
A Protocol for Property-Based Attestation

Liqun Chen
∗

HP Laboratories
Filton Road, Stoke Gifford

Bristol, BS34 8QZ, UK

Rainer Landfermann, Hans Löhr,
Markus Rohe, Ahmad-Reza Sadeghi,

and Christian Stüble
†

Horst Görtz Institute for IT-Security
Applied Data Security Group

Ruhr-Universität Bochum, Germany

ABSTRACT
The Trusted Computing Group (TCG) has issued several
specifications to enhance the architecture of common com-
puting platforms by means of new functionalities, amongst
others the (binary) attestation to verify the integrity of
a (remote) computing platform/application. However, as
pointed out recently, the binary attestation has some short-
comings, in particular when used for applications: First, it
reveals information about the configuration of a platform
(hardware and software) or application. This can be mis-
used to discriminate certain configurations (e.g., operating
systems) and the corresponding vendors, or be exploited to
mount attacks. Second, it requires the verifier to know all
possible “trusted” configurations of all platforms as well as
managing updates and patches that change the configura-
tion. Third, it does not necessarily imply that the platform
complies with desired (security) properties. A recent pro-
posal to overcome these problems is to transform the bi-
nary attestation into property-based attestation, which re-
quires to only attest whether a platform or an application
fulfills the desired (security) requirements without revealing
the specific software or/and hardware configuration.

Based on previous works, we propose a concrete efficient
property-based attestation protocol within an abstract
model for the main functionalities provided by TCG-compli-
ant platforms. We prove the security of this protocol under
the strong RSA assumption and the discrete logarithm as-
sumption in the random oracle model. Our scheme allows
blind verification and revocation of mappings between prop-
erties and configurations.

Categories and Subject Descriptors: D.4.6: Security
and Protection

General Terms: Algorithms, Design, Security, Verification

∗liqun.chen@hp.com
† {landfermann,hloehr,rohe,sadeghi}@crypto.rub.de

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’06,November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-548-7/06/0011 ...$5.00.

Keywords: TCG binary attestation, security kernels, pro-
perty-based attestation, zero-knowledge proof of knowledge

1. INTRODUCTION
Today, distributed applications processing security critical

data pose sophisticated functional and security requirements
on the underlying computing platforms – in particular, in
open network scenarios such as the Internet. Distributed
applications involve different parties (companies, end-users,
content providers, etc.) with possibly conflicting (security)
requirements and interests. To cope with this situation,
we need mechanisms which provide and maintain the re-
quired security services in the sense of multilateral security.
Obviously, the applications and the underlying computing
platforms need to provide a certain degree of “trustworthi-
ness” that each of the involved parties requires. In practice,
this trustworthiness may be determined by verifying the in-
tegrity of the corresponding platform/application where a
positive result should imply that the platform/application
has not been tampered with, and hence, the critical infor-
mation processed will not leave the intended trust domains.

Verifying the integrity of a platform or an application lo-
cally can be implemented, e.g., by a secure boot process
and a trusted Graphical User Interface (tGUI) that ensures
a trusted path to the application. However, these solutions
are insufficient for remote platform or application integrity
verification. Remote integrity verification mechanisms may
also enable an external party (a remote machine) to verify
whether a platform/application behaves according to certain
security policies.

In this context, Trusted Computing (TC) technology pro-
vides the basis for a new generation of computing platforms
with new security-relevant architectures both in hardware
and software. A well-known initiative promoting this tech-
nology is TCG (Trusted Computing Group), an alliance
of a large number of IT enterprises1. The stated goal of
TCG is to provide mechanisms for improving the security
and trustworthiness of computing platforms [21, 22, 31, 30].
TCG has published a number of specifications, in partic-
ular for the core components, the Trusted Platform Mod-
ule (TPM) [36, 35] and its library Trusted Software Stack
(TSS) [15]. The current implementation of the TPM is a
tamper-evident hardware chip that provides a limited num-
ber of cryptographic functionalities. Currently, many ven-
dors ship their computer platforms with a TPM chip. The

1www.trustedcomputinggroup.org

new functions extend the conventional PC architecture by
mechanisms to (i) protect cryptographic keys, (ii) generate
random numbers in hardware, (iii) cryptographically bind
(sensitive) data to certain information, e.g., the system con-
figuration and the identifier of the invoking application (seal-
ing), and (iv) authenticate a platform/application (remote
attestation).

The TCG solution for platform authentication is some-
times called binary attestation, since loosely speaking, it
measures all the code executed by using certain metrics (cur-
rently a cryptographic hash value over the code binary). The
result is stored in special registers in the TPM before execut-
ing the code. This procedure is bootstrapped starting with
a kind of pre-BIOS that is trusted by default and measures
the bootloader, storing the result. This procedure builds the
so-called chain of trust which can then be extended to the
operating system components up to applications.

Binary attestation, however, has several shortcomings, in
particular for application attestation, regarding flexibility
and security/privacy as pointed out in [27, 29]: First, re-
vealing the system configuration may lead to privacy viola-
tions and discrimination against the underlying system since
the remote party may exclude them from his/her business
model, e.g., configurations related to alternative operating
systems such as Linux. Note that similar approaches can be
observed today, e.g., many banks provide banking software
for only one operating system and some music players expect
a specific operating system. It then reveals the complete in-
formation about the hardware and software configuration of
a platform which makes attacks easier. Second, it requires
the verifier to know all possible “trusted” configurations of
all platforms.2 Third, it does not necessarily imply that the
platform complies with desired (security) properties.

In contrast to binary attestation, a more general and flex-
ible solution is to use property-based attestation to attest
properties of the underlying platform or/and application in-
stead of revealing the binary information about them. Loose-
ly speaking, a property of a platform describes an aspect
of the behavior of that platform regarding certain require-
ments, such as security-related requirements (e.g., that a
platform has built-in measures for Multilevel Security or pri-
vacy protection, or it has a security kernel providing isola-
tion of applications). Attesting properties means that the
attestation should only determine whether a platform (or its
configuration) fulfills a desired property, instead of revealing
the concrete configuration of its software and hardware com-
ponents. Attesting properties has the advantage that differ-
ent platforms with different components may have different
configurations while they may all offer the same properties
and consequently fulfill the same requirements. In particu-
lar, this solution also allows a more flexible way of handling
system patches and updates.

