 210/ Client logoff

Preconditions 1. /UC 110/ should be done before this
action.

2. /UC 400/ should be done before this
action.

Normal Flow 1. The user notifies the system that
s/he wishes to start a logon session.

2. The system opens a new logon to
application session (see /UC 200/).

3. The user works with the application
4. The user closes the application

session (see /UC 210/).
5. The user-interface of the

application disappears.

Open_TC Deliverable 06e.1 16/25

MFA Requirements and Specification FINAL | 1.00

3.2.10 Server policy configuration

Use case unique ID /UC 400/

Title Server policy configuration

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s) The administrator starts the utility to
configure the user logon and policy
setting.

Roles Administrator

Preconditions /UC 10/ and /UC 100/ should be done
before this action.

Postcondition The user from the trusted client can log on
to the remote server using the TPM-
equipped platform identity .

Normal Flow 1. The authorized administrator
invokes the Credential and Policy
manager to set access right for
logon for list of users.

2. The administrator set the policy
allow to log on by verifying the user
password or / and TPM-equipped
platform identity.

Open_TC Deliverable 06e.1 17/25

MFA Requirements and Specification FINAL | 1.00

3.2.11 Platform registration on the server

Use case unique ID /UC 410/

Title Platform registration on the server

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s)

The server registers the TPM-equipped
platform. The server accepts the TPM
credentials from clients and saves them
in the Master Repository.

Rationale
In a physically separated environment,
this is similar to registering a computing
platform from a network.

Roles Administrator

Preconditions /UC 100/ should be done before

Postcondition Server can be used for remote MFA
access.

Normal Flow

1. This use case is triggered /UC 110/
2. The server invokes the register

service.
3. The system authenticates the

administrator.
4. The register service saves TPM

credential in Master Repository.

Open_TC Deliverable 06e.1 18/25

MFA Requirements and Specification FINAL | 1.00

3.2.12 Server logon session

Use case unique ID /UC 510/

Title Server logon session

Authors Irina Beliakova, Vladimir Bashmakov
(INTEK)

Use case revision number 01

Use case revision date 2006-01-16

Short description/purpose(s)
After TPM client logon is successful the
user have access to remote server
resources according user permissions

Roles User

Includes

Preconditions

The client user is going to logon from the
computer already registered.

1. /UC 110/ should be done before .
2. /UC 400/ should be done before

Normal Flow

1. Server user logon session starts
2. Authentication server requests the

user, TPM credentials.
3. According to the security policy the

remote system authenticates the
user and TPM platform (see /UC
320/).

Open_TC Deliverable 06e.1 19/25

MFA Requirements and Specification FINAL | 1.00

4 High level design
The design and implementation of the MFA system has a goal to prevent the listed
threat by using as countermeasure technique the TPM-equipped platform identity for
trusted remote access to server.

The multifactor authentication, including both user and platform authentication, covers
up most of these threats. The access to the network is granted only if both elements -
user and platform - are successfully authenticated.

Multifactor authentication to remote server should include components executed at
server and client computers. Client components register the trusted platform with the
remote server. Client components use the TSS at interface to the local TPM. A user can
login to a remote server once the platform registration is completed.

The parameters of multifactor authentication system should be controlled by
authentication policies configured on the remote platform.

4.1 Client operations

1. Platform registration with the remote server.
An existing user with administrative rights can register the platform
authentication information, namely the AIK and PCR's.
The AIK is created inside the local TPM, the AIK certificate request is built and
sent to the Open_TC Privacy CA. PCRs are extended during the bootstrap with
the integrity measurements client computer software. The credentials are saved
on the remote server.

2. Standard user registration with remote server using the preexisting
infrastructure.

3. Logon to the remote server.
The Logon Application (LAP) establishes secure communication channel with a
remote server using OpenSSL or other secure channel. The LAP then retrieves
the TPM Platform Configuration Registers (PCRs) values, platform AIK, and
collects the User Identity (UI). PCRs and Challenge are signed with the platform
AIK to ensure the information security. This authentication information is being
sent to the remote server for authentication.

The server queries the Open_TC Privacy Certificate Authority (CA) to certify the
platform AIK. Then it verifies TPM PCRs. If both steps succeed, the server
proceeds with user authentication, which relies on the existing authentication
infrastructure and is out of the scope of this scenario.

