b
»
¥

*

B

Information Society

Technologies

D05.4 Design of the Cross-Domain Security

Services

(M31) May 2008

Project number
Project acronym
Project title
Deliverable Type

Reference number

IST-027635

Open_TC

Open Trusted Computing
Report

IST-027635 /D01.2/V02 Final
D05.4 Design of the Cross-Domain Security

RS Services

WPs contributing WPO5

Due date May 2008 (M31)
Actual submission date May 26, 2008

Responsible Organisation

IBM (Matthias Schunter)
CUCL, HP, IBM, RUB, Polito

Authors
Abstract This report describes the final design of the
OpenTC security services. The design will be
implemented for the 2008 Demonstrator of a
“Virtual Data Center”.
OpenTC, Virtualization, Trusted Computing,
Keywords Security Services
Dissemination level Public
Revision V02 Final
Start date of the <t
Instrument IP project 1°* November 2005
Thematic Priority |IST Duration 42 months

D05.4 Design of the Cross-Domain Security Services

Tk
=

If you need further information, please visit our website www.opentc.net or contact
the coordinator:

Technikon Forschungs-und Planungsgesellschaft mbH
Burgplatz 3a, 9500 Villach, AUSTRIA

Tel.+43 4242 23355 -0

Fax. +43 4242 23355 -77

Email coordination@opentc.net

The information in this document is provided “as is”, and no guarantee
or warranty is given that the information is fit for any particular purpose.
The user thereof uses the information at its sole risk and liability.

Design of the Cross-Domain Security Services

OpenTC Workpackage's

OpenTCDeliverable D05.4
V02 — Final Revision. 6505 (OpenTC Public (PU))
2008/05/26

ABSTRACT

This report describes the final design of the OpenTC secseityices. This design will
be implemented for the 2008 Demonstrator of a “Virtual Dagmter”. It is based on
the research documented in Deliverable D05.1 "Basic Sgc8grvices” and D05.2
“Security Services Proof of Concept”.

The goal of this deliverable is to describe and explain thtitbel concepts and
design of our security services. These security servicegmg®the security policies
for our virtual machine platform and enforce them in colledimn with the underlying
Xen or L4 hypervisors.

ACKNOWLEDGEMENTS

The following people were the main contributors to this megalphabetically by or-
ganisation): Theodore Hong, Eric John, Derek Murray (CU@e&rdar Cabuk, David
Plaquin (HP); Bernhard Jansen, HariGovind V. RamasamytHiéast Schunter (IBM);
Yacine Gasmi (RUB), Ahmad-Reza Sadeghi (RUB), Patrick BtgRUB), Martin
Unger (RUB); Gianluca Ramunno (Polito), Davide Vernizzlf®). We would like to
thank our reviewer Peter Lipp from IAIK Graz.

Furthermore, we would like to thank the other members of therd C project for
helpful discussions and valuable contributions to theaegethat is documented in
this report.

Contents

5.2 RequirementAnalv$is. i 50
5.3 BasicConcebt oo v e 51

4 OpenTC D05.4 — Design of the Cross-Domain Security Services

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Chapter 1

Introduction and Outline

1.1 Introduction

Hardware virtualization is enjoying a resurgence of irgefaeled in part by its cost-
saving potential. By allowing multiple virtual machinestie hosted on a single phys-
ical server, virtualization helps improve server utilivat reduce management and
power costs, and control the problem of server sprawl.

A prominent example in this context is data centers. iffi@structure provider
who owns, runs, and manages the data center, can transfesghsavings to its cus-
tomers orutsourcing companiesvhose virtual infrastructures are hosted on the data
center’s physical resources. A large number of the compaha outsource their op-
erations are small and medium businesses or SMBs, whictotafford the costs of a
dedicated data center in which all the data center’s ressuae used to host a single
company’s IT infrastructure. Hence, the IT infrastructbeéonging to multiple SMBs
may be hosted inside the same data center facility. Today ivsuch “shared” data
centers, each run on distinct physical resources and theceresource sharing among
various customers. In this so-callpllysical cagemodel, the customers are physically
isolated from each other in the same data center.

Limited trust in the security of virtual datacenters is orggon reason for customers
not sharing physical resources. Since management is ygpeformed manually, ad-
ministrative errors are commonplace. While this may leaddan-times in virtual
datacenters used by a single customer, it can lead to infmml@akages to competi-
tors if the datacenter is shared. Furthermore, multiplewoizations will only allow
sharing of physical resources if they can trust that secumitidents cannot spread
across the isolation boundary separating two customers.

Security Objectives Our main security objective is to provide isolation amonfy di
ferent domains that is comparﬂmith the isolation obtained by providing one infras-
tructure for each customer. In particular, we require asgcarchitecture that protects
those system components that provide the required isolatiallow to verifiably rea-
son about their trustworthiness of and also of any peer @ntifiocal or remote) with
a domain, i.e., whether they conforms to the underlying scpolicy.

We achieve this by grouping VMs dispersed across multiplgsiglal resources
into avirtual zonein which customer-specified security requirements areraatically

INote that unlike physical isolation, we do not solve the feobof covert channels.

6 OpenTC D05.4 — Design of the Cross-Domain Security Services

enforced. Even if VMs are migrated (say, for load-balangigposes) the logical
topology reflected by the virtual domain should remain umgjeal. We deploy Trusted
Computing (TC) functionality to determine the trustwort&ss (assure the integrity) of
the policy enforcement components.

Such a model would provide better flexibility, adaptabjlitpst savings than to-
day’s physical cages model while still providing the maiowg#y guarantees required
for applications such as datacenters.

.
NI
Jorroni ||

— — —

/ ‘ Security Services ‘

// ‘ Hypervisor ‘

TVD1 (‘ Hardware Platform ‘
Master

\\ __________ |

v | vm, (v, | v, | |

Cpont |~ o

‘ Security Services ‘

‘ Hypervisor ‘

‘ Hardware Platform ‘

Figure 1.1: TVD Architecture: High-Level Overview.

Contribution In this deliverable, we provide a blueprint for realizingpgical cages

model, in particular for virtualized data centers, basedaatoncept called Trusted
Virtual Domains or TVDs|[[11]. Based on previous work, we désza security man-

agement framework that helps to realize the abstraction/@isTby guaranteeing reli-
able isolation and flow control between domain boundarias. f@amework employs

networking and storage virtualization technologies ad a®[Trusted Computing for
policy verification. Our main contributions are (1) cominigithese technologies to
realize TVDs and (2) orchestrating them through a managefreenework that auto-

matically enforces isolation among different zones. Irtipalar, our solution aims at
automating the verification, instantiation and deploynurithe appropriate security
mechanisms and virtualization technologies based on art sgrurity model, which

specifies the required level of isolation and permittedrimiation flows.

1.2 Outline of this Report

We first survey background and related work in Chalpter 2. Tisetéichnical part of
this report describes the integrity and assurance managerhthe OpenTC Security
Services. This has two aspects: In Secfibn 3 we describe himgrity statements
about virtual machines can be made and how data can be bouhe tategrity of a

machine. We also describe how to protect the privacy of ussrgy our system.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 1. INTRODUCTION AND OUTLINE 7

In Sectior# we extend these results to cover hierarchi¢agiity management,
i.e., the integrity protection of packages of multiple wvat machines and the related
components.

The second technical part of this report covers secure @isn@haptdr]s describes
how to establish a secure channel while verifying the iritegf the peer. This allows
users to not only guarantee the integrity of a given machinnalso to securely connect
to the machine that has been validated.

In Chapter[6 we conclude this report and point out selected gpoblems.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Chapter 2

Related Work

Virtualization and Trusted Computing have gained promaeeim the past ten years
as commercial interests have led to consolidating multipteial machines on a sin-
gle physical host. Virtualization enables simple conslimh and isolation while
Trusted Computing promises increased security guaranteethis section, we in-
troduce Trusted Computing technology in Seclion 2.1 antdadization in Sectioh 2]2.
Furthermore, secure networking and other concepts applibds report are described.

2.1 Trusted Computing

Trusted Computing technology aims to provide a cryptogi@ghbarantee of the in-
tegrity of a computing platform. Arbaugdt al. developed AEGIS]7], the architecture
on which most subsequent Trusted Computing systems are.bA&GIS is respon-
sible for introducing two fundamental concepts: the usergpwgraphic hashes (in-
tegrity measurements) of platform code to demonstratgiityeand thechain of trust

A piece of code has integrity if it has not been changed in authorized manner
during a defined period of time. Any change, however smathéaode would resultin
a complete change in the hash value: the hash is thereforeseaneans of represent-
ing the code. The integrity of an entire platform can be cagutby starting the boot
process with aore root of trust for measurement (CRTMyhich might be a BIOS
boot block, for example. The CRTM loads the next componenhéboot process,
measures (hashes) it, and stores that measurement in & $scation. That compo-
nent then carries out whatever processing is necessaryebefiding and measuring
the next component, and chaining the measurement to theesegu This process re-
peats until all trusted components are loaded. The integfithe whole platform can
then be proved by induction over the log of integrity measmeets.

AEGIS inspired the most common Trusted Computing architectwhich is de-
fined by the Trusted Computing Group_[74]. In this architeetievery computer
contains a secure co-processor, known as a Trusted Plaifladiule (TPM), which
enables the enforcement of security policies by contrgliiccess to cryptographic
material and primitives. It also provides secure storagkerform of Platform Config-
uration Registers (PCRs), which may only be resetxiended Extension is used to
represent an entire chain of trust in a single register, andigcuss this further in Sec-
tion[4.3. A secure boot-loader, such as OSLQ [38], is regltimeensure that the initial
state of the TPM reflects the first component that is loadedr&dfter, all subsequent

CHAPTER 2. RELATED WORK 9

platform components, including the operating system Kexne device drivers, can be
securely loaded by the preceding component.

The TPM features we leverage are integrity measuremeningeand attestation.
Measurementf a component involves computing the SHA-1 hash of the icade
of that component. The sequence of measured values ard si@eeasurement lqg
external to the TPMSealingis a TPM operation that is used to ensure that a certain
data item is accessible only under platform configurati@ilected by PCR values.
Theunsealingoperation will reveal the data item only if the PCR valuedhattime of
the operation match the PCR value specified at the time ofhged\ttestationrefers
to the challenge-response style cryptographic protoaoafeemote verifier to query
the platform measurement values recorded and for the phatfo reliably report the
requested values. The verifier first sends a challenge tolétfomn. The platform
invokes theTPM_Quote command with the challenge as a parameter. The invocation
also carries an indication of which PCRs are of interest. TRA® returns a signed
guotecontaining the challenge and the values of the specified PCRs TPM signs
using the Attestation Identity Key (AIK), whose public kesydertified by a third party
that the verifier trusts. The platform then replies to thefsrwith the signed quote
along with log information that is necessary to reconstitueiplatform’s configuration.
Based on the reply, the verifier can decide whether the phatif®in an acceptable state.

A further consideration is the Trusted Computing Base (T.AOBis term is used
inconsistently in the literature, and we prefer the defamitirom Hohmuthet al, who
refer to “the set of components on which a subsystem S de@stheT CB of S’ [34]
Therefore a single platform could contain multiple TCBspeleding on the set of ap-
plications that runs on it. In this work, we refer to thiatform TCBas the set of
components on which all other platform components depamtitteeapplication TCB
as the set of components on which a particular applicatigenl@s. This distinction
can be illustrated by considering the following scenariowéb browser depends on
HTML rendering for correct execution: therefore the remuigis in the application
TCB of the browser. However (assuming a sensible implentienfa the rendering
could not compromise the entire platform: therefore it isinadhe platform TCB.