In this context it is important one needs to define which
properties are useful and reasonable, and how to determine
them automatically. The former depends strongly on the
underlying use case and its requirements and the latter may

2Other problems related to attestation are updates/patches
and backup: the new functionalities allow to seal critical
data (e.g., documents, content) to a certain platform config-
uration. This, however, strongly limits the flexibility when
system updates (e.g., patches) change the system configura-
tion. As a consequence, the data is not accessible anymore.
Similar situations arise with system backups.

be performed in different ways in practice as we briefly con-
sider in Section 5.1.

Our proposal for property-based attestation in this paper
is based on the ideas in [29], where the authors informally
discuss several solutions which differ in their trust mod-
els, efficiency and the functionalities offered by the trusted
components. We will consider other related works in Sec-
tion 2. The core idea presented in [29] is what we call
delegation-based property attestation. Here, a certification
agency certifies the mapping between properties and con-
figurations and publishes these property certificates. After
this, the agency remains completely offline. Now a plat-
form/application claiming to provide a certain property can
download the appropriate certificate(s), and prove to any
(correct) verifier that it has a valid certificate, since its con-
figuration matches the one fixed in the property certificate
without disclosing any information about the content of the
certificate (except the property which is a common input
which is public by definition). In particular, we are inter-
ested in TCG compliant solutions allowing to use TSS and
the existing TC hardware without a need to change the un-
derlying trust model of TCG.3

Our contribution.We propose a provably secure protocol
for property-based attestation that concretely implements
the delegation-based solution sketched above. Our solution
is based on the current TCG specification, because today
it is the most widely known and available extension of con-
ventional computer systems that provides the measurement
and attestation of integrity metrics. Hence, our scheme uses
a hybrid approach where a property attestor (e.g., a ser-
vice of a security kernel) calls on a binary attestor (here
the TPM). Our scheme allows the revocation of invalid con-
figurations either from a public list or negotiated between
the prover (platform) and a verifier. The deployed crypto-
graphic schemes are based on CL signatures [6] and signa-
ture proofs of knowledge similar to those in DAA [4]. The
property revocation protocol is based on [7].

2. RELATED WORK
There have been several proposals in the literature for

protecting and proving the integrity of computing platforms
based on cryptographic techniques and trusted components.
Known aspects in this context are secure and authenticated
(or trusted) booting: the former means that a system can
measure its own integrity and terminates the boot process
in case the integrity check fails, whereas the latter aims at
proving the platform integrity to a (remote) verifier (for both
topics see, e.g., [1], [11]).

In [29], and later in [27], the authors propose an approach
called property attestation to prevent the deficiencies of the
existing binary attestation. The basic idea in [27] is to en-
gage a protocol between verifier and attestor to prove that
the attested platform satisfies the verifier’s security require-

3It should be noted that our primary goal is to have a
non-discriminating attestation as a standard, which can
be certified by trusted entities, and on which the vendors
and developers of related products should rely. Clearly,
standards leave some space for corresponding implemen-
tations, and this may open the door for information flow
allowing, e.g., operating system footprinting (see, e.g.,
www.insecure.org/nmap). However, this is not the subject
of this paper.

ments. Their solution is based on property certificates that
are used by a verification proxy to translate binary attesta-
tions into property attestations. Moreover, this work briefly
discusses two deployment scenarios: The verification proxy
as a dedicated machine and the verification proxy on the
verified platform. Whereas [27] proposes a high-level pro-
tocol for property-based attestation, [29] proposes and dis-
cusses several protocols and mechanisms that differ in their
trust models, efficiency and the functionalities offered by the
trusted components.

The authors of [16] propose semantic remote attestation
– using language-based trusted virtual machines (VM) to
remotely attest high-level program properties. The general
idea behind this approach is the use of a trusted virtual
machine that checks the security policy of the code that runs
within the VM. Since the trusted VM still has to be binary
attested, semantic remote attestation is a hybrid solution
with code analysis.

In [18], [20], and [19] the authors propose a software ar-
chitecture based on Linux providing attestation and sealing.
The architecture allows to bind short-lifetime data (e.g., ap-
plication data) to long-lifetime data (e.g., the Linux kernel)
and to allow access to the data only if the system is com-
patible with a security policy certified by a security adminis-
trator. Moreover, these papers suggest to use a certification
authority that certifies the trustworthiness of certain config-
urations of long-lifetime data. Thus, the proposed architec-
ture is very similar to a hybrid approach based on property
certificates as we use in this paper.

3. TCG MAIN COMPONENTS
The core specification of Trusted Computing Group (TCG)

concerns the Trusted Platform Module [36, 35], a compo-
nent which provides certain cryptographic functions. The
assumption is that this party is fully trusted. The current
implementation of the TPM is a tamper-evident hardware
chip. Other major components of the TCG proposal are
a kind of (protected) pre-BIOS (Basic I/O System) called
the Core Root of Trust for Measurement (CRTM), and a
support software called Trusted Software Stack (TSS) which
performs various functions like communicating with the rest
of the platform or with other platforms.

Trusted Platform Module & Platform Configura-
tion. A TPM provides a secure random number genera-
tor, non-volatile tamper-resistant storage, key generation
algorithms, and cryptographic functions for encryption/de-
cryption, digital signatures (RSA) and a cryptographic hash
function (SHA-1).

Moreover, the TPM includes a set of registers called Plat-
form Configuration Registers (PCR) which can be used to
store hash values.

Integrity Measurement. The so-called Integrity Measure-
ment is done during the boot process by computing a crypto-
graphic hash of the initial platform state. For this purpose,
the CRTM computes a hash of (“measures”) the code and
parameters of the BIOS and extends the first PCR register
by this result according to PCRi+1 ← SHA1(PCRi|Input).

A chain of trust is established, if, additionally, both BIOS
and bootloader measure the code they are executing as well.
Hence, PCR0, . . . ,PCRn provide evidence of a certain state

of the system immediately after the boot process, which we
define as the platform’s configuration specification, denoted
abstractly by cs := (PCR0, . . . ,PCRn).4

Attestation. The TCG attestation protocol is used to give
assurance about the platform configuration cs to a remote
party. Here the attesting party, the attestor, reports to a
remote party, the verifier, the configuration of a machine(s)
to be attested, e.g., the configuration of the platform or/and
of applications. To guarantee integrity and freshness, this
value and a fresh nonce Nv must be digitally signed with an
asymmetric key called Attestation Identity Key (AIK) that
is under the sole control of the TPM. A trusted third party
called Privacy Certification Authority (Privacy-CA) is used
to guarantee the pseudonymity of the AIKs. However, this
party can always link the transactions a certain platform was
involved in. To overcome this problem, version 1.2 of the
TCG specification [35] defines another cryptographic pro-
tocol called Direct Anonymous Attestation (DAA) [4] that,
roughly spoken, provides users with an unlimited number of
pseudonyms without requiring a Privacy-CA. Note that the
anonymity provided by DAA or Privacy-CAs is completely
orthogonal to the stated goals of this paper. Nevertheless,
we will show in Section 7 how both approaches can be com-
bined into an (unlinkable) property-based attestation func-
tion.