4.2 Server functionality

1. Register the platform and store platform information.
The server supports the platform registration. This procedure involves
registering platform AIK certificate and PCR's.

2. Register the user and store user information.
The server can verify user credentials. This basically relies on the existing
authentication infrastructure.

Open_TC Deliverable 06e.1 20/25

MFA Requirements and Specification FINAL | 1.00

3. Edit user/platform policy for multifactor access.
The system administrator can change the user policies on the server to
determine the required credentials in order to log on to the server.

4. Enforce policy for server access.
The server can verify user credentials with defined policy set and reject logon if
the multifactor authentication fails.

Open_TC Deliverable 06e.1 21/25

MFA Requirements and Specification FINAL | 1.00

4.3 MFA system architecture

A preliminary MFA system architecture is depicted in figure 1 and the components are:

● OpenTC framework. Open Trusted Computing framework includes a
virtualization layer that is managing multiple compartments and security
services on the client.

● Client. Client is a computer system that accesses a (remote) service on another
computer by some kind of network. For everyday tasks such as word processing,
surfing the Internet or image processing the user is working with his well known,
general purpose operating system. This operating system could run on top of a
hypervisor in parallel to other compartments and security services.

● Server. Server is a computer system that provides services to other computing
systems (clients). The entity the user wants to use to do some computer works.

Open_TC Deliverable 06e.1 22/25

Figure 1: MFA system architecture

Trusted Compartment

Client Computer

Server Computer

MFA Logon application

VM Trusted & TPM
management

Linux OS

Virtualization Layer

TPM

Remote Computer

Authentication &
 Registration Server

MFA Credential & Policy
Manager

Master Repository
User & TPM & Settings

DataBase

Linux OS

Secure channel

Logon

Client Computer

MFA Requirements and Specification FINAL | 1.00

The server defines the policy whether a connecting client user machine is to be
considered “trusted” or not.

● Credential & Policy manager. The credential & policy manager is responsible
to manage and store the user's credentials & policies. The credentials used
when authenticating the user with the remote server. The credential manager
ensures that these credentials are securely stored. Secure Master Repository
is used to save and keep the secure data. MFA includes administrative
functionality to configure authentication methods and access rights and
settings.

● TPM. Trusted Platform Module is a chip that provides Trusted Computing
features.

● PCR. Platform Configuration Registers. TPM volatile memory section contains
platform configuration registers. These registers contain the integrity
measurements (hashes) of the firmware and loaded software. During the system
boot the BIOS, the BIOS extensions, MBR, the boot loader (namely GRUB) stages
are measured and any designated files, such as the kernel. These
measurements are used to extend the various PCRs.

● Client components. MFA components installed on the client.

● Remote server components. MFA components installed on the remote
server.

The client and server components are installed on two systems by the system
administrator. After the installation has been completed the user has access to
the client system. The system administrator has access to server computer.

Since the specification of the services and interfaces provided by the OpenTC
framework are currently an ongoing work, the details of the interactions among MFA
and such services will be specified in the final MFA specifications.

5 Required services from sublayers
● An installed and running Open_TC framework on the client platform.

● Multifactor authentication services require fully implemented Trusted Software
Stack (TSS) for Linux according to TCG specification. TSS stack must support
basic TCG functionality including Attestation Identities Keys (AIK) generation,
TPM Platform Configuration Registers (PCRs) management.

● The security services such as OpenSSL for Open_TC will be used.

● Crypto/PKI services - from SWP03c.

● Open_TC Certificate Authority (CA) to provide the cryptographic certificate
infrastructure.

6 Environment requirements
● A linux distribution (Fedora 5, OpenSUSE 10 or Damn Small Linux)

● PAM Framework

Open_TC Deliverable 06e.1 23/25

MFA Requirements and Specification FINAL | 1.00

● OpenSSL Library

● TSS 1.2 library

● TPM Tools 1.2.4

● TSS Test Suite_27022006

● Linux 2.6.x

● gcc 3.4.x

● eclipse-3.1

7 Platform requirements
The Product is compatible with standard Linux environment with TPM platform installed
and initialized.

The MFA system Product supports features and functionality enabled by a Trusted
Platform Module (TPM) that requires the following components to be installed:

● Infineon TPM SLD 9630 TT 1.1b with TPM firmware 1.05 or higher; Infineon
provides a firmware update via a tool based on the TCG field upgrade approach
that will be deployed by means comparable to driver updates.