2.2 Machine Virtualization

Virtualization makes it possible to partition the resogrod a computer platform —
such as memory, CPU, storage, and network connections —gaseseralirtual ma-
chines (VMs)which provide an interface that resembles physical harewa virtual
machine monitor (VMM)uns beneath the VMs and is responsible for securely (and
fairly) multiplexing access to the physical resources.ddiion, to preserve isolation
between the VMs, the VMM executes privileged instructionsbehalf of the guest
VMs. In our work, we consider an architecture whereby the VIi4Mhe only code
that runs at the highest privilege level; alternative apphes place the VMM inside a
host operating system kernel[%8) 70]. In particular, westder the Xen VMM [20].
VMMs are increasingly used in the development of secure adimg systemd [15,
67,[17]. The typical argument for using a VMM is that the amimfrcode is relatively
small by comparison to a full operating system: the Xen VMMngoises approxi-
mately 100, 000 lines of code, while a recent version of the Linux kernel cosgs
approximately ove6 million lines of code. The compactness of a VMM therefore
makes it more trustworthy than a monolithic kernel. It cagréfiore be argued that it is
feasible to include a VMM inside a minimal TCB. Note that sétyflawswithina VM

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

10 OpenTC D05.4 — Design of the Cross-Domain Security Services

are not solved by a standard VMM (although specialized VM84gh as SecVisor, do
address this problem [67]). However, the isolation prdpsrdf a VMM ensure that
the compromise of one VM cannot affect another VM. Therefairtualization can be
used to host applications from mutually distrusting orgations on the same physical
machine, or to provide a sand-box for executing untrustele co

Trusted virtualization extends the concepts from Trustech@uting, such as chains
of trust, into virtual machines. These can be used to attesttate of a VM to a third
party [27], or to provide the illusion of a physical TPM to dipptions running within
a VM [9].

To provide context for our Xen-based prototype, we fanitiathe reader with the
Xen VM architecture, which is shown in Figure B.1. In Xenakerunning instances
of VMs are calleddomains A special domain, called DomO, is the first domain that
is created. Normally, this domain controls all other dorsatalled user domains or
DomUs. For a given physical device, the native device divgrart of at most one
VM. If the device is to be shared with other VMs, then the VMwihe native device
driver makes the device available throudgvice channelsnplemented using shared
memory. For that purpose, the VM with the native device drpp@vides aback-end
driver, and any VM that wants to share the device exports a virtuatdelriver called
the front-end driverto the back-end driver. Every front-end virtual device abe
connected to a corresponding back-end virtual device; ey does the front-end de-
vice become active. The mapping is many-to-one, i.e., mamtfend virtual devices,
one from each user domain, may be mapped to a single backirtual device.

2.3 Trusted Virtual Domains

A TVD is represented by a set of distributed virtual procegslements (VPE) (e.g.,
virtual machines) and a communication medium intercoring¢he VPEs, and pro-
vides a policy and containment boundary around those VPEB&s\Wvithin each TVD
can usually communicate freely and securely with each othethe same time, they
are sufficiently isolated from outside VPES, including tadglonging to other TVDs.
Here, isolation loosely refers to the requirement that hatiest VPE in one TVD can-
not send messages to a dishonest VPE in another TVD, unkegstén-TVD policies
explicitly allow such an information flow.

Each TVD has an associatedrastructurewhose purpose is to provide a unified
level of security to member VPES, while restricting the iattion with VPESs outside
the TVD to pre-specified, well-defined means only. Unifiedusig within a domain
is obtained by defining and enforcimyembership requirementlat the VPEs have
to satisfy before being admitted to the TVD and for retainiing membership. Each
TVD defines rules regarding in-bound and out-bound netweffi¢. Their purpose is
to restrict communication with the outside world.

The conceptof TVD, in the form as considered in this papes,wegioduced in[111].
Later, a secure network virtualization framework was psggbin [] aiming to realize
the abstraction of TVDs iri.[11]. The focus [] is a securityaanced network virtual-
ization, which (1) allows groups of related VMs running opaate physical machines
to be connected together as though they were on their owmatepeetwork fabric, and
(2) enforces cross-group security requirements such camtfadity, integrity, and flow
control. However, the work in [] focuses solely on the seaueawvork virtualization
aspects rather than integrating and exploiting of trustedputing functionality.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 2. RELATED WORK 11

2.4 Property-Based Attestation

Integrity verification of applications and their underlgifrusted Computing Base
(TCB) helps enforcing security policies in a distributedtgyn. The TCG solution for
remote integrity verification are mechanisms called rembiriary attestationremote
binary binding andbinary sealing Loosely speaking, binary attestation and binary
binding are based on a measurement of the chain of executlduging a crypto-
graphic digest. This fixes and reveals the exact binarieptdtéorm, which is privacy
invasive and limits scalability. A more general and flexiblgension to the binary at-
testation isproperty-based attestatidie0,(56,[41]: attestation should only determine
whether a platform configuration or an application has arddgproperty. Property-
based attestation/binding should determine whether tigettanachine to be attested
fulfills certain requirements (e.qg., provides certain asamntrol methods). This avoids
revealing the concrete configuration of software and hardwamponents. For exam-
ple, it would not matter whether Web browséior B is used, as long as both have the
same properties.

Some proposals in the literature consider the protectiahpaave the integrity of
computing platforms in the context of secure and authetaiicéor trusted) boot (see,
e.g., [1], [21], [65], [68], [83]). A high-level protocol foproperty-based attestation
is presented in_[56]. The solution is based on property feceates that are used by
a verification proxy to translate binary attestations intoperty attestations. 1 [60]
the authors propose and discusses several protocols am@dnigms that differ in their
trust models, efficiency, and the functionality Aofferedthg trusted components. In
particular, [60] discusses how the TSS, the TPM library pesa by the TCG, can
provide a property-based attestation protocol based oexiséng TC hardware with-
out a need to change the underlying trust model. Anothereefamt of this idea is
proposed in[[411]. Moreover, based on ideas|ofl [60],) [14] ps®s a cryptographic
zero-knowledge protocol for anonymous property-basedttion.

In [32] the authors propossemantic remote attestatiamsing language-based
trusted virtual machines (VM) to remotely attest high-lgmeogram properties. The
general idea is to use a trusted virtual machine (Trustedifstf) verifies the security
policy of the machine that runs within the VM.

In [45], [47] and [46] the authors propose a software arciites based on Linux
providing attestation and binding. The architecture bistugrt-lifetime data (e.g., ap-
plication data) to long-lifetime data (e.g., the Linux kebnand allows access to that
data only if the system is compatible to a security policyified by a security admin-
istrator.

2.5 Trusted Channels

The standard approach for creating secure channels ovéntdraet is to use secu-
rity protocols such as Transport Layer Security (TLS) [18]imternet Protocol Se-
curity (IPSec)[[39], which aim at assuring confidentialitytegrity, and freshness of
the transmitted data as well as authenticity of the involeedpoints. However, se-
cure channels do not provide any guarantees about theitgte§the communication
endpoints, which can be compromised by viruses and Troparsed on security archi-
tectures that deploy Trusted Computing functionality, oae extend these protocols
with integrity reporting mechanisms as proposed.in [28lfercase of TLS.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Chapter 3

Policy Enforcement and
Compliance Proofs for Xen
Virtual Machines

Bernhard Jansen, HariGovind V. Ramasamy, Matthias Sch(lBtel)

3.1 Introduction

Hardware virtualization is enjoying a resurgence of intefaeled in part by its cost-
saving potential in data centers. By allowing multiple wak machines to be hosted
on a single physical server, virtualization helps improsever utilization, reduce man-
agement and power costs, and control the problem of servawkp

We are interested in the security management of virtual mashi.e., the pro-
tection, enforcement, and verification of the security afudl machines. Security
management is a non-trivial problem even in traditional-mstualized environments.
Security management of virtual machines (VMs) is even momgplicated because the
virtual machines hosted on a given physical server may pdtwdifferent virtual orga-
nizations, and as a result, may have differing securityirequents. Protecting a VM
against security attacks may be complicated by inadeqgsalation of the VM from
other VMs hosted on the same server. Verifying the secufity\dM may be compli-
cated by confidentiality requirements, which may dictatd the information needed
for verification of a VM’s configuration should not divulgerdiguration information
of other co-hosted VMs.

We address two main problems relating to security managgrparticularly in-
tegrity management, of VMs: (1) protecting the securityigiet of a VM against
modification throughout the VM's life cycle, and (2) verifig that a VM is compliant
with specified security requirements. We describe a fornr@dehthat generalizes in-
tegrity management mechanisms based on the Trusted Rtdfodule (TPM) [78] to
cover VMs (and their associated virtual devices) and a wialege of security policies
(such as isolation policies for secure device virtual@atnd migration constraints for
VMs). On TPM-equipped platforms, system compliance carvaduated by checking
TPM register values. Our model allows finer-grained conmgéchecks by handling
policies that can be expressed as predicates on systemttaseierifying compliance
involves showing that the system integrity state, as refteby secure write-only logs,

12

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 13

satisfies certain conditions. We build on previous work dyeos$ [27] 311} 63, 65./9]
who have used the Trusted Platform Module (TPM) [78] to prbtiee integrity of the
core virtual machine monitor (VMM) and to reliably isolatéAé. Based on the formal
model, we describe an integrity architecture called PEVi¢tvistands for protection,
enforcement, and verification) and associated protocdis.architecture incorporates
integrity protection and verification as part of the virimation software itself, and at
the same time enhances its policy enforcement capabilités describe a prototype
realization of our architecture using the Xen hypervisrY8e demonstrate the policy
enforcement and compliance checking capabilities of oatgtype through multiple
use cases.

Our generalized integrity management mechanisms are btghsble and flexi-
ble. Extensibilitymeans that it is possible to guarantee compliance even ifviréwal
devices are attached to the VM§&lexibility means that the verifier is able to spec-
ify which aspects of the enforced security policies are tdriest, and obtain only the
information corresponding to those aspects for validadiosystem compliance.

Dom0 DomU 1 DomU 2 DomU 3
Management User User User
of security, Software Software Software
devices, ; o Lo
VMs,and /0| ¢ Guestos | | GuestOS | | GuestOS
‘ VMM Core ‘

‘ Physical Hardware ‘

Figure 3.1: Xen virtual machine architecture

3.2 Formal Integrity Model for Virtual Machines

Figure[3.2 shows our system model for integrity managem@anta high level, the
system consists of VMs and a TCB, and is configured throughipel The TCB peri-
odically logs the integrity state of the rest of the systeiine Tog repository contains a
record of the integrity history of the system, ancgécure write-onlyi.e., log entries,
once written, cannot be modified or removed by any entity enréist of the system.
The log data includes the list of software components, cardiipn parameters, poli-
cies, and any updates to them. The log contents are usefublnating compliance
with those security properties that can be expressed agptes on the contents. The
compliance proof involves showing that correct policied &ealthy policy enforce-
ment mechanisms are in place. The TCB also provides conditielease of secrets,
where the condition is expressed as predicates on the lag hat allows a sensitive
data item and a condition to be stored such that the data g#eetdased only if the log
data satisfies the condition specified.

For flexibility and extensibility, the log data is stored irtrae structure instead
of a monolithic log file. The log tre€ is shown in Figuré_3]3. Each tree node is a
triple containing log data for one system component. To kkepree size manageable,
only those components that have an impact on the systeragrityt or those that are
of interest from an integrity verification point of view arepresented in the log tree.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

14 OpenTC D05.4 — Design of the Cross-Domain Security Services

System
M| v {vm|
policy R)

log conditional
integrity| release
state of secrets sealing or | User or Verifier
attestation | __________ N
request I integrity i
T:CB . < 9 | requirements |
{ log 11 secret 3 response | \predicatell !
! repository | | repository !

Figure 3.2: System model for integrity management

(d, type, log)

N
(id1, type1, logr) (ids, types, logs)
(id11, typeas, lfg/u) (ida1, typean, logar). - (idan, typesn, logan)

(id111, typenn, loginn)
Figure 3.3: Tre¢ of log entries

A triple for a componenk contains an identifieid;,, a component typéypes, and a
vectorlog;, of log values. Sub-components are modeled as children odle.riche tree
can be extended by adding or removing children nodes. Fangbea the addition of a
new virtual device to a VM can be easily reflected in the log trg adding a new node
as a child of the sub-tree that corresponds to the VM.

The integrity requirements of a user or verifier are modeletltp(7)), wherell
is a predicate ang() is a projection function. We introduce the notion gajection
function denoted by (), to model the specific aspects of the system’s integrityestat
that is of interest to a user or verifier. For example, a venfiay be interested only in
a disk’s access control list and not the actual disk contémisen applied on the log
tree, the function returns a subset of the tree nodes andsatsoitthe vector elements
from the log vector of each node. Formally,7) = {iv}, wherel; € logx, and
(idy, typeg,logy) € T.

We now use our formal model to generalize TPM-based integribtection and
verification. We also enhance our model by adding accessatdatthe log contents.