TCG (implicit) Assumptions. The functionality men-
tioned above is provided based on the following assumptions:
First, the platform configuration cannot be overwritten af-
ter measurements (i.e., after the hash values are computed
and securely stored in the TPM). Since the TCG makes
statements about the initial state of the platform only, it is
crucial that this state cannot be (maliciously) manipulated
after startup, otherwise a verifier cannot rely on the informa-
tion provided by the attestor. However, currently available
operating systems (e.g., Windows, Linux) can easily be ma-
nipulated by exploiting security bugs or by changing mem-
ory which has been swapped to a harddisk. Second, given a
valid set of hash values, the challenger is able to determine
whether the platform configuration is trustworthy. However,
the trusted computing base of today’s operating systems is
very complex, making it very hard, if not impossible, to de-
termine their trustworthiness. Third, the following secure
channels can be established: (i) between hardware compo-
nents (e.g., between TPM and CPU) since both components
are integrated on the same hardware;5 (ii) between the at-
testor and the verifier, which can reasonably be achieved by
a public key infrastructure (PKI) [35], and (iii) between the
attestor and the attested machine, which should be provided
by the underlying operating system.

Hence, a secure operating system is required that (i) ef-
fectively prevents unauthorized modifications, (ii) is small
enough to allow an evaluation of its trustworthiness, (iii)
provides secure interprocess communication mechanisms, and

4Here we do not mean the hash value of the history but
rather the hash of the TCB (Trusted Computing Base) state
that remains unchanged during the run-time in contrast to,
e.g., history measurements done in [34].
5Experience shows that this assumption does not hold for
the currently available TPM platforms, since it is possible
to observe resp. modify the communication between CPU
and TPM.

(iv) last but not least, it should be compatible to the legacy
software. The recent development in the field of security
kernel design (based on e.g., hypervisors or microkernels)
shows that these properties can be efficiently provided (see,
e.g., [25, 28, 12] and [33, 32, 2, 3]).

4. DEFICIENCIES OF TCG ATTESTATION
As already mentioned in the introduction, while the at-

testation (and sealing) mechanisms provided by the TCG
allow many interesting applications (see, e.g., [31, 14, 17,
34]), the naive use of the platform configuration (e.g., to
bind short-term data to platforms or to determine the trust-
worthiness of applications) has some drawbacks, like the fol-
lowing: the first problem is the potential to be misused for
discrimination, e.g., to isolate “alternative” software prod-
ucts (e.g., OpenOffice6 or WINE7 and operating systems
such as Linux). It is imaginable that global players such as
content providers and large operating system vendors col-
laborate and exclude specific operating systems as well as
applications. This barrier to entry effectively undermines
competition and prevents the self-regulating mechanisms of
an open market. The second problem is complexity since
the number of different platform configurations grows expo-
nentially with the number of patches, compiler options and
software versions. This makes it hard to keep track of the
trustworthiness of a given configuration. The third prob-
lem is observability, since the recipient of the attestation
protocol or an observer obtains exact information about the
hard- and software configuration of a specific platform. This
makes attacks on such platforms much easier since an ad-
versary does not need to perform any platform analysis. A
further problem is the scalability, since update and patches
lead to configuration changes.

5. PROPERTY-BASED ATTESTATION
A more general and flexible solution to the attestation

problem is a property-based attestation (PBA) approach [29,
27]. It means that attestation should only determine whether
a platform (configuration) or an application has the desired
property. This avoids revealing the concrete configuration of
software and hardware components. For example, it would
not matter whether the application was Webbrowser A or
B, as long as both have the same properties. In contrast,
the binary attestation function provided by TCG-compliant
hardware attests the system configuration of a platform that
was determined at system startup. For (nearly) all practical
applications, the verifier is not really interested in the spe-
cific system or application configuration. As we pointed out
in Section 4, this even has a disadvantage due to the multi-
tude of possible configurations a verifier has to manage.

Informally, a property, in this context, describes an aspect
of the behavior of the underlying object (platform / applica-
tion) with respect to certain requirements, e.g., a security-
related requirement. In general, properties for different ab-
straction levels are imaginable. For instance, a platform
property may state that a platform is privacy-preserving,
i.e., it has built-in measures conform to the privacy laws,
or that the platform provides isolation, i.e., strictly sepa-
rates processes from each other, or it provides Multi-Level
Security (MLS) and so forth.

6www.openoffice.org
7www.winehq.org

The question whether there is a correct or useful prop-
erty set depends strongly on the underlying use case and its
requirements. Attesting properties has the advantage that
different platforms with different components may have dif-
ferent configurations while they all may offer the same prop-
erties and consequently fulfill the same requirements.8

5.1 Determining Properties
Before the attestor can make statements about a machine,

the appropriate properties have to be determined. We may
group possible mechanisms for determining the properties
of a machine into the following categories such as code con-
trol, code analysis or delegation. Code control requires a
trusted attestor enforcing a machine to behave as expected
(e.g., the attestor compares the I/O behavior of the ma-
chine with that defined by the desired property p). An ex-
ample would be to use SELinux as a reference monitor and
to attest both SELinux and the enforced security policy, as
described in [19]. Code analysis requires the property at-
testor to directly analyze the code of the targeted machine
to derive properties, or alternatively, it verifies whether the
machine provides the claimed properties. Examples in this
context are proof-carrying code [23] and semantic code anal-
ysis [16]. The delegation approach requires the property at-
testor to prove that another trusted third party has certified
the desired properties. Obviously, this third party has to be
trusted by both the platform to be attested and the verifier.
A practical example in this context are property certificates
issued by a certificate issuer: The property attestor proves
that a property certificate exists and was issued by a third
party which is trusted by the verifier.

In this paper, we follow the delegation-based approach
with an offline trusted third party. Section 5.2 details this
approach and the underlying abstract model of the system.

5.2 Delegation-Based Solution
In this section, we explain the general idea of the delega-

tion-based property-based attestation. Figure 1 illustrates

Figure 1: Abstract model of the attestation scenario
with certificate issuer CI, platform PF, host H, TPM
M and verifier V

the abstract model with certificate issuer, platform, host,
attestor, TPM and verifier. In the following, we introduce
the involved roles.