● TPM TestSuite –27022006 IBM

● TPM driver and TSS.

8 List of abbreviations
Listing of term definitions and abbreviations used in this document (IT expressions and
terms from the application domain).

Abbreviation Explanation
AIK Attestation Identity Key
MFA MultiFactor Authentication
OS Operating System
PCR Platform Configuration Register
SSL Secure Sockets Layer
TC Trusted Computing
TCB Trusted Computing Base
TCG Trusted Computing Group
TPM Trusted Platform Module
TSS Trusted Software Stack

9 Referenced Documents
/1/ TCG Specification, Architecture Overview.
http://www.trustedcomputing.org
April 28, 2004,
Version 1.2

/2/ TCG Software Stack (TSS) Specification

Open_TC Deliverable 06e.1 24/25

MFA Requirements and Specification FINAL | 1.00

January 6, 2006,
Version 1.2

/3/ PAM
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-
PAM_ADG.html http://msdn.microsoft.com
Version 0.99.6.0, 5. August 2006.

/4/ Secure Coding Guidelines
http://msdn.microsoft.com
2004

/5/ Improving Web Application Security: Threats and Countermeasures
http://msdn.microsoft.com

/6/ Writing Secure Code, Second Edition, by Michael Howard, David C. LeBlanc

/7/ OpenSSL Toolkit www.openssl.org/

Open_TC Deliverable 06e.1 25/25

http://www.openssl.org/
http://msdn.microsoft.com/
http://msdn.microsoft.com/
http://msdn.microsoft.com/

D6e.3: Intermediate MFA System Specification

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Internal Report

Deliverable reference number IST-027635/D6e.3/PUBLIC | 1.00

Deliverable title MFA Concept Prototype

WP contributing to the deliverable WP6

Due date Aug 2006 - M08

Actual submission date Sept 12,2006

Responsible Organisation INTEK

Authors Irina Beliakova, Vladimir Tsisser

Abstract This document describes MFA System which
use trusted platform features for a secure,
multifactor authentication to remote
computers. System allows to make remote
logon by using TPM credentials and/or
password. The document contains system
architecture, components, their interactions.

Keywords PAM, TPM, Credential Manager, MFA

Dissemination level Public

Revision PUBLIC | 1.00

Instrument IP Start date of the
project 1st November 2005

Thematic Priority IST Duration 42 months

MFA Intermediate System Specification PUBLIC | 1.00

Table of Contents
1 Introduction... 4
2 Requirements breakdown.. 4
3 High level design specification... 4
4 Functionality.. 6
4.1 Actions... 6
4.2 Policies... 8
4.3 Data structure organization example... 8

5 Preliminary MFA API... 9
5.1 Data Types... 9

Pointer Size:... 9
Basic T ypes:... 9
Derived Types:... 9
Common return code defines:.. 10

5.2 Structures... 10
5.2.1 MFA_VERSION... 10
5.2.1 MFA_CONTEXT_INFO ... 10

5.3 Interface definition... 11
5.3.1 mfa_Context_Create ... 11
5.3.2 mfa_Context_Close.. 11
5.3.3 mfa_Context_GetStatus .. 12
5.3.4 mfa_Context_FreeMemory .. 12
5.3.5 mfa_S_RegisterPlatform .. 13
5.3.6 mfa_S_Authenticate... 13
5.3.7 mfa_S_SetAccessPolicy.. 13
5.3.8 mfa_S_GetAccessPolicy..14
5.3.9 mfa_Platform_Initialize .. 14
5.3.1 0mfa_C_GetPlaformData.. 14

6 List of abbreviations... 15
7 Referenced Documents.. 15

Open_TC Deliverable 6e.3 2/16

MFA Intermediate System Specification PUBLIC | 1.00

List of figures
Figure 1: MFA Components... 5
Figure 2: Platform registration.. 6
Figure 3: Platform authentication... 8

Open_TC Deliverable 6e.3 3/16

MFA Intermediate System Specification PUBLIC | 1.00

1 Introduction
The TPM MultiFactor Authentication (MFA) system is an application of the Trusted
Computing technology and shows the benefits of such technology for ensuring that
only a user who owns a registered platform equipped with a TPM may have access to
the remote computer resources.

Multifactor authentication to remote server involves components executed at server
and client computers. Client components register TPM with the remote server. Client
components uses the local TPM through TSS. The user can login to a remote server
once the platform registration is completed.