3.2.1 Generalized Sealing to Protect Integrity

A TPM-equipped system caseala data item, i.e., the system can encrypt the data item
and bind it to the system configuration prevalent at the tifhgealing. The system
configuration is reflected by the contents of a specified dudiske TPM’'s PCRs. The
data item may be a key generated by the TPM itself or sometjgéngrated outside the
TPM. Decryption of the data item, calleshsealingis possible only when the system
configuration (reflected by the contents of the same sub$8EBf) is the same as that
at the time of sealing.

We generalize sealing for protecting the integrity of a g#emsdata itemd by mak-
ing d inaccessible to the system (or some component) unlessfiggeicitegrity re-

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 15

guirements are met. We use two operatieas| andunseal, to model the concept of
generalized sealing. Leéf, denote the log tree at timg.. Theseal operation, per-
formed at timet,, takes as input the data itedn a projection functiorp(), a sealing
predicatell, and the public park, of an encryption key. The operation logs()
andll, and encryptg using K, to produce the encrypted outputThus, the contents
of 7, includep() andIl. Theunseal operation, performed at timg, (wheret,, > t),
takes as input and7,,, and outputg iff the conditionII(p(7,,)) holds. In other words,
the private part of the keyk used for decrypting is revealed iff the condition holds.
Here,p() andII are retrieved from the log. A simple sealing predicate may gom-
pare the result of(7,,) with a reference value (e.g(7;)). A more complex predicate
may extract the high-level properties of the system fgdffi,) and compare them with
desired properties (similar to property-based attestd456,/60]).

One can easily see that our generalized sealing conceptsciinespecial case of
TPM sealing. For TPM sealind,, consists of the values in the PCRs; the projection
functionp() specifies the subset of PCRs whose values are of interestfessing the
system’s integrity; the sealing predicdiechecks whether their values at the time of
unsealing are the same as at the time of sealing.

3.2.2 Generalized Attestation to Verify Integrity

A TPM-equipped system can use the TPM to engage in a chalerspense style
cryptographic protocol, callesttestation with a verifier. The protocol allows the ver-
ifier to query and reliably obtain the measurement valueshfersystem stored in the
PCRs of the TPM. Reliable reporting of the measurement gakidue to the signing
of the values by the TPM, which is trusted by the verifier. Bbage these values, the
verifier can assesses the integrity state and the trustiwesth of the system.

We generalize attestation so that the verifier can specifgiwéspects of the sys-
tem’s integrity state are of interest to her. In our modeg #itestation operation
attest() obtains as input a challengean attestation predical& a projection function
p(), and a secret kei(;. The operation outputs a signed messsge; (f(p(7)), c).

Our attestation operation is a generalization of both lyimad property-based at-
testation [[56/_ 60, 32]. For binary attestation, the pre@i¢his simply the identity
function, i.e.,.II(x) = z, and the result of attestation is simply the signature on the
result of the projection function applied on the log tree.MI'Bttestation is a special
case of binary attestation in whic¢h simply consists of the values in the PCRs and
the projection functiomp() specifies a subset of PCRs. For property-based attestation,
the predicatél extracts high-level properties from the result of the pctg@ function
applied on the log tree.

Whereas previous works such as the Integrity Measuremesttitecture (IMA)
of of Saileret al. [65] provide a good way of checking the hash of software txsa
our generalized attestation enables better assessmdm afi-time behavior of the
system. In this respect, our model has goals similar to thbsaldaret al. [32]. How-
ever, unlike Haldaet al. who focus on attesting the behavior of a software appboati
our model has a focus on VMs and virtual devices. For exanapileattestation oper-
ation enables a verifier to check the number and type of VMaingnon the system.
Because of their reliance on the Java virtual machine whiok on top of an operating
system, their TCB includes the operating system. In cohteas TCB includes only
the VMM and underlying system layers, and is much smallen thairs.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

16 OpenTC D05.4 — Design of the Cross-Domain Security Services

Attestation

i Central
i Integrity
Sealing | Manager ¢

Devices
Integrity Manager

Unsealing

‘k Storage
[Integrity Manager

Figure 3.4: Architecture for integrity protection and Vigtion

3.2.3 Access Restriction

The integrity of certain aspects of the system (such as thMyMay be important to
multiple users. Conversely, certain aspects of the systambe confidential to one
or more users, e.g., the state of a particular VM may be vdrdidy by the users of
that VM. Hence, it is important that attestation and sealisgpplied not directly on
the system state, but on appropriate projections of the.statirthermore, if a state
that is relevant for integrity verification contains infoation about multiple users, it
should be possible to prove integrity without revealing élotual state. We formalize
such requirements using two concescess restriction specificatiandprojection
assessment function

Given a set of user§ and a log treel’, an access restriction is specified by a
function r() that assigns a subset 6f to each vector element in each node of the
tree. The subset assigned to a given vector element in a godmis called thaccess
control list (ACL) for that element. Despite the potentially large numifenodes in the
log tree, ACLs can be efficiently implemented by attachind 8@nly to some nodes
and vector elements. ACLs of children nodes may be derivexihh inheritance of
the parent node’s ACL. Scoping rules may be used to apply dntd@ultiple vector
elements of a given node.

A projection assessment function can determine whethevengirojection con-
forms to or violates access restrictions. A projectig) applied by a uset, € U
conforms to the access restriction specificatipnif the output only contains vector
elements in whiclx was contained in the ACL. Any predicdiefor attestation or seal-
ing can be applied on such a projection without violatingaheess restrictions. If the
projection does not conform @), then prior to applying the predicate, aocess filter
is used to hide those parts|of7) thatw is not authorized to see.

3.3 The PEV Integrity Architecture

Figure[3.4 shows the PEV architecture for protecting, emifigy, and verifying the
integrity of VMs and virtual devices. There ixantral integrity manageandcompo-
nent integrity manageithat are associated with individual system componentsasich
storage, VMM, networking, and other devices. Each compbimdegrity manager is
responsible for the part of the log tree corresponding tactimponent. For example,
the storage integrity manager is responsible for maintgittie storage sub-tree of the

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 17

system log tre€ . Hereafter, we refer to the central integrity managethadntegrity
Manager.

The Integrity Manager hasmaster plug-in modulér each log projection func-
tion that needs to be implemented. The module obtains stéteriation about various
aspects of the system that may be of interest to a potentidiever user by invoking
the appropriateomponent plug-in modulesd aggregating their outputs. A compo-
nent plug-in module is part of the component integrity mamamd reveals particular
aspects of the component’s integrity that are relevantferprojection function.

In Figurd 3.4, the various master plug-in modules are a¢tdth the Integrity Man-
ager are shown using different geometrical shapes (ovabsadons, triangles, and
rectangles). For example, the triangular plug-in modul@suees certain aspects of
system storage and the VMM, as indicated by the presencéaofjtrilar component
plug-in modules in the Storage Integrity Manager and VMMegrity Manager. On
the other hand, the hexagonal plug-in module measures entgic aspects of sys-
tem devices. Each plug-in module has a unique identifier.Mapping between each
plug-in identifier and the functionality provided by the msponding plug-in module
is made publicly available (e.g., through a naming service jpublished table).

3.3.1 Sealing/Unsealing Protocol
At the time of sealing, the user provides the following irgut

Data The data item to be encrypted during sealing and to be reydaier only if
certain conditions are met.

Key The sealing key whose public part is used for encrypting tita dt the time of
sealing, and whose private part is revealed only if the Urgesration completes
successfully.

Identifier(s) of Plug-in Module(s) By listing the identifiers of plug-in modules, a user
can choose what aspects of the system’s integrity state & t¢hecked prior to
revealing the private part of the sealing key.

Predicate The predicate specifies user-defined conditions that thermisintegrity
state must satisfy at the time of unsealing in order for theape part of the
sealing key to be revealed.

Our sealing protocol requires the log projection functiqdescribed in Sec-
tion[3.2.1) to be implemented as plug-in modules as part ®ft@B. The key used
for encrypting the sensitive data item is sealed away ag#iesstate of the TCB and
a hash of the user-specified projection functions and gpaliedicates. The Integrity
Manager stores the state of the TCB in PCRs that cannot beaedehe hash in a
resettable PCR (sal’C'R;). This ensures that the TCB is aware of the conditions to
be satisfied before the key can be revealed to the user. Torpeitie unseal operation,
the TCB has to ensure th&C'R; still contains the hash of the user-specified projec-
tion function and sealing predicates. Then, the unseaktiperreveals the key to the
Integrity Manager. The Integrity Manager then invokesglesdicate evaluatomodule
(Figure3.4) to check whether the sealing predicates (at@dlon the output of the log
projection function) are indeed satisfied. If that is thee¢élsen the Integrity Manager
reveals the key to the user.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

18 OpenTC D05.4 — Design of the Cross-Domain Security Services

Figure 3.5: Enforcing access restrictions on system state

The flexibility of our sealing protocol is due to the fact ttabitrarily complex
conditions to reveal the sealed key can be coded as plug-ilul@e The extensibility
arises from the fact that new plug-in modules covering ttiegrity state of newly
added VMs or virtual devices can be easily added to the TCB.

3.3.2 Attestation Protocol

The verifier initiating the attestation protocol providesiaput a challenge (to ensure
freshness) and the identifier(s) of plug-in module(s) thatealevant to evaluating sys-
tem compliance with the verifier’'s integrity requiremenit&e flexibility of our attes-
tation protocol relies on the verifier being able to attest TICB and requires the log
projection functions (described in Sectlon 312.1) to belengented as plug-in modules
as part of the TCB. The extensibility of our attestation poats relies on the ability to
add new plug-in modules for new aspects of the system'siityegjate that the verifier
may be interested in.

3.3.3 ABIlinding Technique For Enforcing Access Restrictias

Figure[3.5 shows a simpl#indingtechnique that usescammitment schente enforce
access restrictions on the log tree. Cryptographic comeritrachemes [30] generally
consist of two phases. The first phase, catechmit phasgeis used to make a party
committo a particular value while hiding that value from anothentydt is only in the
second phase, calledveal phasgthat the value isevealedto the second party. Any
commitment scheme guarantees that (a) the committed vahretbe obtained by the
second party before the reveal phase, and (b) the secondgaartetect whether the
value revealed is indeed the same value that was commitiadte first phase.

For simplicity, we consider blinding at the granularity ofjlitree nodes instead of
at the granularity of log vector elements in the tree nodes, the access restriction
specificationr() assigns a subset @f to each node of the tree. randomtreeR is
bound to the original log tre@& through amulti-bit commitment schente give the
blinded log treeZ . R is a tree that has the same structure as th@tahd whose nodes
are random numbers. Existing commitment schemes such améby Damgard et
al. [18] or those based on one-way hash functions can be osdti$ purpose.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 19

In a TPM-equipped system, logging is done by extending thR$@ith the mea-
surement values. For blinding, it is the nodesZofthat are actually logged. This
means that instead of doing the nornfd&M_extend(n), a TPM_extend(r ® n) is
done, wheren is a node of7, r is a node ofR, and® denotes the commitment
operation used for hiding until the reveal phase.

A projection functiorp() that conforms to the access restrictions can be realized as
follows: when invoked at the request of userp() revealsT and only those nodes in
7 that containu in their respective ACLs. Thug() implements the reveal phase of the
multi-bit commitment scheme and reveals only those nodés thatw is authorized
to access. Due to the guarantees of the commitment scheangystem cannot invent
arbitrary values for the nodes 1h without being detected by the user.

As a result of the blinding technique described above, ary uknows that all
components that have any effect on system integrity have taden into consideration
in the system log tree; in addition, for those componentsitigauthorized to access,
u can check whether they indeed have the acceptable configueatd state value, by
comparing with its own reference values that may be provéhetcertified by a trusted
third party. In particular, if the ACL for the root node 5 (i.e., all users can access
the root node), then any user can verify overall system fitieust from the value of
root(7")) without knowing the exact configuration of any individeamponent in the
system.

Our approach of using commitment schemes for blinding ssifiem the disad-
vantage that two colluding verifiers can learn the valuesatad to the other. Alternate
schemes based on zero-knowledge proofs or deniable sigeaieed to be investigated
to overcome this disadvantage.

3.4 Realization using Xen and Linux

Figurd 3.6 shows an example implementation of our PEV archite with the Xen hy-
pervisor using Linux for Dom0. The main components of ourlengentation are the
Compartment Manager (CM), Integrity Manager (IM), and tlee8e Virtual Device
Manager (SVDM). All components are implemented in DomO0. T is responsi-
ble for the VM life cycle management. As the sole entry poartdser commands, it
communicates directly with the hypervisor and orchestrtite IM and the SVDM. Ta-
ble[3.1 shows the mapping between concepts in our formal haodietheir realization
in our Xen prototype. XSLT is a language for transforming oL document into
another XML document]3]. We assume that the XSLT interpristpart of the TCB.