Roles. A platform, denoted by PF , represents our main IT
system, i.e., it consists of all (software and hardware) com-
ponents of a system. The Trusted Platform Module (TPM)
is denoted by M, and is one of the main components of a

8One may consider the desired properties of an application
as a certain input/output behavior.

platform PF . The TPM has a predefined set of computa-
tional and cryptographic capabilities (see Section 3) and is
trusted by all parties. A host H is the other main compo-
nent of PF , in which a TPM M is embedded. The host
includes the software running on the platform PF . The
TPM can only communicate with other parties (external to
the platform) via the host. A verifier is denoted by V and
is a party that wants to verify the attestation result of some
platform. The certificate issuer, denoted by CI, is the party
that certifies mappings between properties and configura-
tions attesting that a given platform configuration cs fulfills
a desired property p by means of a property certificate σCI

(see Figure 1).
Note that for security protocols, such as PBA or DAA,

a trusted component (trusted by the platform or platform
owner) is needed within the host that can establish secure
channels to the attestor.9 More precisely, this component
must belong to the Trusted Computing Base (TCB). Oth-
erwise, the host can easily disclose to the verifier the config-
uration of the corresponding platform or/and application in
the context of PBA (or the TPM identity in the context of
DAA).

The delegation-based principle is well-suited to the TCG
trust model and the related infrastructure that already re-
quires trust in third parties (e.g., Privacy-CA, certificate
issuer in the context of DAA, or Migration Authority for
migratable keys [36, 35]). Our approach is a hybrid attesta-
tion, which means a two-level chain of attestations, where
the first attestation is based on binary configurations (by
the TPM) and the second one based on properties (by the
corresponding PBA service).

For a general property-based attestation, we assume in
our model that applications are attested by the operating
system. We stress that in this way, we only need to establish
a trusted attestation service on top of a binary attestor (here
TPM) still being conform to TCG. We do not elaborate
on this service at this stage due to space restrictions and
only consider the cryptographic proof protocols for proving
the possession of a valid property-certificate conform to the
platform’s configuration.

Note that CI confirms the correctness of the correspon-
dence between the platform configuration and certain prop-
erties according to defined criteria. However, following com-
mon practice, such organizations are only liable for inten-
tional misbehavior and not for undetected weaknesses (com-
pare with safety and security tests or common criteria). Par-
ties like CI are fully trusted, i.e., by the attestor and the
verifier, since both have to assume that CI certifies only
configurations that really have the attested property.

To prevent a flood of desired properties, the involved par-
ties can, e.g., define earmarked property profiles together.
For instance, for end-users one could define a privacy-pro-
tecting Common Criteria [10] protection profile, while con-
tent providers define a content-protecting profile. The TTP
then certifies whether given configurations are compatible
to that protection profiles. If the TTP is a governmental
authority, it can also analyze whether a given platform con-
figuration protects the consumer’s privacy, e.g., by certifying
that it is compatible to privacy laws.

9This trusted component could be a service of a trustworthy
operating system.

6. BUILDING BLOCKS
In this section we introduce the basic terminology and

building blocks used throughout this paper.

Notation. Let {0, 1}ℓ denote the set of all binary strings of
length ℓ which we identify with the integers out of [0; 2ℓ[.
A protocol Prot() consists of two or more parties, each per-
forming local computations and exchanging messages with
other participants. These parties are modeled as polyno-
mial interactive algorithms. A protocol Prot(P1,P2) with
the two participants P1 and P2 is characterized by the fol-
lowing input and output parameters: The common input c
is given to both involved parties P1 and P2, while the private
input inP1

, inP2
is only available to P1 or P2, respectively.

When both parties have finished the execution of the proto-
col, each of them obtains its individual output outP1

, outP2
.

Outputs may include an indicator ind ∈ {⊤,⊥} indicating
that the corresponding party accepts/rejects. An execution
(or run) of a protocol is denoted by

(P1 : outP1
; P2 : outP2

) ← Prot(P1 : inP1
; P2 : inP2

; c).

We mark a malicious party, i.e., a party that is controlled
by an adversary, with a ∗, like P∗. Note that if the protocol
can be executed by one single party (i.e., non-interactively),
we omit the party’s name.

The proposed PBA scheme makes use of the following
cryptographic primitives:

Signatures.A digital signature scheme is denoted by a tu-
ple (GenKey(), Sign(), Verify()) for key generation, signing
and verification algorithms. With σ ← Sign(sk; m) we
mean the signature on a message m signed by the sign-
ing key sk. The return value of the verification algorithm
ind ← Verify(vk; m, σ) is a Boolean value ind ∈ {⊤,⊥}.
A certificate on a quantity Q with respect to a verification
key vk is denoted by cert(vk; Q), a signature generated by
applying the corresponding signing key.

TPM Signatures.The TPM can create a TPM signature
σM. The existing TCG technology provides two types of
TPM signatures. The first is DAA signatures [4]. With
a DAA signature, a verifier is convinced that a TPM has
signed a given message, which is either an Attestation Iden-
tity Key (AIK) or an arbitrary data string, but the ver-
ifier cannot learn the identity of the TPM. The second is
ordinary RSA-type signatures. A TPM RSA signature is
signed under an AIK, which could either be certified by
a Privacy-CA or be introduced by the TPM itself using a
DAA signature. For simplicity, we do not distinguish these
two cases, and denote the private signing key used to create
σM by skM and denote the corresponding public verification
key used to verify σM by vkM. We denote the TPM signing
algorithm on a message m by σM ← SignM(skM, m).

Commitment Scheme.We apply the commitment scheme
by Pedersen [24]: Let skm

com be the secret commitment key. A

commitment on a message m is computed as Cm := gmhskm
com

mod P . P is a large prime, h is a generator of a cyclic sub-
group GQ ⊆ Z

∗
P of prime order Q and Q|P − 1. g is chosen

randomly from 〈h〉; furthermore, logh(g) is unknown to the
committing party. Both the message m and skm

com are taken
from ZQ. The Pedersen commitment scheme as described

above is perfectly hiding and computationally binding under
the discrete logarithm assumption.

