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1 Introduction
OpenTC has produced a succession of proof-of-concept prototypes (PoCs) as part of its 
technical work. Originally introduced in order to align all project partners towards a 
tangible goal and common direction, these PoCs  quickly turned into vehicles for 
testing technical alternatives, validating theoretical concepts, guiding the direction of 
packaging and distribution, and showcasing the state of our work at reviews.
The production of PoC prototypes was not envisaged in OpenTC's initial work plan. 
Consequently, no deliverables had been defined for covering the related activities. We 
therefore took the decision to add a deliverable to WP02 that would be mainly 
dedicated to PoC specific parts of our work work, which is the D02.4 document you are 
currently reading. We do not just describe the proof-of-concept prototypes, but use 
them as reference points to summarize the evolution of the OpenTC architecture with 
regard to components and capabilities. This document also allows us to elaborate on 
some investigations that were carried out during the final six months of the project 
and for which no written deliverable was foreseen in the original work plan.
This document should not be confused with the final report for the last period and the 
for whole duration of the project, respectively. These reports were produced by the 
management workpackage WP01 and include a detailed overview of activities and 
achievements in all work packages. In contrast, this report focuses on the Proof-of-
Concept prototypes, using them as reference points to describe the  progress towards 
a generic architecture for trusted platforms and infrastructure. Other essential areas 
of OpenTC's work supporting specific aspects (e.g., validation, concrete applications,  
mobile and embedded platforms and process organization) are therefore only 
mentioned in passing. It should be understood that this takes nothing away from their 
vital importance for the project's progress and success. 
More information about the prototypes is available at http://www.opentc.net/, 
including URLs for downloading the code. As an introduction to the project goals and 
achievements, the reader is invited to read the project's  “OpenTC Final Report” 
compiled by WP01 [1]. Additional information on the three annual proof-of-concept 
prototypes [2,3,4], as well as on the other prototypes, is available in the project 
Deliverables.
OpenTC’s progress during 3½ years of research and development can best be 
appreciated by recalling its starting point. The project was conceptualized in 2004 in 
the midst of a controversial debate about Trusted Computing. Potential implications of 
this technology had initiated an intense public discussion that included official 
hearings at national and EU level. Critical voices dominated, and only a very small 
number of academic research institutes where prepared to get involved in a 
constructive scientific investigation of this area. 
Regarding the use of virtualization for improving the security properties of computer 
platforms, some preceding scientific research on this topic was available, as the basic 
approach had been pursued more than a decade ago. However, Open Source based 
hypervisors available to us in 2004 had been built without security as a main focus. 
Apart from empirical evidence (“it works practically, so the mechanisms can not be 
completely flawed”), there was little information available on the actual the strength 
of the isolation mechanism and the quality of their code base. Few thoughts had been 
spent on methodologies, techniques, and processes that are suitable to evaluate large 
amounts of operating system code developed under the Open Source paradigm. 
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First versions of TPM equipped business computers had only just become available. 
The trusted computing hardware, however, was only included on explicit customer 
demand, and there existed little, if any, technical support and expertise. There was 
only limited firmware support for trusted boot which did not matter much because 
there was no trusted boot loader either. Only rudimentary driver support was available 
for Linux, however, without tools to interface the Trusted Computing Module.  Trusted 
Computing application programmer interfaces for Linux were in their infancy.
The project's goal was to research and implement components for an Open Trusted 
Computing framework that should be based on technology defined by the Trusted 
Computing Group (TCG) and operating system virtualization techniques. Its general 
aim was to combine low-level mechanisms for isolation of data and execution 
environments, configuration measurement and attestation to enhance the trust and 
security properties of standard operating systems, middleware and applications. The 
general architecture and, if possible, individual components of the framework should 
be applicable to a variety of platform types. Supporting Linux in particular, practical 
work addressed the areas of security enhanced OS architectures, of related protocols 
and software and of applications using TC technology.
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2 First Period (M01-M12)

2.1 Technical Goals
In its first year, the project primarily worked on filling a number of technical gaps  to 
enable integrity measurement and attestation on single platforms. The main purpose 
of the proof-of-prototype was to determine how far we could push an architecture that 
was primarily based on existing Open Source based components. We focused on 
employing minimalist Linux distributions as runtime environment in order to 
determine options for reducing the Trusted Computing Base and the runtime 
environment for compartments supporting narrow and well-defined purposes.
From a platform perspective, these goals translated into developing a trusted boot 
chain measuring the BIOS boot block, the hypervisor layer, the management 
compartment, and a purpose-built runtime environment for confidential, security 
critical applications. In order to interface the Trusted Computing hardware, drivers and 
a library with a subset of TSS API functions had to be provided. This core needed 
further extensions with mechanisms for remote attestation, which, in turn, required 
basic infrastructure support for generating certificates (necessary for validating the 
integrity metrics between remote machines reported by the platforms). This PKI 
service had to be complemented with yet another backend service for registering and 
maintaining sets of 'know-good' integrity metrics on the server side.
Additional topics were addressed in parallel to working on the PoC but not embedded 
in it. Amongst others, this concerned

● foundations for disaggregating the Trusted Computing Base on Xen (Mini-OS, 
inter-domain communication primitives), 

● the development of the Trusted Software Stack and corresponding Java 
interfaces, 

● conceptual work on the platform architecture, 
● a first round of investigations of requirements for embedded and mobile 

platforms, 
● the definition of the test plan and selection of validation tools, and 
● a first use-case prototype for multifactor authentication. 

This list of activities is necessarily very condensed and far from comprehensive. For 
more detailed information, the reader should consult the activity report for the first 
working period of OpenTC [2].

2.2 “Private Electronic Transactions” Prototype
Work on this PoC involved developers from HP (United Kingdom), IBM (Switzerland), 
Politecnico di Torino (Italy), Ruhr-Universitaet Bochum (Germany), Technische 
Universitaet Dresden (Germany), IAIK Graz University of Technology (Austria) and 
SuSE (Germany). The prototype aims to demonstrate some core ideas of the OpenTC 
approach, combining Trusted Computing (TC) and virtualization technologies with Free 
and Open Source Software (FOSS) development. The release implements a concrete 
application of TC, is available to the general public, and can serve as a working basis 
for interested developers.
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The prototype was designated as a first, intermediate step towards a trusted platform 
architecture, provided as a proof-of-concept that gave some first impression of how TC 
and virtualization could be applied in practice, geared at fostering discussions about 
the use of TC and the OpenTC architecture, and at encouraging contributions from the 
FOSS communities. With some minor exceptions, all source code was released under 
the GPLv2 license. It was provided as both a Live CD image (binaries) and as source 
code. The prototype was developed and tested on HP nx6325 and IBM T60 laptops 
equipped with Trusted Platform Modules (TPMs) v1.2 and 1 GB RAM. The result still 
lacked several components necessary for the OpenTC framework, and the existing 
components were not in their final shape. Therefore, only limited resources were 
invested to thoroughly test this release.

The architecture employs virtualization layers - also called Virtual Machine Monitors 
(VMMs) or hypervisors - and supports two different implementations (i.e., Xen and 
L4/Fiasco). This layer hosts compartments, also called virtual machines (VMs), 
domains or tasks, depending on the VMM being used. Some domains host trust 
services that are available to authorised user compartments. Various system 
components make use of TPM capabilities, for instance, to measure other components 
they depend on or to prove the system integrity to remote challengers.
The prototype implements a scenario named Private Electronic Transactions (PET), 
which aims to improve the trustworthiness of interactions with remote servers. 
Transactions are simply performed by accessing a web server through a standard web 
browser running in a dedicated trusted compartment named "domT". In the PET 
scenario, the server is assumed to host web pages belonging to a bank; however, the 
setup also applies to other e-commerce services.
The communication setup between browser compartment and server was extended by 
a protocol for mutual remote attestation tunnelled through an SSL/TLS channel. During 
the attestation phase, each side assesses the trustworthiness of the other. If this 
assessment is negative on either side, the SSL/TLS tunnel is closed, preventing further 
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end-to-end communication. If the assessment is positive, end-to-end communication 
between browser and server is enabled via standard HTTPS tunnelled over SSL/TLS. 

2.2.1 General approach
The approach of this scenario relies on four elements:

1. Trusted platform setup
2. Authenticated boot process
3. Registration of the known-good measurement values
4. Trusted communication setup