ThegetCurrentState() function of the CM returns the current state of the physical
machine, which includes the list of hosted VMs, their stafative, suspended, or
hibernating), VM ownership information (e.qg., the virteeiyanization to which a VM
belongs), the amount of free memory available, etc. Usiegésult of the function,
a verifier can decide whether the physical machine satidfeeftegrity requirements
for performing certain actions (e.g., starting a new VM Igjimg to a particular virtual
organization).

The IM in our Xen prototype has a storage integrity plug-iiP)Sor measuring var-
ious disk images and files. The IM also has an Attestation &isganodule (ASM)
that interfaces with the TPM for executing the sealing arnes#tion protocols (de-
scribed in Sections 3.3.1 ahd 313.2) as well as for invokiogmal TPM operations,
such asTPM_Quote. The ASM invokes normal TPM operations through the TPM

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

20

OpenTC D05.4 — Design of the Cross-Domain Security Services

DomO

Compartment
Manager

Integrity Secure Virtual
User Manager Device Manager
Space Attestation | | Storage [v(ijr»lu:l] [Vi’:ﬁléal]
& Sealing | [Integrity 'S
Module Plug-in
. TPM
Library Software|
Space Stack
[{/devitpmf-{/dev/sdaf-q-----~- { bretl I-

ol | [o
P Driver

DM Crypt Bridge
HDD virtual Ethernet| | virtual
Driver block Driver | |network
device device
backend backend

Xen Hypervisor |

Hard Disk @
TPM | |Drive (HDD) elwor

Figure 3.6: Realization using Xen and Linux

Model Xen-based Prototype
Projection p() | component measurement plug-
Predicate II | XSLT stylesheet
Access Filter XSLT stylesheet

Table 3.1: From model to implementation

in

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 21

Software Stack (TSS) [71], which is the standard API for astoey the functions of
the TPM.

The SVDM is responsible for managing virtual devices suchidgal hard disks,
virtual block devices, virtual network devices, and vittti®Ms. The service offered
by the SVDM is realized through multiple specialized lowdecomponent plug-in
modules, one for each virtual device. Figlirel 3.6 shows twg-ihs in our Xen pro-
totype. One is for managing the virtual (encrypted) hard disd the other one is for
managing the virtual network interface card (NIC).

In DomO, secure device virtualization is implemented in kbenel space. Tasks
such as configuring virtual devices are done through the S\ititkle user (or applica-
tion) space. The SVDM manages the security properties da€dsvFor example, a se-
cure hard disk is implemented by means of B Crypt loopback device. Similarly,
network virtualization is done by providing virtual NICsrfthe VMs andbridging
these virtual NICs to the physical NIC. Security for netwsHhas two aspects. Topol-
ogy constraints define which VM is allowed to connect to whici-network(s). In
addition, confidentiality requirements dictate which cections need to be encrypted.

Secure management of virtual devices is a complex task. >@amgple, there are
multiple steps involved in starting a virtual hard-diskveri First, a policy-based check
of the state of the physical machine is done based on thesesfigetCurrentState()
function. Depending on the logic implemented by the comesing plug-in, that
check may include verifying the measurements of the hypervbinary disk, and the
DomoO image. Then, the virtual hard-disk is attached witldergials and connected
to a loop device (/dev/loop). The virtual hard-disk may bergpted, for example,
with a sealing key that is made available only if the platfasrin a certain state. The
decryption of the virtual hard-disk image is done using kirard-disk encryption.
After decryption, the device file that gives access to theyg#ed image is connected
to the front-end. Similar policy-based checks may be donenndtarting other virtual
devices. For example, before starting a virtual networkag\policies may stipulate
that the VM must be in some acceptable state and outside fisawast be configured
correctly.

3.5 Use Cases

In this section, we describe a few examples of how the compusrietroduced in Sec-
tion[3.4 interact for integrity protection, enforcememgdaverification purposes. We
assume that the core TCB (including Xen and DomO Linux) hanbwaeasured at
start-up time. Additional services may need to be measuaieddon policy. The mea-
surement can either be done by a trusted boot loader suclusie@GRUBI[2] (which
measures the entire boot image) or by a more fine-grainedappisuch as Sailet
al’s IMA [65].

3.5.1 TPM-based Attestation on a VM Disk

Figure[3.T shows the component interactions for attestingurrent state of the TCB
and the status of a VM's disk image. The user/verifier intesradgth the CM through
the attestationRequest call with anattestation descriptoanduser credentiabs pa-
rameters (step 1). The attestation descriptor is an XMLcstre that describes what

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

22 OpenTC D05.4 — Design of the Cross-Domain Security Services

Verifier: CM: M SIP: ASM: TPM:
1: attestationRequest
1.1: attestationRequest

1.111: measurevHD

1.1.21 measurnement

1.1.3:wrToTPM
1.1.3.1: TPM_Extend
1.1.3.2: TPM_Result

1.1/3.3: TPM_Quote

1.2: attestationResponse

2: attestationResponse

Figure 3.7: TPM-based attestation on a VM disk

aspect of the system’s integrity state the verifier wanessggd. In other words, the
attestation descriptor is how the verifier chooses the lageption function suitable
for its purpose. As described before, projection functiarsrealized by a set of com-
ponent plug-in modules. Some of these plug-in modulestaasurement plug-ins
which not only return the relevant integrity states of thenpenents but are also the
ones measuring their integrity states in the first place. attesstation descriptor con-
tains one or moreneasurement descriptor8ased on the measurement descriptors,
the IM knows the exact set of measurement plug-ins to invoke.

Figure 3.8 shows an example attestation descriptor as a XMttare. It contains
an<at t est ati on> section, which defines the type of attestatioprt based)
and the parameters needed for attestation (the TPM Atfimstiatentity Key orAl K
and achal | enge). Nested in the attestation descriptor is a measuremeatigts,
which specifies a measurement targegdsur eTar get) and a destinatiordest).
The target indicates what is to be measured (in this case, aligklimage), whereas
the destination indicates where the result should be s{ordkiis case, the TPM's PCR
number 16). Th&at t est Tar get > defines the scope of the requested attestation (in
this case, all PCRs).

Based on the user credential supplied, the CM checks whttaeferifier has the
right to request attestation of the system sub-statesatetidy the attestation descrip-
tor. The check is essentially a way of determining whetherdguested projection is
a projection that conforms to the access restriction spatifin; hence, it is useful in
enforcing access restriction. If the check reveals thavérdier wants to have more

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 23

<attestation-desc>
<attestation type="tpm based"
chal | enge="0xaded. . ."
ai k="0xaada3..">
<measur enent - desc type="t pni' >
<measur eTar get nane="di sk:/dev/sdbl"
dest =" PCR16"/ >
</ measur enent - desc>
<attest Target name="ALLPCRS"/>
</ attestation>
</ attestati on-desc>

Figure 3.8: Attestation descriptor in XML

attested than what he/she is allowed to, then the entirstatien request is denied.
Otherwise, the CM forwards the request to the IM (step 1.1).

The IM extracts the measurement descriptor(s) from thetatien descriptor and
delegates the measurement(s) to the appropriate plug-ih(our example, the IM
invokes themeasurevHD function at the SIP passing the measurement descriptor as a
parameter (step 1.1.1). The plug-in completes the reqliestasurement and returns
the measurement result back to the IM (step 1.1.2). Althatigin 1.1.2 might look like
an unnecessary extra step, the indirection via the IM alkbvsneasurement plug-ins
to be written independent of the TPM or similar future desitleat are indicated as
dest.

The IM invokes thenrToTPM function at the ASM with the challenge, tié K,
the measurement result, and the destination PCR (step.ITh&actual writing of the
result into the PCR happens by th@M_extend operation (step 1.1.3.1). Thereafter,
a TPM_Quote gets created and returned to the ASM (steps 1.1.3.2 and3).1The
ASM wraps thelT PM_Quote into anattestationResponse and returns it to the IM. The
attestationResponse includes not only th@ PM_Quote but also the relevant log files.
The IM returns thattestationResponse to the CM (step 1.2), which forwards it to the
verifier (step 2).

A verifier can check the attestation result by recomputingshlover the attestation
targets (i.e., the relevant log files) specified in slstationResponse and comparing
the resulting hash with the hash in the PCR from T _Quote.

The PCR in which the measurement result is stored will be edser the attestation
process has finished. Therefore, our prototype requiresaI.€ compliant TPM, and
thedest PCR has to be6 or higher.

3.5.2 (Re-)Starting a VM with TPM-based Sealing

Figure[3.9 shows the component interactions for (re-jage VM with a sealed disk
image. In this use case, we show how to enforce a policy thetifips that the key for
decrypting the disk image be revealed only after measuhiaglisk image and only if
the measurement value written into a specified PCR matcleegaiie against which
the key was sealed.

The user interacts with the CM through teartVM call to (re-)start the VM
(step 1). After determining that the disk image has to bediestypted through unseal-

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

24 OpenTC D05.4 — Design of the Cross-Domain Security Services

User: CM: IM: SIP: ASM: TPM: SVDM: Xen:
1: startVM

1,1: unsealkey
1.111; measurevHD

1.1.2: measurement

1.1.3: unsealKey
1.1.3.1: TPM_Extend
1.113.2: TPM_Result

1.1{313: TPM_Unseal

111.3.4: key
1.1.4: key
1.2: key
1.3: tonfigandUnlockDisk
1.4: retCode
1.5t startVM
1.6¢ retCode
2 CM_Resul

Figure 3.9: Creation of a VM with TPM-based sealing

ing, the CM obtains theealing descriptothat was given to it at the time of sealing.
Like the attestation descriptor, the sealing descripteo abntains one or more mea-
surement descriptors, which are used to let the IM know tlaeteset of measurement
plug-in modules to invoke.

Figure[3.ID shows an example sealing descriptor as an XMictstre. It contains
an<seal i ng> section, which defines the type of sealingp(m based) and the pa-
rameters needed for unsealing (the identifier of the keyeptet by the TPM). Nested
in the sealing descriptor there is a measurement descnpltich specifies a measure-
ment targetifeasur eTar get) and a destinatiordiest). The target indicates what
is to be measured (in this case, a VM disk image), whereasdkgndtion indicates
where the result should be stored (in this case, the TPM’s R@Rber 16).

The CM calls the IM interfacansealKey (step 1.1), passing the sealing descriptor
as a parameter. The IM extracts the measurement descriptoitifie sealing descrip-
tor and calls themeasurevHD interface of the SIP with the measurement descriptor
(step 1.1.1). The plug-in reads the listrifasur eTar get s, and accordingly mea-
sures the disk image. It returns a measurement result likietdM (step 1.1.2). The
IM calls the ASM, which handles TPM-related functions (step.3). The ASM writes
the measurements to the TPM by invoking fhieM_Extend operation (step 1.1.3.1).
Furthermore, the ASM performs the unsealing of the key retpaeby invoking the
TPM_Unseal operation (step 1.1.3.3). If thest PCR value matches the value at the
time of sealing, then the disk is in the desired state anditiseal operation is success-
ful (step 1.1.3.4); in that case, the ASM returns a key batke¢dM (step 1.1.4), which
in turn returns the key to the CM (step 1.2). In case the urggesdation fails, the ASM
would return a failure. The CM calls the SVDM functieanfigAndUnlock() to attach

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 25

<seal i ng- desc>
<seal ing type="t pm based" keyi d="0x01">
<measur enment - desc type="t pni >
<measur eTar get
nanme="fil e:/ xeni mages/ vmlLi nage"
desc="PCR16"/ >
</ measur enent - desc>
</ seal i ng>
</ seal i ng- desc>

Figure 3.10: Sealing descriptor in XML

and unlock the disk (steps 1.3 and 1.4). Upon successful letimp of that function,
the CM instructs the Xen hypervisor to actually start the \@#ps 1.5 and 1.6).

For the sake of simplicity, Figute 3.9 does not show detdiley handling such as
loading a sealing wrapper key into the TPM.