CL Signatures.We apply a variant of the Camenisch and
Lysyanskaya (CL) signature scheme [6], as already used in
[4], for signing a tuple of messages X := (x1, . . . , xm), where
xi ∈ {0, 1}ℓx (i = 1, . . . , m) and ℓx denotes the maximum
binary length for each xi. In our specification, the CL sign-
ing algorithm is denoted as (A, e, v) ← Sign(sk; X), where
sk is an RSA-type private key created from strong primes.
The signature (A, e, v) satisfies Z ≡ Ae ·Rx0

0 · . . . ·R
xm
m · Sv

mod n, where the value e ∈ [2ℓe−1, 2ℓe−1+2ℓ′e−1] is a random
prime, the value v of length ℓv is a random integer, and the
tuple (R0, . . . , Rm, S, Z, n) is the corresponding public key
vk. The CL signature verification algorithm is denoted as
ind ← Verify(vk; X, A, e, v).

In [5], it is remarked that the CL signature has the ability
to be randomized. This means that the signature (A, e, v)

can be masked to (Â := ASw, e, v̂ := v − we) with an ar-

bitrary value w. From the verifier’s point of view, (Â, e, v̂)
and (A, e, v) are both valid signatures on X.

Zero-knowledge Proofs of Knowledge.Zero-knowledge
proofs of knowledge are interactive protocols carried out be-
tween two parties: a prover and a verifier. During such
a protocol run, a verifier is convinced with overwhelming
probability that the prover is aware of some secret and that
a certain predicate related to this secret is true. However,
the verifier does not learn anything beyond this assertion.

Several protocols in this paper will contain some proofs
of knowledge of relations among discrete logarithms under
exponential one-way homomorphisms. To describe the se-
mantics of these proofs we apply the notation suggested by
Camenisch and Stadler [8]. For example,

PK{(α, β) : gαhβ ∧ α ∈ [a, b]}

denotes a zero-knowledge proof of knowledge that a prover
is aware of some secret values α and β such that y = gαhβ

holds and, moreover, that α is contained in the interval [a, b].
g, h, y are elements of some group G with 〈g〉 = 〈h〉 = G
provided as common input to both parties; this holds for the
integers a and b as well.

Depending on the cryptographic assumption the one-way
property of a given homomorphism is based on10, the sound-
ness of the corresponding zero-knowledge proof is valid un-
der the same assumption11. Furthermore, all occurring
proofs of knowledge feature the statistical zero-knowledge
property. In the case where the verifier chooses the chal-
lenge uniformly at random, we obtain a honest verifier zero-
knowledge (HVZK) proof of knowledge protocol.

According to the Fiat-Shamir Heuristic [13], such a proof
of knowledge protocol can be transformed into a non-inter-
active signature for a message m which will be denoted as
SPK{(α) | y = gα}(m).

10here either strong RSA assumption for CL signatures or the
discrete logarithm assumption for Pedersen’s commitment
scheme

11provided that the verifier’s challenge is chosen smaller than
the smallest factor of the underlying group’s order (either
QR(n) or GQ)

7. THE PROPOSED PROTOCOL FOR PBA
In this solution, we describe a concrete property-based at-

testation protocol, which consists of property certificates, a
PBA signing algorithm, a verification algorithm and a re-
vocation check process. This protocol holds the security
properties of unforgeability and unlinkability. Informally,
unforgeability means that a PBA signature can only be pro-
duced with the involvement of a valid TPM to the actual
platform configuration; unlinkability means that from the
PBA signature and its verification protocol, a verifier is not
able to deduce the specific configuration of the platform.

The basic idea is as follows: the host H proves that there
is a valid link between the conventional binary attestation
signature σM, generated by the trusted component (here
the TPM), and the certificate (represented by the signature
σCI) of a certificate issuer CI attesting that the configu-
ration specification csi provides the property specification
denoted by ps . Here, the prover obtains the correspond-
ing certificate σCI as secret input, and the verifier takes the
public key vkCI of the certificate issuer and the property
specification ps as individual input. The prover proves di-
rectly that its configuration complies with the one in the
certificate without showing the certificate.

Note that the revocation process in this protocol does not
involve a trusted party. A prover can convince a verifier
that its configuration is not among a given set of revoked
configurations. It is not necessary for a trusted third party
to provide the set of revoked configurations, which could be
negotiated directly between the prover and verifier.

7.1 Security Parameters
In this section, we enumerate the security parameters

ℓx(y) used in the PBA protocol specified below with their
required bitlength y. ℓcs (160) indicates the size of a configu-
ration value cs, while ℓps (160) determines the binary length
of a certain property ps. ℓ∅ (80) denotes the security pa-
rameter controlling the statistical zero-knowledge property
and ℓH (160) is the output length of the hash function used
for the Fiat-Shamir heuristic. For Pedersen’s commitment
scheme, the size of the modulus P is set to ℓP (1632) and
the size of the order Q of the sub group of Z

∗
P to ℓQ. The

parameters ℓP and ℓQ should be chosen such that the dis-
crete logarithm problem in the subgroup of Z

∗
P of order Q,

with P and Q being primes such that 2ℓQ > Q > 2ℓQ−1 and
2ℓP > P > 2ℓP −1, has acceptable computational difficulty.
Furthermore, ℓn (2048) indicates the size of an RSA modu-
lus, while ℓe (368) and ℓ′e (120) are parameters occurring in
the blinded CL signature scheme. Finally, ℓv (2536) is the
size of v, a random value which is part of the certificate.

Moreover, we require the following constraints among the
security parameters:

ℓQ > ℓcs + ℓH + ℓ∅ + 2,

ℓe ≥ max{ℓcs, ℓps}+ 2, and

ℓv ≥ ℓn + max{ℓcs, ℓps}+ ℓ∅ .

7.2 Property-Configuration Certificates
An acceptable configuration attestation is certified by a

certificate issuer CI. The procedures of key generation, cer-
tificate issuing and verification are described in Figure 2.

We denote the corresponding protocols with

(skCI , vkCI)← KeyGen(1ℓn),

σCI ← IssueCertCI(skCI , (csi, ps)), and

ind← VerifyCertCI(vkCI , (csi, ps), σCI).

7.3 Signing Algorithm
The signature procedure is a protocol among the TPMM

and the host H and is presented in Figure 3. As a result of
the protocol, the host will have created a masked signature
σPBA, which is based on a TPM signature σM on the mes-
sage Ccsi , where Ccsi is the commitment to configuration
specification csi. From the masked signature, the verifier
will be convinced that the platform has a valid configura-
tion associated with a given property ps. The protocol is
denoted by

(M : σM; H : σPBA)←

PBASign(M : skM; H : σCI ; vkCI , par com, csi, ps , Nv),

where the commitment parameters are par com := (g, h, P, Q)
and the public verification key of certificate issuer CI is
vkCI = (n, R0, R1, S, Z).