The following sections give a cursory overview of these steps.
1. Trusted Platform Setup
As a first step, the user has to initialise the client platform and to prepare it for 
subsequent operations.
The setup procedure is performed as soon as the OpenTC system has started up for 
the first time. First, the user, acting as the platform owner, must "take ownership" of 
the TPM. This assumes that the TPM is enabled in the BIOS and, if it was already used 
before, is cleared and re-enabled. 
Next, an Attestation Identity Key (AIK) must be created and certified, and the 
corresponding identity activated. In a real-world situation, Privacy Certification 
Authorities (PCAs) that operate a valid TC-enabled Public Key Infrastructure (PKI) 
would be used during this process. However, for the sake of simplicity, both the 
requests for and the release of the AIK certificate operations are  handled locally on 
the client, using hard-coded passwords. This is done by a software library that comes 
with hard-wired mock certificates for the authorities involved (e.g., PCA).
2. Authenticated boot process
From the initial bootup process up to the start of trusted components, a chain of trust 
is generated: each component of the chain is measured prior to passing control to it. 
The component measurements, i.e. their fingerprints through cryptographic hashes of 
relevant binary and configuration data, are accumulated in Platform Configuration 
Registers (PCRs) of the TPM.
In order to generate the chain of trust, all components in this chain must be 
instrumented to perform integrity measurements of their successors in execution. For 
instance, the BIOS must include a Core Root of Trust for Measurement (CRTM), as 
defined by the Trusted Computing Group. Further modifications concern the Master 
Boot Record (MBR) and the boot loader. The latter has to measure the hypervisor, the 
kernel and initial ram disk images of privileged domains, or files or disk images of 
trusted compartments. For this purpose, the OpenTC prototype includes "tGRUB", an 
extended version of the familiar GRand Unified Bootloader (GRUB). The tGRUB boot 
menu offers a choice between the two different virtualization layers, XEN and 
L4/Fiasco.
A second boot menu option concerns the execution mode. It offers a "normal user" 
mode that comes with a simplified interface and restricts access to management 
functions, geared towards showing how the user can perform a transaction in a real-
life scenario. The "expert user" mode, on the other hand, enables full access to 
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management features, permitting a peek “under the hood”. It allows interactive 
access and comes with a more complex interface. As a demonstration of the 
differences between successful and failing verification of integrity measurements, the 
boot menu also provides a "good domT" and a "rogue domT" option. In the "good" 
mode, all measurements match their expected values. On the other hand, the "rogue" 
mode simulates a modified compartment that could have been tampered with by an 
attack from a malicious program. In this case, at least one PCR contains an 
unexpected measurement value.
OpenTC’s tGRUB loader is constrained to supporting the so-called Static Core Root of 
Trust for Measurement (S-CRTM) model. In this case, all security and trust-relevant 
components must be measured, starting with the BIOS. To demonstrate the new 
Dynamic Core Root of Trust for Measurement (D-CRTM) approach introduced with TPM 
v1.2, OpenTC provides the Open Secure LOader (OSLO) boot loader implemented as a 
standard module for GRUB/tGRUB. OSLO implements the D-CRTM for AMD's CPUs, 
invoking the SKINIT instruction for re-initialising the platform in a trustworthy manner 
late at runtime.
3. Registration of the Known-Good Measurement Values
The client can now register with a server by uploading the measurements that 
represent its platform state (that is assumed to be trusted). During this procedure, the 
user (acting as a bank operator) registers his platform with a bank server. To this end, 
he uploads the integrity measurements of his platform (i.e., the expected value for the 
domT compartment), thus authorising the trusted compartment to connect to the 
bank server. In a realistic scenario, this process would be automated using secure 
communications and a dedicated registration protocol. Since the prototype does not 
implement this feature, the user instead launches a script (in "normal user" mode) or 
uses a browser (in the "expert user" mode) to upload a file containing a measurement 
digest to the front-end proxy running on the bank server. This digest corresponds to 
the current state of the client platform, i.e., its trusted virtualization layer and the 
trusted domain domT. For simplification, the bank server (named "domS") 
measurements are already present on the client side (in a privileged compartment of 
the virtualization layer named Domain-0 or dom0) of the OpenTC system: the PCR 
metrics defined to correspond to a "trusted" server state are  hard-wired into the 
system.
4. Trusted communication setup
Trust status information is exchanged between the client and the server through a pair 
of proxy services running in a privileged compartment (dom0) on the client and as a 
front-end in the server compartment (domS). The proxies communicate through an 
SSL/TLS tunnel that can encapsulate any TCP-based protocol. For the PET scenario, 
HTTPS is used.
The communication setup is initiated when the browser is started in the trusted 
compartment (domT) and the link provided in its toolbar clicked on. The connection 
request is passed to the client proxy that runs in the privileged compartment (dom0). 
A dedicated component running in this compartment opens an SSL/TLS tunnel to 
connect to the server-side proxy running in the bank server compartment (domS). The 
permissibility of this connection must be stated in the policy of the virtualization layer. 
Measurements of software components on both sides (client and server, see above) 
are represented by PCR values of the hardware and software TPM. These values are 
signed with the AIK acquired in step 3, and communicated to the respective peer 
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system.
Communication between the client and the server will only be enabled if both the 
client and the server metrics suggest that they booted into (and still run) the expected 
configuration. This could prove a countermeasure to phishing attacks, preventing the 
user from following a false-lead URL to connect to a fake bank server. The mechanism 
might also improve the protection of the bank server against unauthorised 
connections.

2.2.2 Platform Components
The authenticated boot process launches the selected virtualization layer, which is 
responsible for controlling four dedicated compartments, namely: 

● A privileged compartment (called "dom0") that directly accesses the physical 
platform and includes the drivers for hardware devices. This compartment is 
also used to perform management operations at the virtualization layer. In 
"normal user" mode, this compartment is not visible, whereas the "expert user" 
mode allows client compartments (see below) to be started manually via 
scripts. Dom0 is part of the Trusted Computing Base (TCB).

● A compartment for the server side of the demonstrator (called "domS") which 
executes the banking application and its front-end. It locally simulates a remote 
server (web server and proxy). For the prototype, this removes the dependency 
on external communication which would require an additional, separate banking 
computer. The domain is accessed via the network name "domSbox", and a 
software TPM emulator is used to perform the integrity-related operations for 
this domain. The compartment is not visible to the user. Conceptually speaking, 
this domain could as well be executed on a remote physical machine.

● Two compartments for the client side of the system. The first compartment 
(called "domT") solely provides web browsing as its single functionality. It is 
considered trusted in that its integrity has been measured and the values 
correspond to a well-known configuration. Measurements, which include the 
configuration file, the kernel and the virtual disk image with the root file system, 
are accumulated within PCR[11] in the TPM through the “PCR extend” 
operation. The second compartment is an untrusted one (called "domU"). It is 
not measured and is intended for daily use, but specifically not for the PET 
transaction.

The platform policy ensures that only the trusted compartment (domT) is authorised to 
use the client proxy (executing in the privileged compartment dom0) for connecting to 
the bank server (executing in domS). By contrast, the untrusted compartment (domU) 
cannot connect to the bank server, since no measurements exist that can be used to 
attest to its trusted state.
Client compartments run a stripped-down Linux system (a Debian-based Damn Small 
Linux/DSL distribution), while the privileged compartment dom0 runs either a SuSE or 
a DSL distribution, depending on which version of prototype is used. The server 
compartment (domS) runs a standard Debian distribution.
The L4-based OpenTC implementation provides a  GUI service for managing input and 
output. This GUI is provided as a trusted service started by tGRUB at boot time and 
running in a dedicated compartment. The top part of the display is reserved to 
indicate the number of active compartments and the name of the one currently 
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hooked to the display. This section of the screen is considered trusted because it is 
under the exclusive control of the  GUI. With the L4 virtualization layer, a pair of 
hotkeys are used to switch between compartments. 
For the Xen-based OpenTC implementation, the whole screen is under the control of a 
selected compartment. Each compartment is assigned a fixed hotkey. When a specific 
hot key associated to a compartment is pressed, the user can be sure that the desired 
compartment will actually be displayed since the key is under the exclusive control of 
the privileged compartment dom0.

2.2.3 Results
Although the implementation of the PET scenario was relatively straightforward and 
cuts a number of corners, it was a first, concrete example of coupling TC with 
virtualization technology. As the source code of the prototype is publicly available, the 
OpenTC prototype could provide a working basis for any developer interested in 
implementing TC applications.
Trusted Computing was (and arguably still is) an emerging technology. External 
infrastructure support, e.g., for issuing certificates, did not exist in 2006, a situation 
that has not improved much since then. The technology is also fairly complex. For 
example, first-time users are easily confused by the multiplicity of authorisation 
secrets. For the sake of simplicity, this OpenTC prototype therefore uses fixed 
passwords as authorisation secrets for the TPM and AIK keys (which can, of course, be 
changed for all operations by editing the configuration scripts in the "expert user" 
mode).
The prototype attempted to strike a balance here, providing all necessary components 
(including PKI mechanisms) as part of the distribution. In particular, the server-side 
mechanisms reside in a dedicated compartment on the same physical hardware that 
runs the client. The PCR metrics corresponding to a trusted PKI server state were hard-
wired into the PKI component running on the client system. The banking server 
compartment domS is not actually measured. It employs a TPM emulator instead of a 
hardware TPM, and we  communicate the initial PCR values of the software TPM. This 
is a concession we had to make in order to include the server side of the prototype in 
the same distribution. In real-world scenarios, the server side would run on a different 
physical platform, and integrity measurements of the server domain would be duly 
recorded in its own hardware TPM.
In the "rogue domT" scenario, the measurement of the client banking compartment 
(domT) does not correspond to the one uploaded earlier to the bank server. 
Consequently, the attestation will fail, and communication with the bank server will be 
disallowed. Due to implementation specifics, the PCRs mismatch had to be simulated 
in that the values are not generated from actual measurements of the persistent 
compartment image but only from a different configuration file for domT. Furthermore, 
the prototype is limited in that man-in-the-middle or "relay of attestation challenge" 
attacks can not be thwarted. For more information, please see [2].
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3 Second Period (M13-M24)
OpenTC's first prototype focussed on the protection of private information, securing 
interaction with security-critical web-based services such as home banking. Its main 
purpose was to produce a tangible platform that included several important core 
concepts and building blocks for trusted virtualization: measuring integrity during 
boot-up, separating execution domains for security critical and normal web-browsing, 
and a proof-of-concept set-up for remote attestation. This platform was supported by 
elementary PKI infrastructure and a first proof-of-concept for multifactor 
authentication. 
During this first round of prototyping, a number shortcuts had to be taken, and the 
result was rough around some edges. Our aim for the second period was to to improve 
the existing elements and to extend the architecture with features that would bring us 
closer to a client platform that was universally usable.

3.1 Technical Goals
One area of improvement was the intercommunication between components of the 
trusted computing base, in particular regarding the graphics device. None of the two 
hypervisors used by OpenTC was particularly geared towards workstations. L4/Fiasco 
had been developed for embedded devices as main target platforms and evolved 
towards PC platforms. Xen's original strength was the virtualization of server 
instances, without too much regard to workstations. As a consequence, network and 
storage virtualization were well supported, while similar support for graphics (and 
audio) was missing. In the first prototype, the screen content associated to different 
compartment was essentially communicated to the platform's graphics controller 
using the network stack.
Our first aim was therefore to Improve the inter-task communication between 
compartments by developing inter-process communication (IPC) mechanisms that 
could replace the previous,  network centric approach. The resulting technical activity 
targeted a fast, shared-memory based mechanism that allowed to communicate data 
between arbitrary hosted VMs. This mechanism can be used not only by full OS 
instances hosted by the hypervisor, but also, and in particular, by small, generic tasks 
that run directly on the hypervisor layer without requiring a fully fledged operating 
system as execution environments.
The development of a fast communication mechanism was a precondition to address 
another aim of OpenTC: to provide support for disaggregating the Trusted Computing 
Base. This objective required multiple strands of work. First, an environment had to be 
provided for encapsulating services in mini-operating systems that can be executed as 
generic hypervisor tasks. On the one hand, this would allow us to isolate highly 
privileged operations – such as full access to the physical memory of the platform – 
from the operating system running in the management domain. Second, it permitted 
to locate untrusted device drivers in dedicated domains, thereby isolating them from 
the management OS.
Regarding the potential practical relevance of the OpenTC framework, the lack of 
support for legacy and proprietary operating systems in the first PoC had been flagged 
as a serious issue. Although this was not on the original agenda of OpenTC, we 
realized that we had to address this topic during this phase.
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Experiences with the first prototype also highlighted shortcomings of the integrity 
measurement. Its granularity was very coarse and only permitted to check complete 
disk partitions. Also, we required a mechanism to separate the static from the dynamic 
elements of a file system, allowing us to distinguish the elements to be files whose 
integrity had to be measured from those whose integrity had to be protected by other 
means.
To improve the interfaces to the Trusted Computing layer was another topic on the 
technical agenda. Lacking appropriate technical support, the first PoC had employed 
the hardware mechanisms on an ad-hoc basis, sometimes by direct access through 
the low-level device. These workarounds had to be replaced with access through the 
TCG-defined, high level APIs provided by the TSS stack. This had to be coordinated 
with OpenTC's continued investigation on unified access to the hypervisor layer and 
the extension of their APIs to support security and trust related functionality. This line 
of work was also pursued to gain insights and first practical experience on distributed 
management aspects for trusted virtual platforms.
Technical work was also guided by the requirement to produce a platform that was 
suitable for the application development in work package 06 and could be used as 
hand-on training system for practical labs.
A much abbreviated list of major topics addressed in parallel includes:

● Development of methodologies for verification and validation (V&V) , extensive 
V&V and testing of OpenTC components

● Completion of Java wrappers for C-implemented Trusted Software Stacks, start 
of fully Java-based implementation of TSS

● Improvement of PKI components and protocols
● Development of software components for virtual networks, prototyping for TPM 

virtualization and hierarchical integrity management
● Porting of microkernel components to mobile and embedded development 

platform
● Packaging and distribution of first year PET prototype
● Migration from DSL-Linux to OpenSuSE 10.3 and OpenSuSE build system

This list is far from comprehensive. For more detailed information, the reader should 
consult the activity report for the second working period of OpenTC [3]. 

3.2 “Corporate Computing at Home” (CC@H) Prototype
The description of the “CC@h” proof-of-concept demonstrator prototype has been split 
into two sections. First the scenario and user interface is described, second the 
implementation is presented in some detail.
The scenario and use cases for Corporate Computing at Home emerged from 
discussions with our industrial partners who highlighted the following requirements for 
a new, appealing business application [6]: 

● A corporation wishes to secure its standard execution environment, consisting 
of operating systems, applications and data. It wants to safeguard these 
corporate resources against accidental modifications or reconfigurations by 
their employees that would reduce the protection level (e.g., through surfing 
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privately on insecure Websites or running insecure code, either accidentally or 
for testing purposes). 

● Employees need to run corporate applications at home or while travelling. 
However, they would also like to run their own applications such as games, and 
they may wish to handle their private data (emails, movies etc). The corporation 
might endorse such ‘reasonable private use’ of their equipment, provided that 
the corporate execution environment is kept safe. Also, employees might use 
their privately owned PCs for performing corporate tasks, e.g., by carrying an 
entire corporate compartment on a USB stick that can be migrated between a 
corporate machine and a private one.

The use case could also have been termed “Private Computing on Corporate 
Platforms”, and in this regard, it builds on the theme that guided the OpenTC's first 
work phase.  It reflects the situation where employers tolerate, within reasonable 
limits, the utilization of corporate equipment (in particular notebooks) for private 
purposes [7].
This liberal attitude is more common than one might think: as private life and work are 
ever harder to separate, it has not gone unnoticed that employees tend to be more 
productive if allowed to quickly resolve private matters even when at work. With the 
proliferation of notebooks, the strategy of keeping a tight grip on the configuration is 
constantly waning, while working equipment is increasingly hauled back and forth 
between home and work.
While conniving in the private use of their equipment, employers still want a safeguard 
that their machinery remains fit for being used on their corporate network. With 
regard to malware and other types of subversion, they should not be more exposed 
than they were before. Corporate policies may call upon the good judgement of their 
employees to ensure this, e.g., by allowing access to email and documents as long as 
vetted applications are used, while disallowing the installation and operation of 
arbitrary additional software, even for test purposes. Quite frequently, however, this is 
exactly what the user wants or needs to do.
The use case assumes that the interests of the corporation and the user are not in 
conflict regarding the separation of corporate and private concerns. Quite on the 
contrary, we may suppose a cooperative attitude on both sides. A user empowered to 
use corporate equipment for his own purposes would share the genuine interest of 
keeping the corporate infrastructure safe and sane. The corporation, on the other 
hand, would endorse the user's attempt to create a software environment tailored to 
his own needs. However, the current end system architecture of “one active execution 
environment at a time” is not trusted to assure that the corporate infrastructure will 
go unharmed when the user installs arbitrary software, and it makes it hard to 
reconcile the needs of both parties.
Typical work-arounds are, for example, dual-boot configurations for separating 
corporate and private partitions, or the creation of multiple user accounts and/or root 
file systems on the same operating system (OS). They come with different 
inconveniences: long reboot delays when switching execution contexts, as well as an 
incomplete separation due to resource sharing or built-in relations of dominance and 
subordination between different partitions.
A desirable architecture would allow simple and fast switching between two or more 
different roles (such as private and corporate), mapping them to execution 
environments that, while running in parallel, are protected against uncontrolled 
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mutual interference or inference. It should support multiple OS types, require minimal 
modifications to existing code bases, clearly indicate the role and execution 
environment the user is working in at any given time, and allow for policy-controlled 
information flow between compartments if necessary. It should offer some grade of 
protection against tampering with its disk image even when not active, and it should 
provide a means to prove its integrity to the user as well as to remote nodes (such as 
the corporate VPN gateway). In a nutshell, this is the list of requirements that guided 
OpenTC's work on the new proof-of-concept prototype.
The Trusted Computing approach faces a general, well-known challenge with regard to 
maintaining databases with “known good integrity values”. Knowledge of these values 
allows a relying party to check whether a computer requesting access is compliant 
with specific requirements or not. An initial simplification of our scenario assumes that 
the employer provides its employees with PCs and maintains a database with “good 
values” for corporate equipment. 
Provided that the employer configures the machine, he can also seal the corporate 
execution context cryptographically against a specific configuration of the OpenTC 
layer, making it accessible under this configuration only. This is a viable mechanism to 
avoid remote attestation, allowing using TC even in the absence of global databases 
with ‘known good values’ and platform certificates. Still, migration is possible: 
corporations might share their definition of known-good configurations with their 
business partners, thus creating a business case for creating and maintaining a 
common database or for platform certificates.
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Figure 2: Corporate Computing at Home conceptual overview.
• “Corporate” designates a compartment used by the employee for corporate purposes, e.g., with a 

corporate standard configuration of a mainstream operating system (OS).
• “Security” compartments may contain scanners, firewalls, or auditing instrumentation.
• “Private” denotes a compartment used for the employee’s private purposes.
• “Other” compartments may contain a variety of OS and applications.
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3.2.1 General Approach
Figure 2 shows an overview of the OpenTC architecture applied to the Corporate 
Computing at Home scenario. The OpenTC layer between the hardware and the 
compartments provides security services and isolation. A corporation can shield its 
compartment from other execution environments on the same computer. The user has 
an operating system (OS) provided and configured by his corporation running in 
parallel to one used for his personal tasks. The corporation can rely on the fact that its 
configuration runs in a well-known and attested operating environment, and it can get 
assurance that its OS can be only used in accordance with the corporate policies. In 
parallel, the user can run one or more compartments of his own. More compartments 
may exist, e.g. for:

● platform-wide security applications,
● games,
● security applications and services, e.g. for digital signatures or for the PET,
● browsers used for “surfing” potentially dangerous websites (such a 

compartment may simply be deleted entirely after use, and re-instantiated 
again),

● software of unknown trust properties, for use or testing, in a private or business 
context (such software can be executed in a dedicated compartment that works 
as a sandbox that might be erased after use).

For convenience, the default configuration assumes that compartments are isolated. 
The administrator may, however, configure paths for data exchange between 
compartments, e.g., for allowing security applications to inspect other compartments.
The handling of such a system is not straightforward for someone without specialist 
knowledge, be it an administrator or an end user. The additional functionalities 
increase the complexity of the system, and managing these functionalities raises 
questions of usability. The complexity of a computing system using TC in combination 
with a hypervisor and running several, possibly different OS, may prove to be an 
entrance barrier – if the learning curve is considered too steep or the cost-benefit 
relation too low, corporations may be reluctant to employ this technology. So, how can 
such a system be designed to be more easily manageable? 
Regarding the acceptance and manageability of such a system, the Institute for 
Technology Assessment and Systems Analysis (ITAS) has specified a set of 
requirements. Although some of them may sound trivial, they were elicited on a 
related requirement analysis. This process consisted of a media review and a small 
expert survey. Regarding the expert survey, eight experts – administrators and 
security specialists from various German corporations – were interviewed. The 
respondents were asked to read an introductory conceptual paper on the OpenTC 
architecture, and to comment on it in subsequent interviews. The following 
conclusions were derived: 

1. The user interface should provide means to create a new compartment and 
delete an existing one.

2. The user interface should be graphic, for managing compartments easily, as 
opposed to relying on old or new hotkeys. 

3. Information on the Trusted Computing Base (TCB) should be provided on the 
main screen, and should be easily manageable, such as by pressing buttons 
with a mouse-click. 
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4. If information on the status of a certain compartment or other component is to 
be provided to the user, this should be done using easy-to-grasp graphic 
artefacts.

The design required to select features that can be omitted from the graphical user 
interface (GUI) as opposed to those that should be shown in a size-restricted section of 
the display. This raises a number of issues; only two of which will be mentioned here. 
The first concerns protection against mimicry: we have witnessed the emergence of 
attacks where the GUI is used to fool users into believing that a given graphic element 
is trustworthy, while it is in fact concealing an exploit. The second issue concerns the 
protection of users against their own mistakes, as they might lose sight of their 
compartments. ITAS specified a taskbar for easily managing the TC hypervisor, 
including a user-specified image that is provided during installation. If the TCB is in a 
known state, the image will be unsealed and displayed. If the TCB is in a different 
state, the image can not be decrypted and will therefore not be displayed. This 
indicates that the TCB-components (including the GUI) might have been tampered 
with. A first version of this taskbar has been implemented in the Corporate Computing 
at Home proof-of-concept prototype.