The parameters of multifactor authentication system can be controlled by
authentication policies.

This document gives high level design specification of a MFA system: the components
protocol messages exchanged by the components and a preliminary API.

Since the specification of the services and interfaces provided by the OpenTC
framework are currently an ongoing work, the details of the interactions among MFA
and such services will be specified in the final MFA specifications.

2 Requirements breakdown
As long as an authorized system is used to access corporate resources, the entire
infrastructure can be thought of as protected. Even if somebody's credentials have
been stolen, the intruder will have to operate from a trusted corporate platform to
gain the access to the resources. On the other hand even the authorized user may
mistakenly try to gain the access from improperly configured system, such as home
computer, untrusted device, and etc. - the platforms that by definition are outside the
corporate control.

The multifactor authentication, including both user and platform authentication covers
up most of these threats. The access to the network is granted only if both elements -
user and platform - are successfully authenticated.

An installed and running Open_TC framework on the client platform is required.
Implementation of Multifactor Authentication application expects the presence of an
underlying trusted framework and requires the following services from it.

● Trusted Software Stack (TSS) for Linux according to TCG specification. TSS stack
must support basic TCG functionality including Attestation Identities Keys (AIK)
generation, TPM Platform Configuration Registers (PCRs) calculation, storing,
and retrieval.

● Security services such as OpenSSL to provide secure communication protocol.

● Crypto and PKI services developed in SWP03c and SWP05d.

For a more comprehensive description of the MFA requirements, the reader should
refer to the deliverable: “D06e.1 MFA Requirements and Specification”.

3 High level design specification
The MFA architecture includes two components components types:

Open_TC Deliverable 6e.3 4/16

MFA Intermediate System Specification PUBLIC | 1.00

1. Client components

Register credential utility

2. Remote server components:

Authentication and Registration Server

Platform/User identities database: Master Repository

Credential & Policy Manager

The client and server components are installed on two systems by the system
administrator. After installation is completed the user has access to the client system
and the system administrator has access to server computer.

These components can run on on a single Linux box with TSS and TPM as well as on
top of the Open_TC framework. (Fig.1)

Open_TC Deliverable 6e.3 5/16

Figure 1: MFA Components

Trusted Compartment

Client Computer

Server Computer

MFA Logon application

VM Trusted & TPM
management

Linux OS

Virtualization Layer

TPM

Remote Computer

Authentication &
 Registration Server

MFA Credential & Policy
Manager

Master Repository
User & TPM & Settings

DataBase

Linux OS

Secure channel

Logon

Client Computer

MFA Intermediate System Specification PUBLIC | 1.00

4 Functionality

4.1 Actions

 There are three actions that can be performed on the client:

1. Platform registration with the remote server. An existing user with
administrative rights can register the platform authentication information:
Platform AIK and platform Configuration Registers (PCRs).
Platform AIK is created inside the local TPM, AIK certificate request is built and
sent to the Open_TC Privacy CA. PCRs are extended during the bootstrap with
the integrity measurements of client computer software. Retrieved TPM
Platform Configuration Registers (PCRs) values and Platform AIK as Combined
Platform Registration Information (COREG) are sent to the server. The server
receives the COREG and uses it to create the Platform Identity – data, necessary
for authentication.

2. User registration with remote server. The possibility of a new user
registration relies solely on the existing infrastructure. the application does not
intend to interfere in any way the security practices existing in the
infrastructure.

3. Logon to the remote server. A client can logon to the remote server. This

Open_TC Deliverable 6e.3 6/16

Figure 2: Platform registration

MFA Client MFA_Server

Registration request

Retrive PCRs

Hold the copy of PUBAIK

Create AIK (PUBAIK; PRIVAIK)

Hold the copy of SCERT

Hold the copy of PID

Registration scripts

COREG (PID, PUBAIK, PCRs)

Registration request with COREG

Hold the copy of PCRsRegistration succeeded

Generate Platform ID (PID)

MFA Intermediate System Specification PUBLIC | 1.00

basically relies solely on the existing authentication infrastructure. In case the
remote server logon system supports the MFA extension, a client platform
authentication will be launched.

There are five actions that can be performed on the remote server:

1. Register platform and store platform information. The server supports the
platform registration. This procedure involves registering Platform AIK
certificate: the server saves the COREG in Master Repository.