7.4 Verification Algorithm
The verification protocol (see Figure 4) checks if a given

signature σPBA is correct, i.e., whether the input to the sign-
ing protocol was a configuration with a valid property cer-
tificate and a correct TPM signature. The protocol is de-
noted by ind ← PBAVerify(vkPBA, σPBA, Nv), where vkPBA :=
(vkCI , vkM, par com, ps) is the verification key corresponding
to the signature σPBA.

7.5 Revocation Check of a Certificate
If for any reason, e.g., due to system security updates, a

set of configuration specifications becomes invalid, the cor-
responding list will be published (usually by CI) so that
possible verifiers can access it.

Suppose that CSrevoked = {csj}j=1,...,τ is the set of invalid
configuration specifications, either from a public list or ne-
gotiated between prover and verifier. Then the revocation
check protocol in Figure 5, performed by a host H and a
verifier V, checks whether the configuration which was used
for signing some property is contained in the set of revoked
configurations CSrevoked. This protocol is denoted by

(V : ind; H : σR)←

PBARevoke(V : −; H : csi, r; par com, f, Ccsi
, CSrevoked),

where csi is the host configuration, r = ski
com is the key for

opening the commitment, f 6= g 6= h is a generator of GQ,
and Ccsi

is the host’s commitment to the configuration csi.
Technically, this proof is derived from a zero-knowledge

protocol to prove the inequality of two discrete logarithms
presented in [7]. The host shows that the configuration csi,
to which it committed during PBASign(), is not equal to
any of the revoked configurations csj . To achieve this, he
proves the knowledge of both exponents in the commitment
(i.e., csi and r) and that csi 6= csj (∀j = 1, . . . , τ). To
prove these inequalities, the technique introduced in [7] by
Camenisch and Shoup is used. If csi = csj for some j, the
verifier would notice this in step 5e, because in this case he
would get Dj = 1.

7.6 Rogue TPMs
If a TPM is broken, there must be a possibility to recog-

nize this. In our scheme, the TPM signs the configuration
by using a signing key, usually an AIK. If this AIK has been
signed using a DAA signature, then the tagging will be cov-
ered by the DAA rogue tagging, and a potential verifier can
check this. If other mechanisms such as a Privacy-CA are
used to certify the AIK, then this AIK will be put on re-
vocation lists. In any case, the problem of rogue tagging
corrupted TPMs is out of scope of the PBA protocol.

7.7 Security Analysis
We analyzed the security of the PBA protocol in a formal

model based on the simulatability paradigm, as proposed in
[9] and [26]. The ideal-world specification fulfills the require-
ments unforgeability and unlinkability – and, according to
the proof, the real-world protocol implements this specifica-
tion. The security proof of DAA [4] uses a similar approach.
We show that the security of the PBA protocol relies on CL
signatures (cf. [6]) and Pedersen commitments (cf. [24]),
which in turn are based on the strong RSA assumption and
the discrete logarithm assumption in the corresponding al-
gebraic structures (see Section 6). We summarize this result
in the following theorem.

Theorem 1 The above protocol implements a secure prop-
erty-based attestation system under the discrete logarithm
assumption and the strong RSA assumption in the random
oracle model.

A formal definition of the PBA security model and the
proof of Theorem 1 is given in the extended version of this
paper12. The basic idea of the proof is to specify an ideal
world, where a trusted party T ensures the security proper-
ties. The protocol is said to be secure if for every (polyno-
mially bounded) adversary in the real world, there exists an
adversary in the ideal world, such that both settings cannot
be distinguished (except with negligible probability). This
is achieved by the introduction of a simulator into the ideal
world that has black-box access to the real-world adversary
and acts as ideal-world adversary. Such a simulator is con-
structed independently from the actual adversary and hence
works for all possible adversaries. Then the proof is con-
cluded by showing that both worlds are indistinguishable.

8. CONCLUSION AND OUTLOOK
In this paper, we proposed the first cryptographic instan-

tiation of a protocol for property-based attestation based on
the TCG trust model. Our approach is based on the del-
egation principle and uses an offline trusted third party as
issuer for property-configuration certificates. Moreover, a
flexible dealing with the revocation of invalid platform con-
figurations was proposed, where revocation is handled by
a two-party protocol between host and verifier without the
involvement of a trusted third party. Finally, we provided
a proof of security under well-established assumptions in a
formal model using the simulatability paradigm.

A further research topic is the question, how more com-
plex properties can be derived automatically. In practice,
it is difficult to be able to determine or compare proper-
ties enforced by a platform configuration. In the future, im-

12 http://www.prosecco.rub.de/publication.html

1. Key generation: On input 1ℓn , create a special RSA modulus n = pq of length ℓn where p and q are strong primes.
Choose, uniformly at random, R0, R1, S, Z ∈ QRn. Output the public verification key vkCI = (n, R0, R1, S, Z) and
the secret signing key skCI = p. We denote this algorithm with

(vkCI , skCI)← KeyGen(1ℓn).

2. Signing algorithm: Given a property specification ps ∈ {0, 1}ℓps and a set of the corresponding configuration specifi-
cations csi ∈ {0, 1}ℓcs with i = 1, ..., t. The property certificate on each configuration specification is issued as follows.

On input (csi, ps) with ps ∈ {0, 1}ℓps and csi ∈ {0, 1}ℓcs , choose a random prime number ei of length ℓe ≥max(ℓps, ℓcs)+2,
and a random number vi of length ℓv = ℓn + max(ℓps, ℓcs) + ℓ∅ . Compute the value Ai such that Z ≡ Aei

i ·R
csi
0 ·R

ps
1 ·S

vi

mod n. The signature on the message (csi, ps) is the tuple σCI := (Ai, ei, vi). We denote this algorithm with

σCI ← IssueCertCI(skCI , (csi, ps)).

3. Verification algorithm: Let i ∈ {1, ..., t}. To verify that the tuple (Ai, ei, vi) is a signature on message (csi, ps), check
that Z ≡ Aei

i ·R
csi
0 · Rps

1 · S
vi mod n, and check that 2ℓe > ei > 2ℓe−1. We denote this algorithm with

ind ← VerifyCertCI(vkCI , (csi, ps), σCI).

Figure 2: Issuing a Certificate of a Property and Configuration Map.

Players: TPM M and the corresponding Host H
TPM’s input: skM; Host’s input: σCI := (Ai, ei, vi).
Common input: vkCI = (n, R0, R1, S, Z), parcom := (g, h, P, Q) , csi, ps, Nv (nonce provided by the verifier).