Fig. 4 shows an example of a failed unsealing procedure. The code or the configuration 
of the TCB is no longer in a known state; nothing that is displayed can be trusted. 
Figs. 5 and 6 show the task bar in the context of different operating systems. We 
expect that this user interface will help to make the OpenTC architecture easy to use 
by administrators and users.
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A sealed image (personalised with a facial image chosen by the user) and an activated button 
(indicating the compartment currently being displayed on the remainder of the screen). The 
taskbar provides graphic access to several compartments and to the TCB (hypervisor) control 
panel. Due to the sealing process, the image can only be displayed if the platform TCB has 
booted into a well known, expected state .

Figure 3: OpenTC Taskbar (cropped)

The red image at the left indicates that image chosen by the user can not be 
displayed: the TCB is not in a known state and that unsealing the image has not been 
possible.
Figure 4: OpenTC Taskbar (cropped)
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Figure 5: CC@H platform with  status bar, compartment is running Windows XP.

Figure 6: CC@H platform  with status bar, compartment is running Linux.
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3.2.2 Platform Components
The CC@H architecture comprises the following main functional components:

● boot-loaders capable of producing cryptographic digests for lists of partitions 
and arbitrary files that are logged into PCRs of the Trusted Platform Module 
prior to passing on control of the execution flow to the virtual machine monitor 
(VMM) or kernel it has loaded into memory,

● virtualization layers with virtual machine loaders that calculate and log 
cryptographic digests for virtual machines prior to launching them,

● a graphical user interface enabling the user to launch, stop and switch between 
different compartments with a simple mouse click,

● a virtual network device for forwarding network packets from and to virtual 
machine domains,

● basic support for binding the release of keys for encrypted files and partitions to 
defined platform integrity metrics,

● a dedicated virtual machine to demonstrate the graphics throughput using the 
example of medium-resolution video.

Compared to the previous one, this PoC includes a number of additional security 
services, is capable of hosting proprietary operating systems, and  provides the basis 
for separating security critical functionality from general application logic (in this case, 
a DRM core from a rendering engine). We will walk through the components one by 
one; some additional characteristics will be mentioned in this discussion.
Integrity checking during VMM boot-up
The current setup assumes the availability of an Infineon TPM v1.2 and BIOS support 
for writing PCR values into the Trusted Platform Module (tweaks for TPMs from Atmel 
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Figure 7: CC@H PoC– Architectural Elements
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or National Semiconductor should be relatively straightforward).
To explore the “dynamic root of trust” option introduced by the TPM 1.2 specification, 
the current (Feb 2008) requirement is an AMD machine Our setup was tested on HP 
nx6175b, nx6325 and 6715b notebooks with AMD Turion CPUs.
VMM integrity measurement during boot-up was already possible in the previous 
release, but the functionality was quite constrained: the file systems for the VMM and 
the hosted VMs were static ISO images that would be measured prior to being 
instantiated as copy-on-write RAM disks. Any modifications to the RAM copies were 
lost when the machine was switched off.
For the first prototype, this shortcut was acceptable for the purposes of demonstrating 
the technical principle of software integrity measurement during boot time. For 
practical use, however, it is clearly inadequate. OS file systems comprise both static 
and dynamic elements, a fact which has to be accommodated by separating them, 
measuring the static parts during start-up, and leaving integrity verification of 
(security-critical) dynamic data to non-mutable mechanisms embedded in and 
measured with the static part.
Conceptually, this problem is addressed by storing static (read-only) data needed at 
boot time and dynamic (read-write) data in different partitions. During the boot 
process, the two partitions are mapped onto each other by means of an overlay file 
system. The resulting view should be that of an ordinary, single partition. Please note 
that we only provide a very rough first approximation of this concept in the current 
prototype: during the first instantiation of the file system, all files reside in the read-
only part and are included in the measurement. However, each time a file is modified 
by the OS, it is copied to the read/write part. From then onward, the overlay file 
system always returns the ‘dynamic’ copy of the file (residing in the overlay’s 
read/write part) to the OS. As a consequence, the current mechanism cannot catch 
and measure modifications made by the OS during runtime. This will be improved 
either by patching the modifications again in a controlled fashion or by properly 
splitting the static and the dynamic data and storing them respectively onto the read-
only and read/write parts.
There are two choices for TPM-supported boot. The first one is based on the TPM 
v1.1b-defined concept using a static root of trust: starting from the root of trust for 
measurement in the BIOS, all software components relevant for the boot procedure 
are measured, and the values stored in corresponding TPM registers. As in the 
previous release, this is done by a dedicated version of the GRUB boot loader. 
Alternatively, the OSLO boot loader, a software module for the standard GRUB, can be 
employed to use the TPM v1.2-defined mechanisms with dynamic root of trust (caveat: 
an AMD machine is required for this). To show both alternatives, the CC@H prototype 
uses OSLO as an extension of TrustedGRUB. TrustedGRUB allows arbitrary additional 
files to be included in the measurement process during boot-up, which have to be 
defined in a separate list. However, the  prototype does not make use of this feature.
Virtualization layers and virtual machines
Similar to the last release, there is a choice between two flavours of virtualization: the 
microkernel-based L4 and the (currently) monolithic Xen. Both have their pros and 
cons.
L4 is a lean, minimalist system and ideal for OpenTC's investigations into hypervisors 
of reduced complexity and a minimal trusted computing base in general. However, the 
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current L4 implementation only supports one CPU, so on an SMP or multi-core 
platform, the chances are that only a fraction of the CPU power can be used. And while 
it has been practically demonstrated that proprietary operating systems such as XP 
can be virtualized on an L4 based hypervisor, L4's extensions employing hardware 
virtualization have not yet been made public and can, therefore, not be used by 
OpenTC.
The second candidate, Xen, has gained a reputation for stability, SMP support and 
capability of hosting MS-Windows in hardware-supported virtualization mode. 
However, it is currently intrinsically reliant on Linux as a hosting environment for 
drivers and management software. L4, on the other hand, can use Linux for this 
purpose (as we do), but also provides for more generic, lightweight mechanisms. The 
XEN code base is quite large, which makes it more difficult to validate its security and 
isolation properties.
For experiments on hosting a proprietary OS alongside with Linux, Xen therefore is the 
only option. If the aim is just to run multiple Linux instances in parallel, either L4 or 
Xen can be selected. The file system content of L4's and Xen's Linux management 
domains are mostly identical, give or take some configuration files and hypervisor-
specific management tools. We therefore use the same disk image for both 
hypervisors with dedicated subdirectories for VMM-specific components.
Graphical user interface 
Compared with the last proof-of-concept prototype, the user interface was very much 
improved. Following the requirements analysis mentioned above , we designed its look 
and feel to match the typical user experience with graphic desktops. The OpenTC 
framework claims a narrow region at the top of the screen for a proof-of-concept 
implementation of a ‘trusted task bar’. This bar allows compartments (dedicated VMs) 
to be launched and terminated as well as switching between them. It also has a small 
region to display a sealed control image which is only visible if the integrity checks for 
the hypervisor and the controller domain(s) were passed successfully. The rest of the 
screen is dedicated to displaying the desktop and/or windows of a selected VM. To 
support the user's perception of different working contexts, only one of these desktops 
is displayed at a time, i.e. we currently do not mix windows from different VMs on a 
single desktop. We believe this strict separation to be advantageous in most cases.
User domains now pass graphical output to frame buffers provided by the hypervisors. 
Compared with the network-based approach used in the last version, this method is 
more efficient. The current version for XEN still relies on an X server in the controller 
domain, and VNC is used to receive and forward the data arriving from user domains. 
For L4, we implemented a simplified trusted status bar without buttons and sealed 
image display that is independent of X as rendering engine. 
The  prototype comprises a compartment with a viewer for multimedia content. This 
was included to get an impression of performance characteristics for demanding 
applications.
Virtual network device
OpenTC implements a virtual switch for interfacing the virtual network interfaces of 
each domain with the physical network card. A packet filter in the controller domain 
can be configured such that certain domains only have access to a defined range of 
local or remote IP addresses. To ensure mutual isolation, interactions between 
different user compartments on the same platform should be disallowed by default.
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Platform-integrity linked protection of data
The CC@H OpenTC proof-of-concept prototype includes an example of binding data 
assigned to a particular VM to its boot-up state. To this end, we have split the Linux 
file system into a static and a dynamic part. The dynamic part is only accessible if the 
integrity checking of static part was passed successfully.
The prototypic implementation is purely conceptual and quite rough in more than one 
respect. In particular, it is not fit for any serious use, as it is based on setting a value 
of a resettable register in the hardware TPM. This PCR has to be cleared after 
terminating the compartment. This does not only counter the logic of PCR extensions, 
but also constrains the use of this mechanism to one compartment at any given time.

3.2.3 Results
The second PoC marked several major improvements over the first one:

● it reflects a familiar scenario from the corporate world,
● it is built on a distribution that can be compiled and packaged from scratch 

(OpenSuse 10.3),
● it allows for a uniform development environment (GNU Compiler Collection gcc/

g++ 4.2) for both hypervisor alternatives (L4 and Xen),
● it provides a GUI that hides the underlying complexity, signals the platform's 

trust state, and allows for intuitively easy switching between different 
roles/execution contexts,

● it can host one or more instances of proprietary guest operating systems 
(Windows XP), and

● it comes closer to isolating security critical functions such as console I/O and 
networking.