2. Platform authentication. The server supports the platform authentication:
the server logon system launches the platform authentication by calling a
certain API function.

MFA server application retrieves the user policy and check it. After a successful
policy checking, the server establishes secure communication channel with a
remote MFA client using Secure protocol (OpenSSL library).

MFA server generates anti-reply challenge (CHALLENGE) and requests from MFA
Client the PCRs signed using the AIK key.

MFA client receives CHALLENGE and retrieves the TPM Platform Configuration
Registers (PCRs) values and the Platform AIK, sets up the Combined
Authentication Information (COAUTH):- Platform ID (PID), CHALLENGE - Platform
TPM PCRs.

COAUTH is signed with the Platform AIK to ensure the information integrity.

This Combined Authentication Information (COAUTH) is being send to the remote
server for authentication.

MFA server receives COAUTH and proceeds with the platform authentication. It
retrieves stored the platform information by PID, it verifies the signature and
involves the verification of the Platform TPM PCRs.

In this scenario network calls are synchronous. An established SSL channel is used as
binary stream.

Open_TC Deliverable 6e.3 7/16

MFA Intermediate System Specification PUBLIC | 1.00

3. Authenticate user. The server can verify user credentials. This basically relies
on the existing authentication infrastructure.

4. Edit user/platform policy for multifactor access. The system administrator
can change the user policies on the server to determine the required credentials
in order to logon to the server.

5. Enforce policy for server access. The server can verify the user credentials
against a defined policy set and reject the logon if multifactor authentication
fails.

4.2 Policies

The policy determines what type authentication is required to access the remote
service. The following policies will be defined:

● The platform authentication is required (optional if policy is not set).

● The list of platforms the user is allowed to login from (the user can use any
registered platform if this policy is not set).

4.3 Data structure organization example

Open_TC Deliverable 6e.3 8/16

Figure 3: Platform authentication

MFA_Client MFA_Server

Unlock AIK with PCRs

Compute Response

Verify signature

PAM Framework

Check user policy (UserName)

Authenticate (ClientHostName, UserName)

Start SSL session

OK

Generate challengeCHALLENGE

COAUTH (PID, PCRs, Signature)

Verify PCRs

Create SSL channel (ClientHostName)

Authentication succeeded

Retrive Platform ID (PID)

Verify PID

MFA Intermediate System Specification PUBLIC | 1.00

All data can be expressed as two tables. The first one is the “Registered Platforms”
table. The second is a “Users Policies” table. “Registered Platforms” table consist of
three columns: “Platform ID (PID)”; “PCRs”; “Public AIK”. “Platform ID (PID)” is the
Primary Key (PK) of this table. “Users Policies” table also consists of three columns:
“User Name”; “Policy”; “Platform IDs set” where “User Name” column is the Primary
Key (PK) of this table.

“Registered Platforms” table example:

Platform ID
(PID)

PCRs Certificate
(Public AIK)

123987 binary string binary string
321789 binary string binary string
456654 binary string binary string

“Users Policies” table example:

User Name Policy Platform IDs set
Jack exclude NULL
Tom include 321789; 456654
Bill include NULL

In this example Jack can use any client computer to login to the server. The TPM
authentication will not be performed. Tom can use only two computers with a
registered TPM to login to the server. Bill can use any computer with a registered TPM.

5 Preliminary MFA API

5.1 Data Types

This section describes the basic data types defined by this API.

Pointer Size:

Pointer size becomes 32 bits on 32-bit systems and 64 bits with 64-bit system.

Basic Types:

There are some new types for 64-bit systems that were derived from the basic
C_language integer and long types, so they work in existing code. These are the
expected values and definitions.

Type Definition
UINT16 Unsigned INT16
UINT32 Unsigned INT32
BYTE Unsigned character
MFA_UNICODE MFA_UNICODE character. MFA_UNICODE characters are to be

treated as an array of 16 bits.
MFA_PVOID void Pointer (32 or 64 bit depending on architecture)

Derived Types:

Open_TC Deliverable 6e.3 9/16

MFA Intermediate System Specification PUBLIC | 1.00

Type Definition Usage
MFA_HCONTEXT UINT32 Context object handle
MFA_FLAG UINT32 Object attributes
MFA_RESULT UINT32 result of a MFA interface command

Common return code defines:

Type Definition
MFA_SUCCESS Success
MFA_E_FAIL Non-specific failure
MFA_E_BAD_ARGUMENT One or more parameter is bad.
MFA_E_INTERNAL_ERROR An internal SW error has been detected.
MFA_E_NOTIMPL Not implemented
MFA_E_CANCELED The action was canceled
MFA_E_TIMEOUT The operation has timed out
MFA_E_OUTOFMEMORY Ran out of memory

5.2 Structures

This section describes the structures defined by this API.