1. The TPM performs as follows

(a) Choose a random Nt ∈R {0, 1}ℓ∅ .

(b) Choose a random r ∈R {0, 1}ℓQ and compute the commitment Ccsi
:= gcsihr mod P .

(c) Generate a TPM signature σM := SignM(skM, par com‖Ccsi
‖Nv‖Nt).

(d) Send to host σM with the values Ccsi
, r and Nt.

2. The host performs the following steps to finish the proof:

(a) Choose at random w ∈ {0, 1}ℓn .

(b) Compute Â = AiS
w mod n and v̂ = vi − wei.

(c) Create a masked signature σ̂CI = (Â, ei, v̂).

3. The host computes the signature of knowledge protocol

SPK{(csi, ei, v̂, r) : Z/Rps
1 ≡ ±ÂeiRcsi

0 Sv̂(mod n) ∧ Ccsi = gcsihr(mod P)

csi ∈ {0, 1}ℓcs+ℓ∅+ℓH+2 ∧ (ei − 2ℓe) ∈ {0, 1}ℓ
′
e+ℓ∅+ℓH+1}(Nv , Nt)

in the following steps:

(a) Computes Z′ = Z/Rps
1 mod n.

(b) Pick random integers

rv ∈R {0, 1}ℓe+ℓn+2ℓ∅+ℓH+1, re ∈R {0, 1}ℓ
′
e+ℓ∅+ℓH , rcs ∈R {0, 1}ℓcs+ℓ∅+ℓH , rr ∈R {0, 1}ℓQ+ℓ∅+ℓH .

(c) Compute Z̃′ := ÂreRrcs
0 Srv mod n and C̃i := grcshrr mod P .

(d) Compute c := Hash(vkCI‖par ‖ps‖Ccsi‖Z̃
′‖C̃i‖Nv‖Nt).

(e) Compute sv := rv + c · v̂, scs := rcs + c · csi, se := re + c · (ei − 2ℓe−1) and sr := rr + c · r over the integers.

(f) The PBA signature will be σPBA := (Â, σM, Nt, Ccsi
, c, sv, scs, se, sr).

Figure 3: The PBA Signing Algorithm.

Players: Verifier V;
Verifier’s input: vkCI , vkM, par com, ps, σPBA, Nv. The verifier verifies the signature by performing as follows:

1. Verify σM w.r.t. vkM on the message (par com‖Ccsi
‖Nv‖Nt). If positive go to the next step.

2. Compute Ẑ′ := Z′−cÂse+c2ℓe−1

Rscs
0 Ssv mod n and Ĉi := C−c

csi
gscshsr mod P .

3. Verify that c
?
= Hash(vkCI‖par ‖ps‖Ccsi

‖Ẑ′‖Ĉi‖Nv‖Nt), scs

?

∈ {0, 1}ℓcs+ℓ∅+ℓH+1 and se

?

∈ {0, 1}ℓ
′
e+ℓ∅+ℓH+1.

Figure 4: The Verification Protocol.

Players: Host H and Verifier V.
Common input: (par com, f, Ccsi

, CSrevoked), where par com := (g, h, P, Q) and CSrevoked = {csj}j=1,...,τ ;
Host’s input: (csi, r).

1. The host and verifier compute Gj = Ccsi/gcsj (mod P) (j = 1, ..., τ).

2. The host computes F = fr (mod P) and sends F to the verifier.

3. The host randomly picks β ∈ {0, 1}ℓQ , computes Dj := hrβG−β
j (mod P)(j = 1, ..., τ) and sends Dj to verifier.

4. The host computes the signature of knowledge by performing as follows:

SPK{(csi, r, α, β) : Ccsi
= gcsihr(mod P) ∧ F = fr (mod P) ∧ 1 = fαF−β ∧ Dj = hαG−β

j for j = 1, ..., τ}

(a) Pick random integers

rcs ∈R {0, 1}ℓcs+ℓ∅+ℓH , rr ∈R {0, 1}ℓQ+ℓ∅+ℓH , rα ∈R {0, 1}ℓQ+ℓ∅+ℓH , rβ ∈R {0, 1}ℓQ+ℓ∅+ℓH .

(b) Compute C̃i := grcshrr mod P , F̃ := frr mod P , D̃0 := frαF−rβ mod P and D̃j := hrαG
−rβ

j for j = 1, ..., τ .

(c) Compute c := Hash(g‖h‖Ccsi
‖F‖C̃i‖F̃‖D̃0‖D̃1‖...‖D̃τ).

(d) Compute scs := rcs + c · csi, sr := rr + c · r, sα := rα + c · α and sβ := rβ + c · β. (Note that α := r · β mod Q.)

(e) Send the signature σR := (c, scs, sr, sα, sβ) to the Verifier.

5. The verifier verifies the signature as follows:

(a) Verify that scs

?

∈ {0, 1}ℓcs+ℓ∅+ℓH+1.

(b) Compute Ĉi := gscshsr /Cc
csi

mod P , F̂ := fsr /F c mod P , D̂0 := fsαF−sβ mod P , and

D̂j := hsαG
−sβ

j /Dc
j mod P (∀j = 1, ..., τ).

(c) Compute ĉ := Hash(g‖h‖Ccsi
‖F‖Ĉi‖F̂‖D̂0‖D̂1‖...‖D̂τ).

(d) If ĉ = c, accept the proof, otherwise reject the proof.

(e) If Dj 6= 1 holds for j = 1, ..., τ , Ccsi was not committed to any of Gj (j = 1, ..., τ), the verifier accepts Ccsi .

Figure 5: The Revocation Check Protocol.

proved software-engineering methods based on formal meth-
ods, proof-carrying code and semantic code analysis may
give the chance to formally or semi-formally derive proper-
ties from code directly and thus to prevent the need for a
trusted third party.

9. REFERENCES
[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and

reliable bootstrap architecture. In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pages
65–71, Oakland, CA, May 1997, IEEE Computer Society Press.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP ’03: Proceedings of the 19th ACM
symposium on Operating systems principles, pages 164–177,
New York, NY, USA, 2003. ACM Press.

[3] P. Barham, B. Dragovich, K. Fraser, S. Hand, A. Ho, and
I. Pratt. Safe hardware access with the Xen virtual machine
monitor. In 1st Workshop on Operating System and
Architectural Support for On-Demand IT Infrastructure,
2004.

[4] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous
attestation. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, Washington, DC,
USA, Oct. 2004. ACM Press.