3.5.3 Enforcement and Compliance Proofs for Information Fow

Control
Customer Management
Network Network
DMz Internet

Figure 3.11: Virtual network topology

Consider, for example, the virtual network topology showrFigure[3.11L with
four virtual network zones. The topology shows the netwdrk company (which we
shall call thecustomercompany) connected to the Internet via a demilitarized zone
(DMZ). The customer network is also connected tnanagement netwotkat allows

an outsourcing provider to manage the customer systeman@hagement network is
not connected to the Internet.

from/to Cust. DMZ Mgmt. Internet

Cust. 1 1 1 0
DMZ 1 1 0 1
Mgmt. 1 0 1 0
Internet O 1 0 0

Figure 3.12: Flow control matrix

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

26 OpenTC D05.4 — Design of the Cross-Domain Security Services

An information flow-control matrix is a simple way of formailng the system-wide
flow-control objectives[[12]. Figure 3.12 shows a samplerixdor the four virtual
network zones. Each matrix element represents a policyifgperthe information
flows permitted between a pair of network zones. The 1 elesn@ohg the matrix
diagonal convey the fact that there is free information floithim each network zone.
The 0 elements in the matrix are used to specify that theraldhxe no information
flow between two zones, e.g., between the management zorikahdernet.

In [12], we described a Xen-based prototype of a secure mktwictualization
architecture that is based on the concept of Trusted Vifdoahains. The architecture
allows arbitrary network topologies connecting VMs. Foamewple, different VMs on
the same physical infrastructure may belong to differemtial network zones. Despite
this, the architecture ensures the enforcement of polased information flow control.
We can use the architecture for enforcing the policies shovirigure 3.1P.

<f I ow pol i cy>
<zone id="custoner-net">
<permt id="mgnt-net" />
<permt id="dnz" />
</ zone> ...
</ fl ow policy>

Figure 3.13: Flow control policy in XML

By combining the Xen prototypes of our PEV architecture andsecure network
virtualization architecture, it is possible to validate ttonfiguration of the virtual net-
working subsystem on each host. The subsystem exports anwélion of its flow-
control matrix, as shown in Figute 3]13. The network measerg plug-in outputs
the XML structure of the flow-control policy, when invoked tye IM. By request-
ing attestation of the TCB and this policy, a verifier can obtacompliance proof for
the correct configuration of the virtual networking subsyston a given host. At the
verifier, a XSLT stylesheet is used to perform further transfations on the XML file
returned by the platform. The XSLT stylesheet is a concrafgémentation of the at-
testation predicatH (described in Sectidn 3.2.2), which assesses whetherditfeph
is trustworthy from the verifier's point of view. The resufttbe predicate will serve to
convince the verifier that the policy in Figure 3.12 is theuatflow-control policy as
enforced by the network subsystem. If access restrictiam isnportant concern, the
XML output from the plug-in modules may be first processed hX< stylesheet
that implements a access filter before passing it on to théearerin such a case, the
stylesheet would be embedded in the platform TCB.

A user can also protect sensitive information (say, an oy key) against access
by an untrusted network configuration using a two-stageqatore. The first stage is
sealing, in which the user has to specify the binary confignmaf the TCB and condi-
tions for checking whether a given network configuration isuated one. Figule 3.114
shows an XSLT script that encodes the condition that theooust network should be
directly connected only to the DMZ and the management nétwbthe outsourcing
provider, but not to any other network. The input to the XSktfit is the XML pol-
icy that is output by the network measurement plug-in. Th&XScript is a concrete
realization of the user-specified predicaten our formal model (Section 3.2). The
user seals the key to both the state of the TCB and the valueadedtable PCR; the
latter reflects the integrity of the XSLT script and the iniggof the plug-in identifier.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 3. COMPLIANCE PROOFS FOR XEN 27

<xsl:tenpl ate
mat ch="/fl ow pol i cy/ zone[@ d=" custoner-net’']">
<xsl :choose> <xsl :if
test="count(*[@d="dnez'])=1
and count (*[@d="ngnt-net’])=1">
<true />
</xsl:if>
</ xsl : choose>
</ xsl:tenpl ate>

Figure 3.14: XSLT condition

The second stage is unsealing, in which the IM (i) obtainsékalt of the plug-in, (ii)
applies the result as input to the XSLT script, (iii) extetius resettable PCR with the
hash of the XSLT script and the network measurement plugdentifier, and (iv) tries
to unseal the actual key. For steps (iii) and (iv), the IM ike® the ASM. The TPM
should only reveal the key if the TCB is correct and the XSL&leated to<t r ue/ >
when executed on their output.

3.6 Conclusion

We introduced a formal model for managing the integrity dfitaary aspects of a
virtualized system and evaluating system compliance wagpect to given security
policies. Based on the model, we described an architectalied PEV, for protecting

security policies against modification, and allowing stalders to verify the poli-

cies actually implemented. We generalized the integritpage@ment functions of the
Trusted Platform Module, so that they are applicable ndtfprssoftware binaries, but
also for checking security compliance and enforcing ségyolicies. We described
a prototype implementation of the architecture based orXdrehypervisor. We also
presented multiple use cases to demonstrate the policycemi@nt and compliance
checking capabilities of our implementation.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Chapter 4

Hierarchical Integrity
Management for Complex
Trusted Platforms

Serdar Cabuk, David Plaquin (HP), Theodore Hong, Derek 8MuEric John (CUCL)

4.1 Introduction

Trusted Computing has been proposed as a means of providiifgable trust in a

computing platform. However, as virtualization becomesenmopular and platform
changes (such as security patches) occur more frequemlyestablished model for
Trusted Computing is insufficient to cope in real-world soéos. We therefore intro-
duce an extensible integrity management framework thagttebsuited to deal with
complicated trust dependencies and change management.

The goal of Trusted Computing is to enable third parties taately attest and
verify the configuration of a computing platform in a secur@mmer. Existingrusted
platformstypically contain a component that is at least logicallytpoted from sub-
version. The implicitly trusted components of a trustedfplan — in particular, the
hardware Trusted Platform Module (TPM) — can be used to stiegrity measure-
ments, and subsequently report these to users (or remdaie®nwith a cryptographic
guarantee of their veracity. Users can then compare thetezghbmeasurements with
known or expected values, and thereby infer whether théoptatis operating as ex-
pected (e.qg., it is running the expected software with tipeeted configuration while
enforcing the expected policies).

Present implementations of Trusted Computing technolagy take immutable
shapshots of a whole platform, which can then be used as motfustworthi-
ness|[[65 2[7, 36, 23]. They do not, however, provide moredeaurverifications of
platform components such as individual virtual machingdi$yand applications. The
platform is treated as a whole, and while it is possible toestotegrity measurements
of VMs and applications, the limited amount of storage in aMTiAeans that it is not
possible to represent individual components and the degrmies between them. Fur-
thermore, it is not possible to manage changes to measurepar®ents. The current
scheme advocated by the Trusted Computing Group (TCG) da#mach changes
to be malicious[[74]. This is certainly impractical for meodeserver environments,

28

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 29

which undergo a constant bombardment of security patchégalicy changes. In
2007 alone, Microsoft released 11 security related patfdrahe Windows operating
system [[1], while a typical enterprise anti-virus applicatwill undergo two to five
updates in an average weéek|[48].

In this paper, we introduce an extensible integrity managenramework that
addresses these two shortcomings. To improve integrityagement, we explicitly
represent integrity dependencies between platform coemsrby giving individual
registers to each component to store their integrity meamsents, and chaining these
components together in a dependency graph. To improve ehawagagement, we
introduce a new distinction between reversible and irrgbés changes to measured
components. A reversible change is one that can be undonis gidranteed not to
have any permanent effects. The introduction of reversitéanges allows the platform
integrity to be modified temporarily, for example when a devis hot-plugged and
then removed. Although the platform may no longer be comsiigrustworthy during
the time that the change holds, its integrity can be safedjored after the change is
undone.

Our resulting framework gives a better understanding ob#@m’s security prop-
erties, which can be used in policy verification. Like exigtiTrusted Computing im-
plementations, our services can be used to grant accessterfad resources (such
as encrypted storage) only when the policy is satisfied; keweinlike existing im-
plementations, these policies can be more fine-grainedardim and flexible. Our
prototype implementation, built on the Xen virtual machimenitor [20], includes
the integrity management framework and a credential marssgeice, which demon-
strates the use of enhanced policy checks to control aczcesetrity credentials.

The remainder of this paper is organized as follows. SeBimrovides background
on Trusted Computing and virtualization. Secfiod 4.2 oetithe motivation and high-
level design for our integrity management framework. $ad¢#.3 presents the basic
framework, which provides integrity services to indivilgamponents; Sectidn 4.4
extends this into reversible integrity changes and an eixglependency graph, and
provides use cases for this model. Secfiond 4.5 presents sgamples of security
services that could make use of our framework. Sedfioh 4s6ridees our prototype
implementation of the framework and the credential manageservice on Xen. Fi-
nally, in Sectiori 4.7 we discuss related work, and in Se@i@nwve draw conclusions.

4.2 Design Overview

The typical design for a trusted platform comprises a hardw#&M and software in-
tegrity management services. These services measurerplatbmponents, store in-
tegrity measurements as immutable logs and attest thessuneeaents to third parties.
The services use the TPM to provide a link with the CRTM. In a-nitualized plat-
form, with relatively few components to be measured, thigledds sufficient. How-
ever, it does not scale to complex virtualized platformg theve a plethora of com-
ponents and dependencies between these components. $edtien, we first discuss
the limitations of the existing model. We then present tighHevel design goals that
motivate our integrity management framework.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

30 OpenTC D05.4 — Design of the Cross-Domain Security Services

4.2.1 Hardware Limitations

Current integrity management systems typically employTR& as the sole repos-
itory for integrity measurements (see Secfion 4.7). Unifuately, such schemes are
fundamentally limited by the hardware capabilities of a T.PM

1. ATPM contains a small, limited amount of memory (PCRs)e TICG specifi-
cation recommends that a TPM has at least 16 PCRs [74]. Tdrerdbr porta-
bility, we cannot assume that a TPM will have any more than@R$& Hence, it
is not feasible to store individual measurements for a latgeber of virtualized
platform components.

2. Thelimited number of PCRs is typically addressed by agafieg measurements
in the same register. Where two components are indeperttenintroduces a
false dependency between them. Furthermore, the defirofiche ext end
function introduces an artificial dependency on the ordewvhiich they are ag-
gregated.

3. Itis not possible to reverse the inclusion of a measuréimea TPM register.
Therefore, it is impossible for a platform component to me@ochange to its
integrity (e.g. by the dynamic loading of some code, or thenetion of a new
device) and revert back (after unloading/disconnection).

To illustrate these limitations, consider the followingaexple. A server platform
hosts tens of small VMs, each of which runs a particular servio keep track of the
platform integrity on a traditional TPM-based system, theasurements must be ag-
gregated, because there are more VMs than PCRs. For exammpight be necessary
to store measurements for a virtual network switch and aafigtorage manager in the
same PCR, which creates a false integrity dependency betthese two VMs. If a
malicious change is made to the virtual network switch, dsl¢change is reported to
the appropriate PCR, the integrity of the storage managerabpears to be compro-
mised. The same is true for all other VMs whose measurementggregated in that
PCR.

It would be possible to extend the set of PCRs by giving a &lritPM to each
platform component |9]. However, by allocating indepertdértual PCRs to each
component, it is no longer possible to represent real degpasies between compo-
nents. Furthermore, since the virtual TPMs emulate the behaviartmrdware TPM,
it remains impossible to revert changes.

4.2.2 High-level Design

It is clear that software measurement support is requireditivess the limitations of
hardware capabilities. We refer to the set of software camepts that comprise the
integrity framework as theoftware root of trust for measurement (SRTWhese com-
ponents are part of the platform TCB, and should be isolatea bther components;
for example, by virtualization. Dynamic components owtside platform TCB rely
on the SRTM to store measurements on their behalf, ratharttieaunderlying TPM.

1Some virtual TPM designs share a fixed number of PCRs betwibeintaal TPMs and the hardware
TPM, and these could be used to express dependencies. Hptievesliance on the hardware TPM leads
to the same limitations as a single-TPM scheme.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 31

Dynamic

| CRTM | | BIOS | |BootLaader| 0S Kernel SRTM | Component

le—

hashes stored

hashes stored

Dynamic
Component

Platform TCB

Figure 4.1: The position of the SRTM within the overall inkégmanagement frame-
work.

Figurd4.1 illustrates the position of the SRTM within theeoall integrity management
framework.
Our framework has the following design objectives:

Unlimited measurement storageThe framework should allow the storage of individ-
ual integrity measurements for an arbitrary number of canepds.