5.2.1 MFA_VERSION
This structure allows the MFA to communicate between various versions of client and
server application components.

Definition:
typedef struct tdMFA_VERSION
{
 BYTE bMajor;
 BYTE bMinor;
} MFA_VERSION;

Parameters:
bMajor
This SHALL be the major version indicator for this implementation of the MFA
specification. For version 1 this must be 0x01

bMinor
This SHALL be the minor version indicator for this implementation of the MFA
specification. For version 1.0 this must be 0x00, for version 1.1, this must be
0x01.

5.2.1 MFA_CONTEXT_INFO
This structure provides information about context status. It used with
mfa_S_Context_GetStatus and mfa_C_Context_GetStatus interface functions.

Definition:

Open_TC Deliverable 6e.3 10/16

MFA Intermediate System Specification PUBLIC | 1.00

typedef struct tdMFA_CONTEXT_INFO
{
 MFA_VERSION versionInfo;
 MFA_RESULT lastError;
} MFA_CONTEXT_INFO;

Parameters:
versionInfo
Version data set by MFA interface function

lastError
Last occurred error in current context

5.3 Interface definition

The syntax used in describing the MFA application is based on the common procedural
language constructs. Data types are described in terms of ANSI C.
The MFA allocates memory for out parameters and provides a function to free the
memory previously allocated by the MFA on a context object base. The calling
application MUST free memory allocated by the MFA. The caller of the MFA interface
functions is responsible for calling mfa_S_Context_FreeMemory or
mfa_C_Context_FreeMemory for each call that produced allocation of memory.

The mfa_Context class represents a context of a connection to the server side MFA
application core.

5.3.1 mfa_Context_Create
This method returns a handle to a new server side context object. The context handle
is used in various functions to assign resources to it.

Definition:
MFA_RESULT mfa_Context_Create
(
 MFA_HCONTEXT* phContext // out
);

Parameters:
phContext
Pointer to a variable that receives the handle to the created context object.

Return Values:
MFA_SUCCESS
MFA_E_BAD_ARGUMENT

5.3.2 mfa_Context_Close
This method destroys a server side context and releases all assigned resources.

Definition:
MFA_RESULT mfa_Context_Close
(
 MFA_HCONTEXT hContext // in
);

Open_TC Deliverable 6e.3 11/16

MFA Intermediate System Specification PUBLIC | 1.00

Parameters:
hContext
Handle of the context object which is to be closed.

Return Values:
MFA_SUCCESS
MFA_E_INVALID_HANDLE
MFA_E_INTERNAL_ERROR

5.3.3 mfa_Context_GetStatus
This method provides operation status in specified context.

Definition:
MFA_RESULT mfa_Context_GetStatus
(
 MFA_HCONTEXT hContext, // in
 MFA_CONTEXT_INFO** ppStatus // out
);

Parameters:
hContext
Handle of the context object.
ppStatus
Pointer to a variable that receives a pointer to the context information structure.
When the use of the pointer ends, free the returned buffer by calling the
mfa_S_Context_FreeMemory function.

Return Values:
MFA_SUCCESS
MFA_E_BAD_ARGUMENT
MFA_E_INVALID_HANDLE
MFA_E_INTERNAL_ERROR

5.3.4 mfa_Context_FreeMemory
This method frees memory allocated by MFA application on a server side context base.

Definition:
MFA_RESULT mfa_Context_FreeMemory
(
 MFA_HCONTEXT hContext, // in
 BYTE* rgbMemory // in
);

Parameters:
hContext
Handle of the context object.
rgbMemory
Pointer to the memory block to be deallocated.

Return Values:

MFA_SUCCESS
MFA_E_INVALID_HANDLE

Open_TC Deliverable 6e.3 12/16

MFA Intermediate System Specification PUBLIC | 1.00

MFA_E_INTERNAL_ERROR
MFA_E_INVALID_RESOURCE

5.3.5 mfa_S_RegisterPlatform
This method store platform registration information received from remote client as
Platform Identity for future use in authentication process.