[5] J. Camenisch and J. Groth. Group signatures: Better efficiency
and new theoretical aspects. In C. Blundo and S. Cimato,
editors, SCN, volume 3352 of LNCS, pages 120–133. Springer,
2004.

[6] J. Camenisch and A. Lysyanskaya. A signature scheme with
efficient protocols. In Third Conference on Security in
Communication Networks - SCN ’02, volume 2576 of LNCS,
pages 268–289. Springer-Verlag, Berlin Germany, 2002.

[7] J. Camenisch and V. Shoup. Practical verifiable encryption
and decryption of discrete logarithms. In D. Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 126–144. Springer, 2003.

[8] J. Camenisch and M. Stadler. Proof systems for general
statements about discrete logarithms. Technical Report TR
260, Department of Computer Science, ETH Zürich, Mar. 1997.

[9] R. Canetti. Security and composition of multiparty
cryptographic protocols. Journal of Cryptology,
13(1):143–202, Winter 2000.

[10] Common Criteria Project Sponsoring Organisations. Common
Criteria for Information Technology Security Evaluation,
Aug. 1999. Version 2.1, adopted by ISO/IEC as ISO/IEC
International Standard (IS) 15408 1-3. Available from
http://csrc.ncsl.nist.gov/cc/ccv20/ccv2list.htm.

[11] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van Doorn,
S. W. Smith, and S. Weingart. Building the IBM 4758 Secure
Coprocessor. IEEE Computer, 34(10):57–66, 2001.

[12] P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A trusted open platform. IEEE Computer,
36(7):55–63, 2003.

[13] A. Fiat and A. Shamir. How to prove yourself: Practical
solutions to identification and signature problems. In A. M.
Odlyzko, editor, Advances in Cryptology – CRYPTO ’86,
volume 263 of LNCS, pages 186–194, Santa Barbara, CA,
USA, 1987. International Association for Cryptologic Research,
Springer-Verlag, Berlin Germany.

[14] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh.
Terra: a virtual machine-based platform for trusted computing.
In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP’03), pages 193–206, 2003.

[15] T. C. Group. TCG software stack specification.
http://trustedcomputinggroup.org, Aug. 2003. Version 1.1.

[16] V. Haldar, D. Chandra, and M. Franz. Semantic remote
attestation: A virtual machine directed approach to trusted
computing. In USENIX Virtual Machine Research and
Technology Symposium, May 2004. also Technical Report No.
03-20, School of Information and Computer Science, University
of California, Irvine; October 2003.

[17] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an
untrusted operating system on trusted hardware. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP’03), pages 178–192, 2003.

[18] R. MacDonald, S. Smith, J. Marchesini, and O. Wild. Bear:
An open-source virtual secure coprocessor based on TCPA.

Technical Report TR2003-471, Department of Computer
Science, Dartmouth College, 2003.

[19] J. Marchesini, S. Smith, O. Wild, A. Barsamian, and
J. Stabiner. Open-source applications of TCPA hardware. In
20th Annual Computer Security Applications Conference.
ACM, Dec. 2004.

[20] J. Marchesini, S. W. Smith, O. Wild, and R. MacDonald.
Experimenting with TCPA/TCG hardware, or: How I learned
to stop worrying and love the bear. Technical Report
TR2003-476, Department of Computer Science, Dartmouth
College, 2003.

[21] Microsoft Corporation. Building a secure platform for
trustworthy computing. White paper, Microsoft Corporation,
Dec. 2002.

[22] C. Mundie, P. de Vries, P. Haynes, and M. Corwine. Microsoft
whitepaper on trustworthy computing. Technical report,
Microsoft Corporation, Oct. 2002.

[23] G. C. Necula and P. Lee. The design and implementation of a
certifying compiler. In Proceedings of the 1998 ACM
SIGPLAN Conference on Prgramming Language Design and
Implementation (PLDI), pages 333–344, 1998.

[24] T. P. Pedersen. Non-interactive and information-theoretic
secure verifiable secret sharing. In J. Feigenbaum, editor,
Advances in Cryptology – CRYPTO ’91, volume 576 of
LNCS, pages 129–140. International Association for
Cryptologic Research, Springer-Verlag, Berlin Germany, 1992.
Extended abstract.

[25] B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, and
A. Weber. The PERSEUS system architecture. Technical
Report RZ 3335 (#93381), IBM Research Division, Zurich
Laboratory, Apr. 2001.

[26] B. Pfitzmann and M. Waidner. A model for asynchronous
reactive systems and its application to secure message
transmission. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, pages 184–200, Oakland,
CA, May 2001, IEEE Computer Society Press.

[27] J. Poritz, M. Schunter, E. Van Herreweghen, and M. Waidner.
Property attestation—scalable and privacy-friendly security
assessment of peer computers. Technical Report RZ 3548, IBM
Research, May 2004.

[28] A.-R. Sadeghi and C. Stüble. Taming “trusted computing” by
operating system design. In Information Security
Applications, volume 2908 of LNCS, pages 286–302.
Springer-Verlag, Berlin Germany, 2003.

[29] A.-R. Sadeghi and C. Stüble. Property-based attestation for
computing platforms: Caring about properties, not
mechanisms. In The 2004 New Security Paradigms
Workshop, Virginia Beach, VA, USA, Sept. 2004. ACM
SIGSAC, ACM Press.

[30] D. Safford. Clarifying misinformation on TCPA. White paper,
IBM Research, Oct. 2002.

[31] D. Safford. The need for TCPA. White paper, IBM Research,
Oct. 2002.

[32] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. Perez,
S. Berger, J. L. Griffin, and L. van Doorn. Building a
MAC-based security architecture for the Xen open-source
hypervisor. In ACSAC ’05: Proceedings of the 21st Annual
Computer Security Applications Conference, pages 276–285,
Washington, DC, USA, 2005. IEEE Computer Society.

[33] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L.
Griffin, and S. Berger. sHype: Secure hypervisor approach to
trusted virtualized systems. Research Report RC23511, IBM
T.J. Watson Research Center, Yorktown Heights, NY, USA,
Feb 2005.

[34] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a TCG-based integrity measurement
architecture. In Proceedings of the 13th USENIX Security
Symposium. USENIX, Aug. 2004.

[35] Trusted Computing Group. TPM main specification. Main
Specification Version 1.2 rev. 85, Trusted Computing Group,
Feb. 2005.

[36] Trusted Computing Platform Alliance (TCPA). Main
specification, Feb. 2002. Version 1.1b.