Explicit dependency representationThe framework should allow the explicit and
unambiguous representation of an arbitrary number of dégraries between
platform components. There should be no false or artifi@geshdencies intro-
duced by aggregation.

Static integrity management The framework should provide a super-set of the func-
tionality of a traditional TPM, with respect to static intéy.

Dynamic integrity management The framework should enable the integrity state of
a platform component to revert to a previous trusted stat ¢ontrolled and
verifiable manner.

Link to hardware TPM The software framework should be linked in a chain of trust
to the hardware TPM. This can be achieved by storing the meamnts for the
SRTM and other static components in the platform TCB (sudhasypervisor
and any physical device drivers) in the TPM. As this set of porrents is small
and non-changing, the limitations of a hardware TPM do natemto effect.

Minimal TCB In order to improve the trustworthiness of the frameworle, 8RTM
and other componentsin the TCB should have a minimal amdeote and size
of interface. This paper does not focus on minimizing the TB& a possible
approach would involve using disaggregation [49].

Platform independence The framework should not be limited to a single hypervisor
technology. Although the implementation (see Sedtichwa®) carried out using
Xen, it should be possible to use alternative technologigsh as VMware [70]
or an L4 microkernel[43].

4.3 Basic Integrity Management

In this section, we present a basic design for the SRTM sertiat we introduced
earlier. This platform-independent service provides theimmal functionality needed

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

32 OpenTC D05.4 — Design of the Cross-Domain Security Services

CCR0O3 2f:d2: c1: 42: 5¢: ce: 9e: ce: 62: 50: 71: 22: db: 43: 61: 25: ab: 82: be: 55

Figure 4.2: Basic integrity management components — Coepiazonfiguration reg-

ister table.
| Management I | Protected Storage. | Integrity I
| | |

BIM
| Management I | TPM I | I
1 1 1
BMSI
VMM and Hardware

Figure 4.3: Basic integrity management components — The &iditecture.

to manage the integrity of dynamic (non-TCB) platform comeoats, which will be
extended further in Sectidn 4.4. Section 4.3.1 sets outdseclmeasurement model,
while Sectiori 4.3]2 describes the corresponding servidgtacture and interfaces.

4.3.1 Measurement Model

The Basic Integrity Management (BIM) service stores siatiegrity measurements of
dynamic components that are arranged in a flat hierarchy, asi¢che one shown in
Figure[4.4. Each component has a single Component Configuiidegister (CCR)
associated with it. A CCR is analogous to a PCR and holdsiityageasurements for
that component. The measurements are held together in alglaIR table similar to
the one depicted in Figufe 4.2.

Static Measurements

The BIM measurement model mimics TPM measurement capabiliut stores in-
tegrity measurements in software rather than hardwareh Eeggstered dynamic com-
ponent is assigned a BIM CCR to which its measurements amtegh This is

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 33

. 2 3 B 0 @ 6
0 -
1 0 \y
vm vm vm 2 0 0
3 0

Platform TCB

Figure 4.4: Simple integrity use case — a flat hierarchy.

achieved by arext end operation, which stores a new measurement in a CCR by
hashing it together with the current value of the CCR. Dyracoimponents use this
operation to report ongoing measurements when their ctntdrange. For example,

a firewall service would extend its CCR if its rule-set wasttto be changed. The
specifics of when/how measurements are taken is compoependent, but the logic
that performs this activity must be trusted to report charfgéhfully. This behavior

is assured by the initial measurement of the component bydhgonent that starts it.

In the BIM model, this can only be a static (platform TCB) campnt.

This measurement model provides better scalability thadaelsahat use the TPM
as the sole repository for measurements. By using softwagisters, the BIM can
store a virtually unlimited number of individual measurerse Hence, no aggregation
is needed. However, the measurements are still accumwdattthe CCRs are irre-
versible. That is, recording a measuremeft, followed by a changed measurement
M, followed by M, again, results in a different value than the original retaydf
M, alone. Hence, components are not allowed to change in anymitagut perma-
nent loss of integrity. Even if a change is later undone, tramonent cannot return
to its previous trust state. In Sectibn}4.4, we will addréss problem by employing
dynamic registers for reversible measurements.

Simple Trust Dependency

The BIM service implements a flat hierarchy to capture thegrity dependencies
between platform components. In this model, the integritgdymamic components
solely depends on the integrity of the underlying platfor@Bl We show an example
flat hierarchy in Figur€4l4. The components labeded two, andthreeare virtual
machines running directly on the trusted platform. Commozerois the platform
TCB that includes the SRTM (in this case, the BIM service)cteEd¥M depends only
on the platform TCB underneath. If the integrity of the TCBrfgonentzerg is
compromised, then the integrity of all of the VMs is compread as well. However,
the VMs are independent of one another and therefore do metanrust dependency.
As an example, if the integrity of VIMis compromised, the integrity of ViMland VMs
remains intact.

In what follows, we depict the integrity relationships beem components using
a dependency graph, and represent it using a dependeney falgurd 44 shows a
simple graph and its dependency table equivalent. For ebeatiye second row in the
dependency table states that the integrity of the child ammaptone(VM,) depends
on the integrity of the parent componeero(TCB).

In the simple BIM model, there is always a single trusted congmt (the plat-
form TCB) on which all other components depend. This yields ‘flat hierarchy”
dependency graph and table in Figlurd 4.4. The flat hieram$gsa because a dynamic

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

34 OpenTC D05.4 — Design of the Cross-Domain Security Services

Integrity Description

ext end Takes a hash value as an argument and irreversibly extead®th-
ponent CCR with that hash.

quot e Takes arbitrary external data (i.e., nonce) and returnsogatjon of

the current TCB measurements, the nonce, and the compoit|C
value signed by a TPM attestation identity key (AIK).

Protected Stor- | Description

age

seal Takes data to be protected, seals it to the TPM binding it toeot
TCB and CCR measurements, and returns the sealed (engrifibd

unseal Takes the sealed blob and unseals and returns the dataiffitégeity
of the TCB and the component are verified as intact.

Management Description

register Takes the initial measurement, adds the component to trendepcy
table, and fills the CCR with the initial measurement.

del ete Deletes the component and all its sealed data.

Table 4.1: BIM integrity, protected storage, and manageineerfaces.

component (such as a VM) can only be started by a trusted coempoSince the TCB

is static and platform-wide, it is not possible for a dynammenponent to start — and
hence become a parent of — another dynamic component. thetbée BIM cannot

manage, for example, the integrity of an application stewtihin a VM. However, the

BIM serves as a basis to build the hierarchical model whidresses this limitation,
which is introduced in Sectidn 4.4.

4.3.2 The BIM Architecture

As shown in Figur@4]3, BIM services are grouped under thregfaces:

Integrity interface This interface provides functions to report and quote iritgg
measurements of dynamic (i.e., non-TCB) components. Caems use this
interface to extend their register values when they detgoifcant changes to
their measured content. A component is only allowed to diseown register,
while an integrity quote can be requested by any entity. ¢ #ire underlying
TPM interface, the latter operation returns a signed iitiedigest that contains
the measurements of the dynamic component and the platf@ Using this
digest, a third party can verify the complete integrity chai

Protected storage interfaceThis interface provides functions to store and reveal se-
crets on behalf of dynamic components. These secrets arglltothe integrity
of the TCB and the owner component, i.e., they are revealaddfonly if the
integrity of the component and its ancestors (in the BIM cteeplatform TCB)
is intact. The BIM uses the underlying TPM interface for gephnd unsealing
data to and from the TPM, which automatically implies a veaifion check on
the TCB. Verification of the component’s integrity can be deither by the BIM
or delegated to a third-party verifier. Our prototype impdents the former case
in which the BIM needs to store the expected measurementsfoparison. We

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 35

use the TPM sealing operation itself to do so and use the CG@Rvat the time

of sealing as the future expected values. We concatenate Hadues to the se-
cret and seal the whole blob. The unsealing operation atatiate returns not

only the sealed secret but also the expected set of measuisetihat we compare
to the CCR values at that time.

Management interface This interface provides functions to register dynamic comp
nents to the framework so that their integrity can be tradkeithe BIM. The BIM
is a passive service, and so only registered componentsaket. As discussed
in the previous sections, the initial measurement of thepmmant is provided
from outside by a trusted component that measures and@stihe component.
The interface also allows the deletion of components anid skaled data.

Table[4.1 details the individual functions provided by eaxtbrface. As shown in
Figurd 4.3, the BIM, in turn, makes use of the Basic ManagewaehSecurity Interface
(BMSI), which provides a platform-agnostic interface te tinderlying hypervisor and
hardware TPM. In particular, the BMSI provides functionattienable the BIM to
access the TPM and establish a link to the hardware root sf. tfine implementation
of the BMSI is discussed in more detail in Section 4.6.

4.4 Hierarchical Integrity Management

In this section, we present an enhanced design for the SRTNtee¢hat we introduced
in Sectior 4.P. This platform-independent service feadynamic measurements and
a component hierarchy that we use to manage the integrityrardic (non-TCB) plat-
form components more effectively. We describe the securitgel for measurements
in Sectiorf4.4]1. We describe the service architecturemtedfaces in Sectidn4.4.2.

4.4.1 Measurement Model

The Hierarchical Integrity Management (HIM) service stoirgtegrity measurements
in a CCR table as illustrated in Figure ¥.2. To overcome tlgtsbmings of the BIM
model (e.g., irreversible measurements), we have exteihtdgdntroducing two new
concepts: dynamic measurements and hierarchical trust.

Dynamic Measurements

The HIM measurement model enhances the BIM model in two waiyst, HIM allows
multiple registers to be assigned to a single dynamic compbiT his way, component
measurements can be tracked with better granularity. $e¢tiM supports dynamic
measurements that can be reported to a resettable redistisrincreases flexibility
and allows a component to revert back to a trustworthy cordiipn if permitted by
its change policy.

Change types.We distinguish two types of component changes. More spatiific
An irreversible changés one that requires the component to be restarted before its
integrity can be re-established. Such a change is one male iotegrity-critical part
of the component; that is, to the code or other data of the compt that has a potential

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

36 OpenTC D05.4 — Design of the Cross-Domain Security Services

dynamic change dynamic change

undo dynamic non-critical

changes

intact

static change

re-initialise static change

dynamic or static change

critical

Figure 4.5: Transition diagram for component integrityteta A component in the
non-critical state can be made intact by undoing dynamiagés, but the critical state
can only return to the intact state by re-initialization.

impact on the future ability of the component to implemestiittended functionality
correctly. An example of an irreversible change is a kero@ling an untrusted device
driver as the driver may make a change to kernel memory thibperisist even after it
is unloaded.

A reversible changés one in which the component is permitted to re-establish
integrity without being completely reinitialized. Such laange is one made to a non-
critical part of the component; that is, to code or other dditthe component that has
no direct or potential impact on the component’s future secuA component still
loses its integrity if a change is made to it. However, depemdn the exact nature
of the change, we may permit the component to regain inte¢aitd therefore trust)
by undoing the change and returning to its previous state.ekample, changes to
configuration parameters are often reversible — e.g. chantje identity certificate
that a component uses. The integrity management systermeélll to note such a
change in order to fully report the state of the platform, the certificate may be
safely changed back without causing security implicatigrsother example might be
loading a trusted kernel module that is known not to leavesiay effects after being
unloaded.

The categorization of a change as reversible or irrevergldomponent-dependent
and will be set by each component’s own change-type polioy.example, a policy
stating that all changes are irreversible reduces to thie steeasurement model. A
component that permits reversible changes is referreddalasamic componeirftdy-
namic” because its integrity state may change multiplegime

Measurement reporting. Recording dynamic measurements requires two mea-
surement registers,sdatic registerand adynamic registerrather than the single reg-
ister used in the static measurement model. Irreversitdagbs are reported to the
static register in the same way as in the static measurenwdginthat is, thext end
operation is used to combine the new measurement with tistirexiregister value to
obtain the new register value.

extend(R, M) = hash(R||M)

whereR is the value of the register arld is the measurement.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 37

By contrast, reversible changes are reported to the dynegister byreplacing
the previous value held in that register, usingities et operation.

reset(R,M) =M

We can see that attempting to reverse an irreversible chdoge not return the
static register to its initial state:

Ryinar = extend(extend(Rinitiat, M2), M) = hash(hash(Rinitial||M2)||M1) # Rinitial

However, reversing a reversible chamgpesreturn the dynamic register to its initial
state:

Ryinal = reset(reset(Rinitiar, M2), M1) = reset(Ma, M1) = M1 = Rinitial

The exact nature of the reporting activity and the corredpanchange-type policy
is component-dependent. However, the logic that perfohissatctivity must be a part
of the initial measurements so that we can trust the compgdoeaport the changes to
the correct register.