Definition:
MFA_RESULT mfa_S_RegisterPlatform
(
 MFA_HCONTEXT hContext, // in
 BYTE* pPltmInfoData, // in
 UINT32 pltmInfoSize // out
);

Parameters:
hContext
Handle of the context object.
pPltmInfoData
Pointer to a buffer containing the platform registration information (COREG).
pltmInfoSize
Size of the information pointed to by the pPltmInfoData parameter, in bytes.

5.3.6 mfa_S_Authenticate
This method provides remote platform authentication.

Definition:
MFA_RESULT mfa_S_Authenticate
(
 MFA_HCONTEXT hContext, // in
 MFA_UNICODE* userName, // in
 MFA_UNICODE* platformHostName // in
);

Parameters:
hContext
Handle of the context object which is to be closed.
userName
Pointer to the MFA_UNICODE string contain name of the user
platformHostName
Pointer to the MFA_UNICODE string contain name of the client host platform

5.3.7 mfa_S_SetAccessPolicy
This method sets user access policy. That data is used during authentication process.

Definition:
MFA_RESULT mfa_S_SetAccessPolicy
(
 MFA_HCONTEXT hContext, // in
 BYTE* pPolInfoData, // in
 UINT32 pPolInfoSize // in
);

Open_TC Deliverable 6e.3 13/16

MFA Intermediate System Specification PUBLIC | 1.00

Parameters:
hContext
Handle of the context object.
pPolInfoData
Pointer to a buffer containing the user policy information.
pltmInfoSize
Size of the information pointed to by the pPolInfoData parameter, in bytes.

5.3.8 mfa_S_GetAccessPolicy
This method gets user access policy. That data is used during authentication process.

Definition:
MFA_RESULT mfa_S_GetAccessPolicy
(
 MFA_HCONTEXT hContext, // in
 BYTE* pPolInfoData, // out
 UINT32* pPolInfoSize // in/out
);

Parameters:
hContext
Handle of the context object.
pPolInfoData
Pointer to a buffer with user policy information.
pltmInfoSize
Pointer to size of the information pointed to by the pPolInfoData parameter, in
bytes.

5.3.9 mfa_Platform_Initialize
This methods takes TPM ownership, create Platform AIK.

Definition:
MFA_RESULT mfa_Initialize
(
);

Parameters:

Return Values:
MFA_SUCCESS

5.3.10 mfa_C_GetPlaformData
This method retrieves the platform information.

Definition:
MFA_RESULT mfa_C_GetPlatformData
(
 MFA_HCONTEXT hContext, // in
 BYTE** ppPltmInfoData, // out
 UINT32* pPltmInfoSize // out
);

Open_TC Deliverable 6e.3 14/16

MFA Intermediate System Specification PUBLIC | 1.00

Parameters:
hContext
Handle of the context object.
ppPltmInfoData
Pointer to a variable that receives a pointer to the buffer which contain the
platform information. When the use of the pointer ends, free the returned buffer
by calling the mfa_S_Context_FreeMemory function.
pPltmInfoSize
Pointer to a variable that receives the size of the buffer pointed to the
ppPltmInfoData parameter, in bytes. When the function returns, the UINT32
value contains the number of bytes stored in the buffer.

6 List of abbreviations
Listing of term definitions and abbreviations used in this document (IT expressions and
terms from the application domain).

Abbreviation Explanation
AIK Attestation Identity Key
API Application Programming Interface
MFA MultiFactor Authentication
OS Operating System
PCR Platform Configuration Register
SSL Secure Sockets Layer
TC Trusted Computing
TCB Trusted Computing Base
TCG Trusted Computing Group
TPM Trusted Platform Module
TSS Trusted Software Stack

7 Referenced Documents
/1/ TCG Specification, Architecture Overview.
http://www.trustedcomputing.org
April 28, 2004,
Version 1.2

/2/ TCG Software Stack (TSS) Specification
January 6, 2006,
Version 1.2

/3/ PAM
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-
PAM_ADG.html http://msdn.microsoft.com
Version 0.99.6.0, 5. August 2006.