The components developed allowed to split static and dynamic parts file systems and 
to measure elements of the TCB at granularity of single files during the boot process. 
Virtual networking with ethernet encapsulation and packet tagging allowed to split 
physical networks into multiple logical trust domains. The access to cryptographically 
protected data could be based on the measured integrity of the underlying platform, 
and dedicated virtual machines could be used to split systems and application into 
security critical and uncritical parts interacting through highly efficient inter-process 
communication mechanisms. Access to local resources was policed by a platform local 
compartment manager, and drivers als well as other components could be moved out 
of the management OS into dedicated domains if demanded by security requirements.
The remaining issues concerned the overhead of managing a Corporate Computing at 
Home system, additional costs for maintenance, software, user qualification etc. These 
costs have to be weighted against the benefits of deploying the architecture. It also 
became clear that we had to put additional emphasis on user friendliness and layout 
characteristics of the prototype's GUI. It had to be made it as simple as possible while 
maintaining the necessary grade of distinctiveness between different compartments 
that are mapped to different roles the end user may assume.
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4 Third Period (M25-M42)
The plan for the this period was the extension of the OpenTC architecture to cover the 
use case of a virtual datacenter. The design was based on the concept of “Trusted 
Virtual Domains” developed during the previous periods. Such a domain is defined by 
a policy specifying the access to and the protection of shared ressources. The 
architectural goal is to run virtualized execution environments of different domains 
side by side while safeguarding that no information is leaked between them.
Two external factors influenced our work and required adjustments of our planning. 
When the project was conceived in 2004, we assumed a rather quick adoption of 
Trusted Computing hardware in server architecture. Back then, this expectation 
appeared to be justified by the large amount of work that was invested in this area by 
TCG members. It practice, it turned out that while trusted computing hardware was 
included in high-end servers, this did not extend to lower end x86 servers which are 
the platforms for running Linux and had been targeted by our planning. We therefore 
lacked appropriate hardware to test our approach, and all development had to be 
performed on platforms that are essentially PC client architectures (TPM equipped, x86 
based workstations and notebooks).
The second factor concerned the increasing availability of management tools for 
virtualization. When the project was started, we had planned to unify the hypervisor 
and management interfaces of both Xen and L4 and to extend the result to support 
security and trust related primitives. This interface would then be instrumented with 
Common Information Model (CIM) providers to allow for a standardized management 
API.
However, additional open source based hypervisors such as kvm and VirtualBox 
appeared on the scene, adding pressure for the virtualization developer community to 
provide  common interfaces and tools for management support. Our own efforts in this 
direction were quickly overtaken by external ones, and in order to stay compatible 
with this rapid development, our technical approach had to be readjusted. We had to 
accept that for the time being, a unified interface would be provided not by a common 
low-level interface between the hypervisor and kernel, but by library based abstraction 
layers such as libvirt.
It turned out that this adjustment has a number of upsides. Experiences from WP04 
(Trusted OS development) have shown that unifying the interfaces of just two different 
hypervisors (Xen and L4) poses formidable technical challenges. Unifying more than 
two of these interfaces looks  even more daunting, with unknown prospects with 
regard to the necessary buy-in from developers of other hypervisors. In contrast, the 
library-based approach has proven to be feasible and appears to have a natural inner 
momentum. It also allows  to utilize existing, lightweight management tools available 
under Open Source licenses. Thes tools can be readily adapted to include 
management aspects for Trusted Computing functionality. As a further advantage, we 
can leverage CIM providers that have been developed (outside the project) by OpenTC 
partners that interface the aforementioned abstraction libraries. 
On the downside, we had to modify libvirt to support the set of trust and security 
related features required by us. Future standardization for trusted virtualization will 
have to be driven from this abstraction and library level downwards, emphasizing a 
management (rather than a hypervisor and trusted computing) angle. With regard to 
their architecture, hypervisor interfaces need extensions to allow policy-guarded 
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startup and resource assignment for virtual machines and access to hardware and 
software TPMs. WP04 of OpenTC has successfully investigated the minimal extensions 
necessary to provide this support for Xen and L4, and other hypervisor architectures 
may chose similar solutions.

4.1 Technical Goals
During the third period, the main goal was to extend trusted virtualization beyond the 
limits of single platforms and to make it usable for managed distributed scenarios. 
The main purpose of the proof-of-prototype is to determine and implement elements 
designed and specified in D02.3, sections 9 and 10 [5], to make the base platform 
usable for use cases similar to a virtualized data center. Again, the yardsticks are to 
utilize Open Source based components where possible. In this case, however, the 
emphasis in not on a minimalist solution, but on supporting efficient administration, 
preferably by interfacing existing and lightweight management tools. 
These general objectives translated into developing components for policy 
enforcement in trusted virtual domains, including separation mechanisms for shared 
network and storage.  They demanded to determine the operational parameters 
influencing the information flow inside and between trusted virtual domains. These 
parameters have to be mapped to configuration and policy definitions that are 
deployed with images of virtualized execution environments. The scenario also 
requires a management console with improved security properties for administering 
multiple, disjoint domains in parallel.
Due to specifics of the hypervisors used in OpenTC, tasks were split between the two 
architectures. Originally developed for smaller platforms, the L4/Fiasco hypervisor has 
evolved towards the PC architecture, but was not designed with server centric 
scenarios in mind. The current version of this virtualization solution lacks a number of 
features that are essential for servers (in particular symmetrical multi-processing, 
multi-core support, I/O throughput maximization for network and storage). On the 
other hand, its microkernel based approach to virtualization provides more advanced 
support for service decomposition and includes features such as a small and generic 
graphics subsystem. We therefore decided to implement the VDC and TVD 
management console based on the L4 hypervisor while using Xen to its original 
strength, namely, to virtualize OS instances on servers.
Our second goal for this work period was to improve the design and implementation of 
the trusted virtualized client platform. The use case for Corporate Computing at Home 
(CC@H) had proved to be quite prominent with product divisions from OpenTC's 
industrial partners, who encouraged us to bring this concept closer to marketability. In 
particular, this concerned the graphics subsystem, which was based on the X-server 
architecture. We had already explored this topic during phase two with a small, 
generic graphics stack for L4. Also, we had been careful to base our user interface 
implementation on SDL graphics primitives that offer X-independent widget libraries. 
During this period, we decided to address the problem of a unified approach to 
graphics applicable for both Xen and L4. 
In addition to our work on disaggregating the graphics system from the Linux 
controller domain, we therefore revisited the design of the whole driver stack. The new 
design is based on the Gallium architecture, obsoletes most legacy code, reduces the 
graphics related trusted code base by an order of magnitud, and will provide 2D and 
3D hardware acceleration to virtual machines once the third-party drivers are 
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available. Due to resource constraints, we decided to limit the prototypic 
implementation to Xen, but made sure that the code is easily portable to L4. Also, 
graphics and video related work took precedence over improving the audio 
performance of virtual machines.
There also were some loose ends from the last proof-of-concept prototype to be tied 
up. The integrity measurement functions for hosted instances (VMS) was improved to 
support virtual TPMs, i.e., software emulated TPM functionality that is exclusively 
dedicated to a particular compartment. This allows to seal data to specific 
compartments, a feature that is beneficial for both client and server centric use cases.
Major topics addressed in parallel:

● the instrumentation of standard cryptographic protocols and components (ssh, 
SSL/TLS, IPsec, PKCS#11) with Trusted Computing support;

● finalization of a fully Java based software stack (TSS) for Trusted Computing and 
minimal execution environments for the JVM;

● the integration of all application prototypes and example use cases with the 
OpenTC platform;

● extensive tests of OpenTC components and provision of validation environment 
as a public service;

● finalization of porting components to development system for mobile platforms, 
requirement analysis for mobile Trusted Computing

● packaging and distribution of CC@H prototype, packaging of Trusted Virtual 
Datacenter prototype

Again, this list of activities is very much stripped down and by no means 
comprehensive. For more detailed information, the reader should consult the activity 
report for the third working period of OpenTC [4].

4.2 Trusted Virtual Datacenter Prototype
The description of this proof-of-concept demonstrator prototype has again been split 
into two sections describing the datacenter setup and the management console.
The scenario emerged from use cases of industrial partners who operate data centers. 
Traditionally, this implies to allocate one or more physical hosts located in server 
farms to customers, either on a temporary basis to perform bulk calculations, or a 
more permanent basis for hosting electronic services. Empirical studies have proven, 
however, that the allocated physical platforms typically only utilize at a fraction of 
their CPU and I/O capacity. This observation, and additional considerations that 
concern energy consumption, ease-of-management, and redundancy, has led to the 
new paradigm of allocating virtualized instead of physical machines to customers. 
While allowing to offer the same services at a reduced rate, virtualization poses a 
some new challenges, not least with regard to trust and security properties. 
The corresponding use case can be summarized as follows: 

● Data center customers wish to run applications in an execution environment of 
their choice in a remote physical environment that is controlled by a data center 
administrator. Their execution environments are running virtualized, and each 
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customer wants to ensure that they are properly isolated against those of other 
ones. 

● Although no physical machines are allocated to them, data center customers 
still require to know whether their virtualized instances are up and running, 
including management support to start, stop and reconfigure their execution 
environments, allocate resources and so on.

● Data center customers may desire to split security critical and non-critical parts 
between different trusted virtual domains, with dedicated gateways between 
them. They may also want to provide services to end users (i.e., customers of 
data center customers) dependent on the configuration of the client machine.

● The data center administrator, on the other hand, needs to have an overview of 
how many trusted virtual domains are hosted on his infrastructure, which hosts 
they are spawning, and about free resources that could be allocated to new and 
existing customers.

This use case predicates two very different perspectives of management. Clearly, each 
data center customer should only be able to see information about virtual machines 
and domains that are under his own control. In contrast, the data center administrator 
needs information about everything that is happening in the whole physical 
infrastructure. In addition, he may want a view about each virtual domain hosted on 
his server farm. Preferably, the same set of management tools should be usable to 
provide these different views. 
Although we are constrained to a very simplified setup for the PoC (due to lack of TPM 
equipped server infrastructure), this usage scenario involves a large number of 
components. We therefore give some definitions that will be used in the technical 
exposition.

● A VDC or Virtual Datacenter is a set of servers connected by a network that can 
host multiple Trusted Virtual Domains (TVDs)

● A Trusted Virtual Domain consists of a set of virtual machines, network 
configuration, storage and policies for access control and resource 
consumption.

● A VDC host is a physical server connected to the physical network of the VDC
● A TVD network is a virtualized network (vLAN) connecting a particular TVD, 

provided by the VDC.
● A TVD host is a physical host in a VDC that a particular TVD spans to.
● A TVD VM is one of the set of virtual machines that constitute the TVD

4.2.1 General Approach
A simplified logical view of the usage scenario is depicted in Figure 8 below. It shows 
two TVDs ('Red' and 'Blue') from two different customers that are running on different 
physical machines A and B inside a VDC (multiple VMs belonging to a TVD could also 
run on the same host). These VMs may be dedicated to specific purposes – in our 
example, a content management system (CMS). 
All elements of the TVD are controlled by the customer via management consoles on a 
dedicated platform C that can, but does not have to, be co-located with the VDC (in 
our example, they are not). In addition, specific VMs can – but do not have to – be 
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linked to the Internet through a gateway to allow for public access. In the example 
below, the red TVD has such a gateway, whereas the blue one does not.