Integrity states. Depending on the measurement values stored in its static and
dynamic registers, a dynamic component can be in one of tboa¢integrity states:
intact, non-critical, and critical. The component is in th&act stateif and only if the
values in the static and dynamic registers are consisténtké expected measurement
values. The componentis in tm@n-critical stateif and only if the value in the static
register is consistent with the expected measurement baltbe value in the dynamic
register is not. In all other cases, the component is irctitecal state As shown in
Figurd4.5, the foregoing arrangement enables a dynamipanent that has only been
subject to non-critical changes to be restored to the irstiate. A component that is
in the critical state cannot be restored to any other stalesarre-initiated with an
expected configuration (during which both registers aretjes

Security states. Depending on the integrity state, a component can be in three
security states: trustworthy, secure, and insecure. A oompt istrustworthyif and
only if it is in intact state. A component gecureif and only if it is in intact or non-
critical states. In all other cases, the component is deensedure

Example use case for dynamic registerdigital Rights Management (DRM) ser-
vices control the distribution of media content onto conmmyiplatforms. It is possible
that a DRM service will not push video content to a computingessory if, for ex-
ample, an external recording device is plugged to it. Inthise, software that detects
and installs the plug-and-play drivers for the recordingcemust be part of the static
measurements. However, the state in which a recording elévidetected in the sys-
tem can be reported dynamically. In fact, this can be refteictéhe dynamic register
for a secure DRM player application. As long as the recordiegice is connected,
no content is downloaded. Once the user unplugs the dehiealyinamic register is
reset and content can be pushed to the player without regutinie application to be
restarted.

Hierarchical Trust Dependency

We enhance the BIM dependency model by introducing a hikyasttrust dependen-
cies that we represent as a directed acyclic graph. In sucaphgthe edges indicate

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

38 OpenTC D05.4 — Design of the Cross-Domain Security Services

! B @ 60 6
0 S
VM 1 0
Manager M VM M 2 1 @
30| e l
0 Platform TCB ‘ 4 1 o

(a) Multi-level dependency.

i 2 BE o o

‘ 1]
APP VM 1 0

‘3 JVM ‘ ‘5 VMWARE‘ 2 0 (I) (i)
7% VM 3 1

5 4 3 ©) @

‘ Platform TCB 5 2 \ /

6 5 (0}

(b) Nested components.

Figure 4.6: Hierarchical integrity use cases.

trust dependencies where the integrity of the componemteabtigin depends on the
integrity of the component at the destination. If the intiygof the destination com-

ponent is compromised, then the integrity of the origin comgmt is always compro-
mised as well. However, the reverse is not true. To illusttheése more complex trust
relationships, consider the following use cases.

In Figure[4.#, we see the simple flat hierarchy as previouskcdbed in Sec-
tion[4.3. The components labeledg two, andthree are virtual machines running
directly on the trusted platform. Componeetois the platform TCB that includes the
SRTM (in this case, the HIM service). Each VM depends onlytenglatform TCB
underneath. If the integrity of the TCB (componerto is compromised, then the
integrity of all of the VMs is compromised as well. HowevéretVMs are independent
of one another and therefore do not have a trust dependersanAexample, if the
integrity of VM1 is compromised, the integrity of VMand VM; remains intact.

Figure[4.6(d) shows a more complex multi-level depende@oynponenbneis a
service that manages the life-cycle of componemtsthreg andfour. All components
are virtual machines. The latter VMs are independent of oratheer, as before, but
their integrity depends on that of the domain manager, whidegrity in turn depends
on the TCB.

In Figure[4.6(0), we see a nested dependency relationstimp6nentoneand
two are virtual machines, which themselves contain furthgugairmachines: compo-
nentthreg which is a Java virtual machine, and comporferg which is a VMware
hypervisor. These nested virtual machines support guegbonents: componefdur,

a Java application, and componsi® a VMware guest. Within componeane a tra-
ditional linear chain-of-trust applies: Java applicatitmpends on Java virtual machine
depends on operating system. A similar chain can be fourtdwihe VMware com-
ponent. However, these two chains of trust are independemi@another, and both
depend ultimately on the underlying platform TCB.

Figure[4.Y illustrates more complicated use cases. In E[guf(d), we see a mul-
tiple dependency relationship. Componéweis a virtual machine that uses services

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 39

5 [co | o | @
3 T (i)\ |
1 2 viPM || 4 1 g
™ vor 0 © 00
3 0
‘ 0 Platform TCB 4 3
5 {1,2,4} 0]

2 O 00
5 |4 0 - N
App [[vrem| 1 0 ®
3 wm) |2 2 pAM@) e

vm || viem 3 2 @ @
4 3 \/
‘0 Platform TCB ‘ 5 (04,M@) (0]

(b) Virtual TPM binding.

Figure 4.7: More complicated use cases. Dashed lines denplieit dependency.

from component®ne two, andfour. These components are small virtual machines
that provide virtual networking, virtual storage, andwat TPM services, respectively.
Further, the integrity of the virtual TPM depends on the gnity of the virtual TPM
manager domain (componehteé).

Figure[4.7(0) shows a similar VM grouping example which weiml to explore
further in future work. In this example, we use miniaturéwad TPM services to assist
and enhance the integrity measurement capabilities of énedwork. In this design we
bind a single virtual TPM to a component (application or VMyalelegate component
measurements to this virtual TPM. The virtual TPM then reptathe component CCRs
to provide more granular run-time measurements for the corpt it is attached to.
The measurements for the virtual TPM service itself is bgld by its own CCRs. As
an example, the integrity of componéwb now depends on the integrity of component
one (its attached virtual TPM) and the run-time measuremerksntdy this virtual
TPM (e.g., during authenticated Vi\bootstrap). We refer to this measurement set as
M(oné. The same holds for the application componiévg and its attached virtual
TPM service componefiibur. The present HIM implementation does not yet support
virtual TPM attachment.

4.4.2 The HIM Architecture

The HIM service implements the same integrity, protectedagfe, and management
interfaces as the BIM service as presented in Se€fidn 4t3yiti the following en-
hancements.

The HIM integrity interface provides agxt end function that alters the value of
the static CCR in the same way as the BIM equivalent. To supporamic mea-
surements, the interface also provideseset function that is used to report to the
dynamic register and overwrite its value. In addition, tppsort hierarchical integrity
dependency, thguot e function is modified. This function now returns the aggre-
gated integrity measurements of the component in questpecifically, the signed

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

40 OpenTC D05.4 — Design of the Cross-Domain Security Services

guote now contains the TCB integrity measurements plus thasarements of the
component and all its ancestors hashed in a single value.

In the HIM protected storage interface, theal andunseal functions are en-
hanced to support component dependency and dynamic meesue Theseal
function now binds the stored secret to the integrity of ladl trust chains that reach
the component in question from the TCB; that is, the sub{ydmll paths from that
component to the root TCB. Hence the integrity state of camepts not on a path be-
tween that component and the TCB is ignored. For exampl&eimésted use case in
Figurg[4.6(0), an integrity compromise in the VMware contment will not affect the
ability of the Java application to unseal previously seahidrmation, as long as the
Java compartment remains intact.

Lastly, the HIM management interface providesgi st er anddel et e func-
tions. Thedel et e function is the same as in the BIM. However, thegi st er
function now takes a dependency list as a parameter thaifisgeadditional ancestor
components the component depends on besides the one tistgnethe component.

4.5 Policy Verification for Security Services

In this section, we introduce example security servicesltheerage the HIM frame-
work for policy verification and access control. Our exampleclude a credential
management service (Section 415.1), a virtual TPM sengeetfor{ 42.52), and a vir-
tual network service (Secti¢n 4.5.3).

4.5.1 Credential Management Service

Protected storage services provide secure access tossiaeare sealed to the under-
lying TPM on behalf of their owners. It is expected that thesevices retain control
over these secrets and enforce the associated accesd pofitries at all times. By
contrast, most storage services such as [65] and the HIMge@ne-time verification,
and are therefore susceptible to a time-of-check to timesefvulnerability. This oc-
curs because these services release the stored secreteqlesting component once
they verify the necessary policies (e.g., HIM unseal susfcdly verifies the aggregate
integrity). Once the secret is revealed, these serviceaadonger restrict access to it
if the component undergoes a malicious change.

To enable ongoing policy verification and enforcement, weighed and imple-
mented a credential management service (CMS) that usestdgrity management
framework to provide secure access to secrets while maintacontrol at all times.
Unlike the HIM unseal operation, CMS credentials are neegealed to requesting
services directly but are always held securely by the CM&skence, the CMS is a
reference monitor that mediates and provides access toeskdata through a well-
defined interface.

The CMS interface is comprised of management and servieefatces. Compo-
nents use the management interface to register comporezterdrals with the CMS.
To do so, ther egi st er function takes the credential as input and seals it to the
underlying TPM. The interface also providesliascar d function which deletes the
stored credential. The service interface provides acaefiset credentials through a
genericaccess function. We have designed this interface as an extenslbtgip

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 41

interface; that is, the exact nature of the interface dependhe nature of the stored
credential and the type of functionality needed. For examipthe stored credentials
are cryptographic keys, we offer a plug-in service that jgtes encryption/decryption
capabilities so that components can use the interface tygtiaecrypt data without

seeing the actual key. Regardless of the functionalityigexi, the CMS uses the HIM

to verify the aggregate integrity prior to each access tcHueet.

45.2 Virtual TPM Service

A natural extension to the CMS functionality would be to gd®/a miniature TPM in-
terface to the various platform components, as illustraté&dgurg 4.7(H). This enables
these components to have a standardized interface aslind ptbve their integrity
and provides a strong identity for each component. Such proaph has already been
taken through TPM virtualizatiori [9] which gives each VM aMnterface imple-
mented by a virtual TPM service. However, it is not yet cleatthe best mechanism
is for establishing a secure binding between a virtual TPMlitsplatform TCB.

Our framework could be used to bridge the gap between viitBM services and
the platform TCB. For example, a central trusted CMS seremad be used as the
single secure repository for virtual TPM keys. Access tes¢hkeys would require
verification of the complete HIM integrity chain, includingrification of the platform
TCB. For example, to sign a quote request, a virtual TPM waskithe CMS interface
to gain access to its signing key.

45.3 Virtual Network Service

Virtualization provides direct isolation of computing eesces such as memory and
CPU between guest operating systems on a physical platidowever, the network
remains a shared resource as all traffic from guests willteradlp end up on the same
physical medium. Various mechanisms can be used to prowtieonk isolation be-
tween network domains, as described in [13]. In generakygtion must be used for
isolation when network traffic is delivered over an untrdsthared physical medium.

Using our framework in combination with the CMS, one coulagida a virtual
network (VNET) service which provides isolation throughesntryption layer such as
IPSEC. In this setting, the VNET service would store its ergils (e.g., network en-
cryption key) in the CMS, in combination with the expectedRO¢lues of the service
and any ancestor service it depends on (including any patergtwork configuration
information). Because the key is held by the CMS and not lede@ the vNET ser-
vice, any change in the integrity of the service or its ararastmponents would result
in the network link becoming unavailable for the VM conneldte this specific VNET.
As a result, the capability of a VM to communicate with its pegthin a considered
domain would implicitly prove its trustworthiness, whictould provide continuous
authentication as opposed to relying only on an initial tsuadke as most network au-
thentication mechanisms do.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

42 OpenTC D05.4 — Design of the Cross-Domain Security Services

4.6 Implementation in Xen

In this section, we describe a prototype implementatiorhefihtegrity management
framework and the credential management service on the Xeravmachine moni-

tor [20]. The implementation features the management aniceeinterfaces of both.

Note that although we present our implementation with Xée, framework could

equally be implemented on an alternative virtualized orrokernel-based platform
(e.g., the L4/Fiasca [42] microkernel).

4.6.1 Infrastructure Overview

The various components of the integrity management frameai provided by one
or more virtual machines, running on top of the Xen virtualchiae monitor. The
use of virtualization isolates the trusted platform from ialmehaving guest operating
system, and all communication with the trusted platformspaghrough well-defined
interfaces. Our implementation is based on Xen versiort38VMM for the IA32
platform, with the VMs running a para-virtualized versidnL.inux 2.6.18. For inter-
domain communication, we employ the light-weight commatian library introduced
in [5].