/4/ Secure Coding Guidelines
http://msdn.microsoft.com
2004

/5/ Improving Web Application Security: Threats and Countermeasures

Open_TC Deliverable 6e.3 15/16

http://msdn.microsoft.com/
http://msdn.microsoft.com/

MFA Intermediate System Specification PUBLIC | 1.00

http://msdn.microsoft.com

/6/ Writing Secure Code, Second Edition, by Michael Howard, David C. LeBlanc

/7/ OpenSSL Toolkit www.openssl.org/

Open_TC Deliverable 6e.3 16/16

http://www.openssl.org/
http://msdn.microsoft.com/

	otcW06_ADDENDUM_to_D6.1_and_D6.2_almost-final.pdf
	1 Introduction
	2 Workpackage 6's context and purpose
	3 Use of TC technology in Sub-workpackages 6.a and 6.e
	3.1 SWP06.a: Interoperable DRM solution based on MPEG-21
	3.2 SWP06.e: MultiFactor Authentication (MFA)

	4 List of abbreviations
	5 Referenced Documents

	otcW06-D6a1-v02-Preliminary_DRM_system_specification.pdf
	1.Introduction
	2.Use Cases
	2.1Overview
	2.2Description of Use Cases

	3.Design Specifications
	3.1Architecture
	3.2Player API
	3.2.1Registration
	3.2.2Content Key Handling
	3.2.3Legacy Player Application

	3.3Manager API
	3.4Application loader
	3.5Core Manager
	3.6License Manager
	3.6.1License Interpreter
	3.6.2License Translation Manager

	3.7State Management
	3.8Sealed store
	3.8.1Key store
	3.8.2License store

	3.9Utility library
	3.10OS Services

	4.Component Interaction
	4.1Functional parts of the DRM Core
	4.2Sequence diagram
	4.3DRM system and XEN/L4 virtualization environments
	4.3.1DRM components and compartments
	4.3.2Interfaces between compartments

	5.Requirements from other Partners
	6.Technical API Specification
	6.1External Interfaces
	6.1.1class PlayerInterface
	6.1.2class ManagementInterface
	6.1.3class Utility

	6.2Internal Interfaces
	6.2.1Class DatabaseManager
	6.2.2Class InterpreterInterface
	6.2.3class SystemState
	6.2.4class CoreManager
	6.2.5class LicenseManager
	6.2.6class LicenseTranslationManager
	6.2.7class StateManager

	6.3Helper Classes
	6.3.1class ItemReference
	6.3.2class ItemState
	6.3.3class Key
	6.3.4class License
	6.3.5class PlayerState
	6.3.6class REL

	7.Annex A : C++ Header definition
	8.Glossary of Abbreviations
	9.References

	otcW06-D6e1-v01-MFA_Requirements_And_Specification.pdf
	1 Introduction
	2 Threat analysis
	3 Functional requirements
	3.1 Roles and Actors
	3.2 Use cases
	3.2.1 Client/server Installation of MFA components
	3.2.2 Client Initialization
	3.2.3 Platform registration
	3.2.4 Platform unregistration
	3.2.5 User Registration
	3.2.6 Client logon
	3.2.7 Client logoff
	3.2.8 User/platform authentication
	3.2.9 Using a remote server secure application/service
	3.2.10 Server policy configuration
	3.2.11 Platform registration on the server
	3.2.12 Server logon session

	4 High level design
	4.1 Client operations
	4.2 Server functionality
	4.3 MFA system architecture

	5 Required services from sublayers
	6 Environment requirements
	7 Platform requirements
	8 List of abbreviations
	9 Referenced Documents

	otcW06-D6e3-v01-MFA_Intermediate_System_Specification.pdf
	1 Introduction
	2 Requirements breakdown
	3 High level design specification
	4 Functionality
	4.1Actions
	4.2Policies
	4.3Data structure organization example

	5 Preliminary MFA API
	5.1Data Types
	Pointer Size:
	Basic Types:
	Derived Types:
	Common return code defines:

	5.2Structures
	5.2.1 MFA_VERSION
	5.2.1MFA_CONTEXT_INFO

	5.3Interface definition
	5.3.1mfa_Context_Create
	5.3.2mfa_Context_Close
	5.3.3mfa_Context_GetStatus
	5.3.4mfa_Context_FreeMemory
	5.3.5mfa_S_RegisterPlatform
	5.3.6mfa_S_Authenticate
	5.3.7mfa_S_SetAccessPolicy
	5.3.8mfa_S_GetAccessPolicy
	5.3.9mfa_Platform_Initialize
	5.3.10mfa_C_GetPlaformData

	6 List of abbreviations
	7 Referenced Documents