In addition to the elements shown in figure 8, the usage scenario requires another 
management entity that that is responsible for the overall operation of the data 
center. Typically, it resides on another dedicated physical platform. Note, however, 
that this functionality could be combined with those off the TVD management 
consoles. In this case, each console would be hosted in a separate VM on the physical 
management management platform, allowing both a high-level and TVD specific view 
of the configuration. This design supports the separation of concerns and reduces the 
risk of operator mistakes affecting arbitrary components across different TVDs.
The two logically independent red and blue networks shown in Figure 8 both use the 
same physical infrastructure (network and interface components of VDC hosts). Their 
mutual separation is achieved by leveraging vLAN and VPN mechanism provided by 
the logical equivalent of network bridges and switches that reside on each physical 
host .
All components in grey are infrastructure elements that have exactly one instance on 
each VDC host. In contrast, the elements in blue are dedicated to TVDs and will be 
instantiated whenever a VM of a new TVD is spawned on the VDC host. The figure 
illustrates the most simple scenario possible:  a physical platform hosting a single VM 
of a single (blue) TVD. There could, however, be more than one instance of a TVD 
guest VM running on this server. Also, the server could host VMs that are members of 
other TVDs, say, the red one. In this case, all blue elements would be replicated as red 
ones (enforcing the configuration of the red TVD, of course), and the switch fabric 
would be configured such as to add two new 'red' virtual networks for TVD 
management and data traffic to the list of those already “linked” to the platform.
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Figure 8: Logical view of a simple VDC hosting two TVDs
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The logical view in figure 8 is a first and simplistic approximation of actual network 
configuration, which is depicted in figure 9. The functional components will be 
described in more detail in the next section. At this stage, it may suffice to point out 
that the architecture separates the data and managing traffic of a TVD (TVDusr and 
TVDmgn), uses a dedicated logical network for management for resource 
management at the VDC level (VDC), one for deploying configurations, policies, and 
images (DMZ), and one for access to centralized network storage (SAN). 
The storage content accessible though the SAN is supposed be shared between 
different TVDs.  Alternatively, it could be encrypted at the device level to maintain 
confidentiality. 
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Figure 9: Core Components of Datacenter Node 
Graphics courtesy of K. Eriksson, IBM 

Figure 10: VDC Infrastructure Components
Graphics courtesy of K. Eriksson, IBM
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This setup can only work with the appropriate backend infrastructure in place. Figure 
10 shows these backend components and their connection to the respective virtual 
networks. 
The TVD master is the counterpart and control instance of the TVD proxy running on 
TVD hosts. The backend provides both dedicated storage (blue NFS server, connected 
through the TVD data vLAN) as well as shard storage (green NFS server, linked via the 
SAN vLAN). Images for TVD VMs can be booted over the network (prior deployment to 
the persisten storage medium of the TVD host might be preferable for performance 
reasons). The remaining elements concern the resource management (RM), the 
allocation of IP addresses (DHCP), the domain name lookup (DNS) and general VDC 
related management tasks. 

A component not depicted in the backend diagram is the TVD console, which is 
connected to the TVD management network (uppermost blue vLAN). The PoC 
prototypes combines the TVD and the VDC management components on a single 
physical platform, as shown in  figure 11. 
We conclude this outline with a diagram depicting the complete PoC setup with five 
physical nodes and connections via the VDC LAN and the Internet. The simplified 
datacenter consists of 2 computing nodes that host TVD VMs and a management node 
that implements all generic datacenter services like storage and Internet uplink. All 
VDC hosts use the Xen-version of openSuse 11.1 and are interconnected on Layer 2 
through a switch.
The architecture bears resemblance to the Trusted Virtual Client platform (figure 7). 
This is no accident, but demonstrates the applicability of the underlying mechanisms 
to separate between concerns and proves its versatility for another context. The PoC 
of 2009 also includes a client specific example similar to the one described for the PoC 
2007, which we don't detail here.
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Figure 11: Architecture of VDC / TVD management console
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4.2.2 Platform Components
The Virtual Datacenter architecture comprises the following main functional 
components in addition to last year's PoC:

● A master/proxy architecture for joining and releasing virtual machines to and 
from a trusted virtual domain;

● A virtual network switch that supports both vLAN and VPN mechanisms to 
separate TVD networks for co-located as well as remote scenarios;

● A libvirt based interface that allows to manage virtual machines using existing 
management frontends;

● A framework supporting lightweight management  
● A policy and configuration driven filtering mechanism permitting TVD-specific 

views of the server status.
● XML based policy and configuration information specifying the constraints and 

resources for TVDs and their member VMs;
In addition, we utilize the elements developed during the previous phase: TPM-enabled 
boot-loaders, virtualization layers with VM loaders that measure their images prior to 
launching them, support for binding the release of keys for encrypted data to integrity, 
and a client architecture with a graphical user interface to conveniently launch, stop 
and switch between different compartments. We will discuss the core components in 
the following section.
TVD Master / Proxy / Factory
These components support the creation of TVDs and allow to add and remove VMs to 
and from them. 
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Figure 12: Virtual Datacenter PoC Setup
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The TVD Master accepts connections via a trusted channel only. This trusted channel 
is qualified by custom authentication data that implicitly authenticates the connecting 
clients. The TVD master authorizes the parties depending on the TVD policy and 
verifies the state of their TCB using remote attestation mechanisms.  Management 
compartments on the L4 implemented system employ a modified version of the 
trusted channel based on binding the policy file with AIK certificate. For simplicity, the 
TVD Master therefore runs in 'dual mode' with two dedicated listening ports for Xen 
and L4. Still, both TVD Master instances on the server server enforce the same TVD 
policy.
The TVD proxy components represent the policy and configuration for TVD on physical 
hosts that run such TVD VMs. When such a proxy is instantiated, it joins a TVD by 
retrieving the policy and configuration information the respective TVD master via a 
trusted channel. It provides an interface for controlling the process of joining and 
leaving a TVD and for attaching and detaching VMs to the trusted virtual domain. 
When leaving a TVD, a proxy terminates all TVD VMs on the physical host it resides on 
and shuts down the TVD network. All key material and policy information is wiped out, 
and the TVD master is notified about the termination.
A VM that is already running may request to be joined to a TVD. In this case, the 
integrity metrics of the requesting VM are checked against known-good values and 
rules in a TVD policy. If this check is successful, the proxy determines which network 
interfaces of the requesting VM shall be connected to which TVD network and 
configures the virtual switch accordingly.
When a proxy receives a request to remove a VM from a TVD, it unplugs the virtual 
network interface of the VM from the TVD net if still exists. Under Xen, a VM leaves a 
TVD when it is shut down. Under L4, the VM informs TVD proxy factory that is wants to 
leave the TVD. The tap device is not destroyed until the responsible bridge server in 
Dom0 is terminated; which happens when the VM is stopped.
The TVD proxy factory is responsible for creating specific instances of a proxy that is 
bound to a TVD policy and configuration. It also implements some support functions 
for adding and removing VMs to TVDs.
Virtual Network Switch
The virtual network switch component used for this PoC is an extension of the one 
developed during the previous period. It was re-implemented to run as a kernel 
module rather than a user space daemon and now supports IPSec in addition to 
ethernet encapsulation with vLAN tagging. 
The main purpose of this component is to enforce the separation between different 
virtual private networks that connect different TVDs. With the current vSwitch 
implementation, there still remain some timing issues under Xen (the VM must have 
terminated before the corresponding virtual interface in Dom0 can be destroyed). 
Since this component is intended to become an integral part of future releases of Xen 
and Linux, this issue will be resolved in the near future. The default policy remains the 
same as for the last PoC: unless bridging between different vLANs has been explicitly 
configures, TVDs remain isolated from each other
libvirt based Management interface
OpenTC's original plan of writing a set of CIM providers as standard management 
interface was abandoned since more lightweight approaches using the Xen or libvirt 
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APIs began to clearly dominate in this area. Our decision to use libvirt as the 
management API was motivated by the fact that it is the most universally accepted 
interface. Furthermore, an modest extension of this library provided support for the 
L4/Fiasco hypervisor. CIM interoperability could be maintained by virtue of readily 
available libvirt-to-CIM interfaces. The part not covered by this approach regarded the 
management interface to Trusted Computing functionality. For this area, a separate 
investigation of WP05 has produced a prototype with a CIM interface for basic support 
and configuration of TPMs.
The API is provided by a libvirt daemon and used for starting, stopping, creating, 
destroying and listing VMs. The extension implemented by OpenTC manipulate VM 
definitions in XML, subject requests to access control checks and route authorized 
requests to the compartment manager and the Xen API, respectively. Further, it 
compiles information about running VMs from their respective XML descriptions and 
data from the Compartment Manager.
Framework for Lightweight Management
The main management frontend for managing TVD VMs is provided by virt-manager, 
an Open Source based tool provided by RedHat. It is an XML-RPC based tool 
interfacing with libvirt implemented in Python, easily extensible to support additional 
resource management and security related tasks. In addition to its generic client 
interface, it also comes with plugin support for Firefox, allowing to manage the VDC 
with a standart web browser.
To the backend, we added functionality for network and storage management which 
are controlled by the VDC management server. The PoC also includes components like 
DNS, DHCP, and PXE boot servers. These are not genuine research targets for OpenTC, 
but necessary infrastructure support to realize the usage scenario. The necessary key 
material and certificates are produced using the PKI components developed by WP05.
Basic resource management for the VDC is supported by agents running on all 
physical hosts. RM agents supply, for instance, the general status of the node, 
information about particular domain, or the list of virtual networks associated with 
specific domain. A central RM server supports to register and unregister an arbitrary 
number of agents and can be queried to return a list of these agents and their 
properties.
Policy driven Filtering Mechanisms
The core idea here is allowing the client side to use a unmodified libvirt installation, 
which simplifies packet managing. We make use of the fact that the libvirt daemon 
can run in multiple instances in parallel, listening on different ports and IP addresses. 
This enables us to distinguish local calls from the RM client or other VDC management 
tools, and remote invocations over the management network from VMs that have 
been granted access to this VPN. 
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The libvirt core includes hooks for access control mechanisms, which allows to 
introspect both remote and local calls. A dedicated relay component for the 
compartment manager intercepts all requests to VMs that have security tags in their 
respective policy and configuration files.

Regarding TVD policies, OpenTC has strived towards simplicity. Our ambition was not 
to produce a policy definition that is capable of covering every corner case at the cost 
of complexity. Instead, we wanted to provide a small number of attributes that can be 
used in addition to the standard description format for virtual machines and cover 
basic trust and isolation properties. Policies an configurations for specific TVD VMs can 
be derived from TVD policy templates and refined accordingly. The following diagram 
box 15 shows a policy and configuration example for a management VM hosted by the 

Open_TC Deliverable 02.4 33/43

Figure 13: libvirt Filtering

Figure 14: libvirt Access Control
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L4/Fiasco hypervisor, including the components to be measured for the integrity 
verification.

Secure User Interface
The OpenTC Secure User Interface (SUI) aims to provide virtualization of all typical UI 
related devices (graphics, keyboard, mouse) for a virtual client scenario. The SUI 
design focuses efficiency and security. It utilizes Tungsten Graphics’ Gallium3D 
graphics driver architecture [12],  was originally created as a labour-saving 
architecture for developers of classic, non-virtualized drivers. The SUI uses Gallium's 
modularity to implement forwarding and multiplexing of guest OS' graphics on an 
intermediate API level that is hardware independent and situated on a layer between 
the Gallium modules.
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<domain type='l4'> // type l4 currently supports l4linux
// paravirt, other available with Xen etc.

  <name>tvd_mgmt_vm</name>
    <os>
      <type>l4linux</type> // l4linux paravirt supports direct boot 

// method, other available with Xen etc.

      <kernel>/var/vdc/kernels/l4linux_minimal.img</kernel>
      <initrd>/var/vdc/blue.tvd.opentc.net/initrd.img</initrd>
      <cmdline>mem=64m video=l4fb</cmdline>
    </os>

    <owner type='tvd'>blue.tvd.opentc.net</owner> // owner can be a TVD
    <security mode='tvd'>  // specify security options 

// for TVD-VM
      <measure type='config></measure> // 'type' references a 

// pre-defined element of the VM
      <measure type='kernel'>...</measure> // security-relevant elements 

// of VM. Enforcer knows
      <measure type='initrd'>...</measure>  // VM definition and determines 

// which elements to check
      <measure type='disk' name='dsk1' target='xvda1'>
      </measure>
      <encryption type='disk' target='xvda1'/> // (optional)
      <vnet type='usernet' target='vif-1.0'/>  // (optional)
    </security>
 [...]

</domain>
Figure 15: Example: Configuration/Policy for L4/Fiasco hosted VM

Illustration 1: Classic virtualized graphics driver

Figure 16: Virtual Gallium Driver
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The Gallium driver pipeline is split into two halves, one half of which is moved to the 
guest VM. Both pipelines then get reconstructed by adding a lightweight shared 
memory transport module. Formerly, expensive re-implementations were needed by a 
number of commercial and academic projects that perform virtualization by 
forwarding high level APIs such as OpenGL or DirectX [9, 10, 11]. The implementation 
exposes Gallium's core API to the driver domain while maintaining full compatibility to 
Gallium's modularity. This allows to snap-replace graphics drivers on the host or 
graphics APIs on the guest without the need for re-implementations. 

The guest OS' driver pipe holds the majority of (unmodified) code for API translation, 
that is, the Gallium state-tracker. It was extended by a backend that forwards the 
Gallium commands. On the host side a compositor application was introduced that 
runs on top of a lightweight Gallium driver head.
A RPC style shared memory buffer connects both pipes. Gallium API calls coming from 
the API translator in the guest OS get redirected to the compositor who executes them 
on behalf of the guest. Management of graphics buffers is done with the help of a 
kernel module that allows unprivileged guests to allocate graphics memory.
A second shared memory channel is used for synchronization between 2D 
(framebuffer) and 3D (OpenGL) client programs. It connects a simple X server 
extension in the guest environment with the compositor and allows to transparently 
run unmodified client applications. The compositor offers fullscreen switching between 
it's clients framebuffers and redirects input events to the currently shown client VM.
The compositor performs filtering on keyboard and mouse events. Special keys or 
buttons can be hidden from the client OS and used for assigning actions on the 
hypervisor level. The implementation includes a support API and a prototype 
application for handling such special events. This application runs in a separate 
domain that gets registered from the SUI during it's boot. The application receives a 
signal whenever the user tries to switch between guest domains. It can enforce 
arbitrary security policies before triggering the actual switch.
The design allows to remove large quantities of code related to the graphics pipeline 
from the Trusted Computing Base (currently in Domain 0). For a scenario that includes 
accelerated graphics we are able to reduce the code base by more than 90%  – 
including the X window system that was previously needed to host traditional drivers 
under Linux.
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Figure 17: Gallium driver pipe: Non-Virtual compared to Virtual SUI
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The design is highly portabe. While the reference implementation was done on Xen, 
the design is hypervisor independent and easily portable to different VMMs by 
reimplementing the shared memory transport. Gallium hardware drivers can be 
replaced without any modifications in the code of the replacement module. Due to the 
current immaturity of Gallium hardware drivers we only include a software rasterizing 
driver. Drivers for Intel, ATI, and Nvidia GPUs are currently being developed. API 
translators (state trackers) can be interchanged easily too. Support for DirectX based 
clients will be possible as soon as such state trackers become available [8].
The implementation currently supports 3D acceleration for Linux guest VMs only. 
Microsoft Windows support includes 2D framebuffers only. By porting the driver 
backend and the shared memory transport mechanisms such guests could support 
accelerated OpenGL too. For acceleration of Windows native graphics API the guest 
driver has to be extended by a state trackers for DirectX (v9 for Windows XP, v10 for 
Windows Vista, and v11 for Windows 7). Such state trackers are currently been 
developed by parties outside of OpenTC.
The implementation realizes the first software based solution for a 3d accelerated 
(para)virtual graphics card. The MESA development team currently focuses on gallium 
as it's new acceleration architecture. We expect that vGallium will get used widely in 
future virtualization projects.

4.2.3 Results
The second proof-of concept prototype 'Corporate Computing at Home' was extended 
and ported to an up-to-date distribution of OpenSUSE. By this time, OpenTC made full 
use of the automated SuSE build and packaging process. The result was released as 
Open Source distribution under GPLv2. It includes all components necessary to run the 
use case, including infrastructure and server elements to generate certificates and 
perform remote attestation. 
An important strand of the work continued on selected aspects of virtualized clients. 
Additional user studies were performed, on the design of a suitable graphical user 
interface in particular, which were soon extended into investigations on a complete 
redesign of the whole graphics subsystem. The result is a hypervisor-agnostic 
architecture for high performance graphics virtualization. A prototype was developed 
for for client OpenTC platforms running Xen that proved a big reduction of the amount 
of graphics related trusted code base. 
Regarding low level platform components, the Linux port of the Infineon TSS to Linux 
and a new releases of the Java TSS were finalized, and key management components 
were redesigned and equipped with configuration templates for ssh, IPSec, and 
Racoon. PKCS#11 PKI management components were extended with simplified 
communication protocols for multiple languages, and prototypes for Trusted Channels 
were developed. The implementation of the virtual network switch was extended to 
include IPSec as transport protocol, and the virtual TPM architecture was integrated 
with the hypervisor Basic Security Management Interface (BMSI) and the integrity 
management component (HIM). 
The bulk of the technical work was driven by datacenter scenarios, which drove the 
work on the last proof-of-concept prototype. It covers a large subset of the OpenTC 
framework, including policy management security enforcement mechanisms of the 
OpenTC platform. Several additional building blocks were designed and integrated as 
support for Trusted Virtual Domains: TVD master and proxy, the virtual network 
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switch, components for storage, machine life cycle management, and extended public 
key infrastructure. 
The partners also developed a lightweight management infrastructure based on the 
cross-hypervisor management interface of libVirt. A CIM provider for TPM was 
prototyped based on a DMTF draft analysis. Research on new directions and 
foundations of Trusted Computing led to a number of high-profile publications. 
OpenTC took care to base its final release on the most recent release of OpenSUSE. 
This required the huge effort of two porting, integration and packaging cycles. Our 
final results will be released as a dedicated distribution OpenSUSE 11.1. The 
integration of the OpenTC build process with user friendly graphical interfaces 
provided by SuSE Studio promises to greatly simplify the production of distributions 
and purpose build execution environments in the future. The exploitation plan was 
finalized and started to put into practice. First successes include the adoption of 
OpenTC results in products and product roadmaps of several industrial OpenTC 
partners. OpenTC partners continued their work on standardizing in the context of the 
Java Community Process and the Open Mobile Terminal Platform Group.
Confidence in the underlying hypervisors is empirically supported by the 
comprehensive black box testing and static code analysis performed on these 
components. No vulnerabilities that would compromise Xen isolation mechanisms for 
execution domains have been identified. Static analysis also indicated a high quality of 
the L4 and OSLO boot loader implementations. Further targets were the new, Gallium 
based graphics virtualization implementation and the TPM driver for TrouSerS. 
Important community benefit was achieved by publishing the ACSL specification 
language, releasing and supporting the FRAMA-C analysis toolkit for public use, and by 
disseminating the extended Open Source Testing Methodology.
All application-related sub-work packages delivered their implementations. The use 
cases and proof-of-concept span the fields of digital rights management, messaging 
infrastructure, electronic signatures, encrypted file service and multi-factor 
authentication. Work package 06 also provided security model requirements and 
refinements for a minimal API for the security services. 
Microkernel-based OS components and the TPM emulator were ported to the Infineon 
S-GOLD3 development platform for mobile devices. For this context a detailed security 
analysis was performed. Based on the analysis of requirements a Secure Wallet design 
and implementation, a comprehensive set of mechanisms necessary to implement 
trusted applications for mobile platforms was determined. 
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5 Achievements
This chapter summarizes the main technical achievements of the project as listed in 
the WP01 Final Report [1]. For the comprehensive list of OpenTC's achievements, the 
reader should consult the three OpenTC's periodic activity reports  [2,3,4].

5.1 Technical Achievements
● Production of three proof-of-concept prototypes developed by OpenTC, 

namely:
● Secure browser environment for conducting electronic transactions, 
● Virtualized PC architecture with multiple isolated compartments usable 

for corporate data as well as for private and other data
● Managed virtualized data center scenario. 

● Graphical user interface based on data gathered from user and expert 
surveys. The solution allows simplified manipulation of compartments.

● Co-development of Common Criteria V3.1 EAL 5 Protection Profile “High 
Assurance Security Kernel”, together with Sirrix AG, atsec information security 
and the German Federal Office for Information Security (BSI). The PP has since 
been certified.

● Production and publication of IP study on Trusted Computing identifying 
more than 500 related patents 

● CPU abstraction and prototyping for dynamic trusted boot. The work 
was prepared for dissemination as a basis for the creation of an industry 
standard covering the topic in the Trusted Computing Group.

● Trusted Software Stack for Linux: A ported and thoroughly tested package 
implementing the TSS and a SOAP interface.

● Key Management Adaptation (KMA) service prototype for securing 
configuration and key files of generic applications through the TPM, eCryptFS 
and SMAC 

● TC integrated SSL/TLS, ssh, and IPSec prototypes: DAA-enhanced TLS 
protocol; DAA extensions for OpenSSL engine, common Key Management with 
templates to secure OpenSSH, OpenSSL, ipsectools and PKCS#11.

● Java wrapper modules for C-implemented Trusted Software stacks, exposing 
TSS functionality to Java developers.

● Java implemented TSS and corresponding tool set with Simple Object Access 
Protocol (SOAP) support for TSP-to-TCS communication.

● Standardization of Java-APIs for Trusted Computing as JSR 321, taking 
the role of the specification lead. 

● Dynamic Root of Trust for Measurement (DRTM) implementation: as 
part of our research on chain of trust and new CPU features, WP04 has 
implemented a DRTM module for AMD processors.
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● Basic Management and Security Interface specification and 
implementation: basic security features required by hypervisors to support 
the Trusted Computing model for all types of applications. 

● Disaggregation of Trusted Computing Base:  disaggregated launcher for 
compartments that operates independently of the Xen management domain

● Integrity Management and TPM virtualization: integrity management 
framework which has been integrated with the BMSI implementation and the 
proof-of-concept prototype for virtual TPMs. 

● Network and Storage separation: virtual network switch policing 
compartment access to different virtual networks, overlay file system for static 
and dynamic data 

● Secure Graphics Subsystem: prototype for a high performance and safe 
sharing of the Graphics Processor between different compartments for Xen 

● Hypervisor abstraction: interoperable trust and security components and 
APIs, IPC and and RPC mechanisms 

● Policy management and security enforcement components for the 
OpenTC platform for the VDC proof of concepts

● TVD master and TVD proxy architecture including trusted channel for policy 
distribution and host validation

● Secure virtual networking, storage, and machine life cycle management for 
L4 and Xen.

● Extended and improved public key infrastructure for Trusted Computing
● Lightweight management infrastructure for Trusted Virtual Domains, 

covering aspects of network and storage, general resources, TVD policy and 
configuration, VM management, and management endpoints for administrators

● Research and feasibility studies in multiple areas of distributed trusted 
platforms: new approaches for trusted computing, security enforcement and 
audits in virtual environments, and intrusion defense for virtual systems. 

● Proof of concepts for particular aspects (e.g. auditing and intrusion response)
● DRM use example and prototype with core for license and key storage, 

management, of content creation, exchange, export, and rendering,  secure 
media player supporting multiple media formats, license translation, and 
support for fair use, and DRM backend to be hosted by virtual datacenter. 

● Messaging system use example and prototype with design based trusted 
virtualization, employing isolation and hardware based generation as well as 
protection of keys as core security features, tailored data sealing module to the 
need of the system,  TPM aware administrator application and signed logging.

● Electronic signature application use example and prototype with 
enhanced protection against mimicry and keystroke logging, strong isolation of 
critical software components, integrated TPM based evidence in standard 
electronic signatures, and integrated PKCS#11 hardware and software 
components for the generation of legally valid electronic signatures
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● Policy driven encrypted file service use example and prototype using 
multiple compartments to shield security critical components and a recovery 
agent to support backup and recovery of files.

● Multifactor authentication system prototype to use any service that 
supports the Pluggable Authentication Modules (PAM) technology, covering 
common cases with multiple servers and clients with registration and protocol 
components.

● Successful tests and corrected Linux version of Infineon TSS.
● Analysis of Xen 3.0.3 core and L4/Fiasco with Coverity Prevent, main Xen 

hypercalls also with Frama-C.
● C++ to C front-end prototype for the static analysis of C++ code.
● Security testing methodology, operational security metrics, and open 

Applied Verification for Integrity and Trust (AVIT) methodology, two security and 
trust methodologies, one of them widely published.

● New, publicly available static analysis tool (Frama-C) 
● Security analysis of several use cases that are relevant for mobile scenarios, 
● Development and analysis of the Secure Wallet use case as an example 

scenario, 
● Port of basic microkernel-based operating system to mobile 

development platforms, including components from other OpenTC work 
packages (in particular: the L4 microkernel, L4 environment, L4Linux),

● Port of TPM emulator to use security features of the mobile hardware.
● Infrastructure for configuration management, package building, and bug 

tracking private to the project
● Packaging and distribution of prototypes (PET and CC@H prototype 

finalized, Virtual Datacenter prototype as part of dedicated OpenSuSE 11.1 
distribution in pre-final stage)

● Dissemination of all prototypes,  along with documentation and guidance, 
mirrored worldwide

● All software components necessary to operate TPMs under Linux 
included and integrated in OpenSuSE main distribution

5.2 Standardization
Through its partners, OpenTC maintained and extended its relationship with 
standardization bodies (i.e. 3GPP, OMA, MPEG, JAVA Community and the TCG) via 
direct and continuous interactions. TCG members that are also project partners (i.e. 
HP, IBM, IFX, AMD) regularly input project results to standardization bodies' 
workgroups and stayed in touch with the latest developments. Work on the TSS 
directly influenced the TCG TSS work group and led to the implementation of the new 
TSS API specification with the Infineon TSS Stack that was released by the OpenTC 
project. Work a Java API for Trusted Computing resulted in the successful approval of 
the JSR 321 (Java Standardisation Request) which since released its first draft for 
public review. This activity will continue under the leadership of OpenTC partner IAIK. 
LDV has continued its contribution to the Open Release MAF (MPEG Application 
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Format) to the MPEG-A Standard and submitted reference implementations for the 
Open Access Application Format and the REL OAC profile (license interpreter and 
license creator). POL contributed TCG results to the field of signing applications and 
worked within the corresponding national body in Italy (UNI/UNINFO). Infineon and 
Comneon contributed actively to the Open Mobile Association (OMA) standards, 
provided feedback on implementation experience and results from the Open_TC 
project, and contributed to the review of the OMTP Advanced Trusted Environment 
(TR1) specification. 

5.3 Exploitation
HP Labs, IBM Labs, and SuSE have each introduced results of OpenTC to product 
divisions of their companies and raised considerable interest. An analysis of the 
current market for trusted computing and virtualization technology was combined with 
the final version of the exploitation plan in November 2008. OpenTC collaborated in 
the production of CC EAL5 Protection Profile for High Assurance Security Kernel (HASK-
PP). The IPR study initiated by OpenTC was made available to the Trusted Computing 
in support of the ISO standardization of the TCG specifications. Many of the 
standardization efforts mentioned above will be continued by the individual partners 
beyond the conclusion of the project. 
Considerations for dissemination and exploitation of OpenTC's results have directly 
influenced the following aspects

● Final OpenTC distribution: The work package facilitated the decision to base the 
OpenTC distribution on the latest official OpenSuSE distribution available to the 
project. While considerable effort had to be spent on porting the architecture 
recent 11.1 version, this was deemed to maximize the chances of adopting the 
project result results. 

● Future maintainability of OpenTC distribution: In cooperation with WP09, the 
work package drove the difficult decision to base the integration and packaging 
of all OpenTC components on the industry grade OpenSuSE build and release 
system. As a result, the complete OpenTC distribution – as well as streamlined 
distributions and compartments for dedicated purposes – can now be produced 
from scratch in an automated process that covers patching, compilation and 
imaging. 

During M36 to M42, OpenTC partners have started to execute on the exploitation plan. 
Our main focus is currently directed at a dedicated OpenTC distribution based on 
OpenSuSE based on the most recent stable OpenSuSE distribution available to the 
project. Further efforts concern the Xen hypervisor, where features of service 
decomposition and results of OpenTC's work on secure graphical interfaces will be 
included in future releases. Core concepts of Trusted Virtualized Clients as developed 
by the project were communicated to HP product divisions and are subject to a 
product study. IBM plans to include concepts from OpenTC in future architectures for 
managing virtualized nodes and networks. Future versions of SuSE's enterprise server 
as well as the corresponding desktop product will come with enhanced TC support with 
additional software packages based on OpenTC components. This includes the vNET 
VPN routing package, the libvirt package for TVD instrumentation of Xen virtual 
domains, and TPM support for x509 frameworks with the openssl package set. Based 
on OpenTC's experiences with building dedicated distributions and virtual images, 
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SuSE is in the process of releasing an automated build service with simplified interface 
to end users.

5.4 Outlook
Throughout its duration, OpenTC has informed the experts as well as the non-expert 
public about the challenges addressed and research achieved in research on trusted 
computing, platforms, and infrastructure. OpenTC has been well recognized both on 
the European as well as the international scale and has fostered numerous scientific 
exchanges between scientists and researchers in Europe, Asia and the US. OpenTC 
was instrumental to create a thriving research ecosystem on trust technology in IT 
that will continue to thrive beyond the duration of the project. The decision to work on 
the basis of Open Source Software has greatly contributed to this success. 
The validation efforts of OpenTC have helped to establish a baseline of trust in the 
isolation capabilities of the underlying hypervisor technology and a number of critical 
core components. Still, it was only possible to cover a small fraction of components 
that constitute a trustworthy system. Much remains to be done in this area, for 
example, the development and application of validation methodologies and metrics, 
the establishment of coding practices that enable static code analysis, of freely 
accessible software production chains that validate, build, test and deploy software 
packages in a trusted and transparent work flow. A more general goal is the creation 
of trustworthy (meta)data repositories on characteristics of binaries and their 
corresponding implementation. We learned that the almost complete lack of this type 
of information is one of the main inhibitors for applying trusted computing technology 
and would consider this line of research valuable for future projects.
A more fundamental question concerns the general tendency of Trusted Computing of 
moving ever more functionality into firmware and hardware. This is motivated by  the 
aim of providing an additional source of credentials whose trustworthiness does not 
rely on those of the human users. If we allow platform owners to deliberately change 
the values of integrity metrics or to tamper with the process of digitally signing them, 
the scheme is broken. Allow to inspect the private keys to sign these values breaks 
the scheme as well, because the key could be replicated and used to sign arbitrary 
metrics in arbitrary environments. We may therefore accept that certain core 
functions and data must be protected from interference and inspection. 
Still, it is far from clear whether the general move towards hardware based functions 
can be equated with improved trust properties. In line with OpenTC's general 
approach, it could instead be argued that better protection at the expense of 
transparency may ultimately lead to less rather than more trust. It seems worthwhile 
to investigate whether this dilemma can be addressed by a minimal core of protected 
functions and data in combination with tamper-resistant, programmable hardware, 
whose programming would then lend itself to inspection and validation.
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