Figure[4.8 illustrates our implementation on Xen. In thespre prototype, all
framework components and the CMS are implemented as l@sramd services run-
ning in the Xen privileged management domain Dom0. Howes&xye have defined
interfaces between each of the components, it should biglsficward to move to-
wards a disaggregated approach as describéd in [49]. Timedvark components are
arranged in a layered stack. At the lowest layer is the basisagement and secu-
rity interface (BMSI) that provides libraries for domaifelicycle management (libM),
basic TPM access (libT), and integrity management (libb)th core services layer
are the integrity manager services BIM and HIM that providsib and hierarchical
integrity management, respectively. Also in this layer tae CMS and the domain
management service (DMS). At the highest layer are the gg@@rvices that use the
framework for various purposes. The platform TCB consi$the static components
up to and including the SRTM (the BMSI libraries and the imitggnanagers). How-
ever, for simplicity, we also include the CMS in the platfofi@B. The measurements
of these components are reported to the underlying TPM. ppkcation TCB consists
of the platform TCB plus the security services that run ondbip. The measurements
of the latter are reported to the SRTM.

4.6.2 Component Design

In the present prototype, we have implemented the highdidjlcbmponents depicted
in Figure[4.8, namely the BMSI libraries, BIM and HIM sendg€MS, and DMS. In
this section, we present the details of these componeritgling both the BIM and
HIM; however, due to space constraints, we present an exansgl case that uses only
the HIM.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT

Security services

VNET Service

Dom 0

VTPM Service

Core services

cMs

DMs

o | [|
S
- | |i:;| |‘/\‘| Ii:T | | IibIM |
25 | — BMs! |

Driver
layer

TPM
driver

Xen VMM ‘

Figure 4.8: lllustration of the prototype in a layered stack

43

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

44 OpenTC D05.4 — Design of the Cross-Domain Security Services

BMSI Libraries

The Basic Management and Security Interface (BMSI) pravideommon and ex-
tensible interface to the underlying hypervisor (i.e., Xand the TPM. The BMSI
provides libraries for domain life-cycle management (lipkasic TPM access (libT),
and integrity management (libl).

libM This library provides hypervisor-agnostic managementfions to upper layers.
At its lowest level, the library manages allocatable resesrcalledProtection
Domains (PDs)A PD is an executable component that receives an allocafion
memory and CPU cycles, and is scheduled by the hypervisoXeDrmplatforms,
a PD is equivalent to a Xen domain (virtual machine). In thistgtype, we
use libM to implement the Domain Management Service (DM3$)s Bervice
manages the life-cycle of PDs and uses the integrity mandgekeep track of
PD integrity. We refer the reader {0 |49] for further detaifsthe libM and DMS
implementation.

libT This library provides the minimal functionality to accebg tintegrity and pro-
tected storage interfaces of the TPM. Security services,(B8IM and HIM)
use this library to obtain a signed quotation of the TCB measents and
to seal/unseal data to/from the TPM. To do so, libT uses thiel Tihctions
TPM Quote(), TPM Seal (), and TPM Unseal () as described by the
TPM specification[[74].

libl This library stores and provides access to the integritysmesament and depen-
dency tables. Thget Measur enment () function returns a measurement list
that includes the integrity measurements of the componeahtita ancestors.
In the BIM case, a single value is returned. et Measur enent () func-
tion extends the value of the component register. fTéeet Measur enent ()
function overwrites the value of the dynamic register. akdelConponent ()
function adds an entry to the dependency table and setgiendencies as spec-
ified. It also adds an entry to the measurements table andd®tioe initial
measurements. Thael et eConponent () function checks that the specified
component has no successors and removes it from the table.

Component Interactions

The BIM and HIM services implement the interfaces preseim&gctions 413 arld 4.4,
respectively. Similarly, the CMS service implements theiifaces presented in Sec-
tion[4.5.1 and uses a cryptographic service as a plug-inlémkbencryption and de-
cryption. On a Xen platform, we use these services to marfagetegrity of VMs
and applications running on these VMs.

VM integrity management is incorporated into VM life-cyecteanagement. To as-
sist both, the DMS uses the BMSI library libM and the HIM seeziThe VM start-up
phase in Figure 419 depicts the interaction among these @oemts. During this phase,
the DMS invokes libM, which prepares resources for the VMasuges the VM image
(comprising the kernel, an optional initial ram-disk andreoand-line parameters),
and stores the measurement in the CCR for that VM. This padar function similar

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 45

to a secure boot-loader, and it is the responsibility of #xm&l to measure any compo-
nents which it subsequently loads. The DMS also registera¢w VM with the HIM
service, and configures any dependencies between the newkésting VMs. The
HIM uses libl to store this information in the measuremerd dependency tables.
Following the successful completion of the above stepsDiM& starts the VM.

The HIM service additionally allows applications runnimg\/Ms to be registered
with the framework. The application start-up phase in Fegd® depicts the case in
which the VM that was started in the previous phase loadsegidters a DRM service
with the HIM. In this case, the VM becomes an ancestor of theigeand provides its
initial measurements. As a result, the cumulative intggitthe service now includes
the VM’'s measurements as well as the platform TCB measurtsmen

The last phase in Figute 4.9 depicts a use case in which the BiWice that was
started in the previous phase attempts to decrypt encrypéetia content using a key
that is stored on the TPM on behalf of this service. The DRMiserinvokes the CMS
service interface to request access to this key. The CMSthekes HIM unseal to re-
trieve the key from the TPM. HIM unseals the key if and onhyhi¢ tunderlying policies
regarding the key’s release are satisfied. In this case gh&skinsealed from the TPM
and returned to the CMS if the integrity of the platform TCBnitact. On receiving the
key from the HIM, the CMS performs further verification. Itrapares the expected
CCR values of the DRM service and its ancestor VM (unseal@agalvith the key) to
the current CCR values. If the measurements match, the ClSitsscryptographic
service to decrypt the block, which is then returned to thé/DdRrvice. Note that any
subsequent access requests to the key will also follow dasimerification cycle, with
the exception that HIM (hence TPM) seal is omitted becaus€MS caches the key
internally.

4.7 Related Work

Bergeret al.[9] implemented a virtual TPM infrastructure in which eadhwal ma-
chine is assigned its own virtual TPM that provides multigie access to the under-
lying hardware TPM. In comparison to virtual TPMs, our woldes a single integrity
management framework that encompasses all componentden tr explicitly rep-
resent trust dependencies between them. Our frameworkriplementary to virtual
TPMs in that we can use virtual TPMs to gather more granulatime measurements
for our components, and can enhance virtual TPMs by progiditinding between
them and the platform TCB through the use of CMS.

Several systems have been previously described that usalvinachine monitors
to isolate trusted and untrusted components. Teérra [27 isrehitecture that uses a
trusted virtual machine monitor (TVMM) to bring the secyritdvantages of “closed
box” special-purpose platforms to general-purpose comgutardware. The TVMM
ensures security at the virtual machine level, isolatingsfMm one another, providing
hardware memory protection, and providing cryptographé@chanisms for VMs to
attest their integrity to remote parties, even providingtection from tampering by
the platform owner. Microsoft’s proposed Next-Generatiecture Computing Base
(NGSCB [23]) operates in a similar manner, partitioning atform into two parts
running over a virtual machine monitor: an untrusted, unifiexdi legacy operating
system, and a trusted, high-assurance kernel caltezkas Our work builds on both
to examine how integrity measurements can be stored andaireed.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

46 OpenTC D05.4 — Design of the Cross-Domain Security Services

‘ DMS ‘ EMS.M?.M‘ PDMM‘ ‘wnws‘ ‘ cus ‘ ‘QMSQWQ‘ ‘ HIM ‘ ‘BMSH\M‘ ‘amsuml‘ ‘ IeM ‘
1 preparevm) |
reparePD()
register()
[addcomponent)
W o 1]
start-up .
VM_READY
O
startPD()
PD_STARTED
VM_STARTED regigeer()
- laddComponent
Application ponent)
start-up cip ’H
cp
DRMSun() 1
access() !
1
unsgal() H H H
! 1
unseal())
TPM_unseal()
unseaneu,muh" ‘
unsealed_blob
Decrypt unsealed_blob |
content petheasurements(} 1
1
1] !
1
1
rerity() 1
1
P !
decrypted_blob i
fm———== 1
decryptedConten !)
k
T 1 1
J ! 1 1
v 1 1 1

Figure 4.9: Sequence diagram of interactions between #rediwork services for a
DRM application use case.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 4. HIERARCHICAL INTEGRITY MANAGEMENT 47

Sailer et al's implementation of a TCG-based integrity measuremenhitec-
ture [65] was one of the earliest works to demonstrate theofise TPM to verify
the integrity of a system software stack. [n][36], Janseal. propose an architecture
for protection, enforcement, and verification (PEV) of ségpolicies based on a tree
structure containing integrity log data, where each noaeaios the data for one com-
ponent and its children contain the data for its sub-comptmeEV approaches the
problem of trust flexibility and extensibility by defining @&igeralized attestation pro-
tocol. A verifier sends an attestation request containinghh descriptor that defines
a projection function returning the subset of the intedoty of interest to the verifier.
Sadeghet al. [60] extend the TCG notion of trust in a different directionfiroposing
attestation that is not based directly on hardware/softwashes but on abstract plat-
form properties. Rather than checking a large list of peaediplatform configurations,
their system checks whether or not a given platform posse&dil certificates attest-
ing to the desired properties. Such property certificatesssued by a trusted third
party that associates concrete configurations with theguti@s they provide. Our sys-
tem differs from these in providing a more granular verifmabf components such as
individual virtual machines and applications within a fifat, representing dependen-
cies among them, and managing changes to measured comgonent

Other orthogonal previous work has explored distributedttand mandatory ac-
cess control. Griffiret al. investigated secure distributed services with TrustetUslr
Domains|[31], which are intended to offload security analgsid enforcement onto a
distributed infrastructure. Berget al. use this abstraction in the Trusted Virtual Dat-
acenter (TVDc)[[10], which shares hardware resources amiotugl workloads while
providing isolation with a mandatory access control poécyorced by the sHype se-
curity architecture [64].

4.8 Conclusions

In this paper, we have introduced a novel integrity managerframework that im-
proves on the integrity measurement and policy verificatiapabilities of present
Trusted Computing solutions. In particular, our framewirlable to cope with the
proliferation of measured components and dependenciegbatthem as well as dy-
namic changes to platform components. In essence, thevirarkémplements a small,
software-based root of trust for measurement (SRTM) thatides a secure link to the
core root of trust for measurement (CRTM). We have implemeor framework on
the Xen virtual machine monitor and proposed several wayshioh security services
could take advantage of this architecture for policy veaiiien and access control.

We anticipate integrity and trust management to becomeced|yauseful for appli-
cation and service level components. We will therefore iooiet to investigate further
potential uses for our framework by user level applicatidnghe short term, we plan
to implement CMS-aware services such as a virtual netwarkceebased ori [13] that
uses the CMS to store encryption keys. The virtual TPM seridcalso particularly
interesting. In the long term, we plan to investigate vasiatays of exploiting our
framework to help enhance the security properties of ViftiV services (e.g., their
binding to the platform TCB). Conversely, we plan to useuat{TPM services to help
enhance the measurement capabilities of the HIM framewudkpaovide more granu-
lar run-time measurements compared to a single CCR.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Chapter 5

Trusted Channels with Remote
Integrity Verification

Ahmad-Reza Sadeghi (RUB), Martin Unger (RUB), Yacine Ga@uB), Patrick
Stewin (RUB), Gianluca Ramunno (Polito), Davide Verni£2o(ito)

5.1 Motivation

At the dawn of a new digital era where users all around thedvoelgin to make use
of services like on-line banking, e-commerce and e-goventraervices, as well as
distributed work, we are facing a problem becoming more aodenapparent: The
ability to enforce access control and provide secure conicatian is crucial to the
security of many of these services. Since the usage of mastese services relies
on the Internet which is a completely open medium, securenuanication and access
control are normally based on the establishment of securememication channels as
provided by common security protocols like TLS [19] or Imtet Protocol Security
(IPSec)[39]. These protocols provide functionality totert data during transmission
between authenticated endpoints. However, these pratdeohot protect from mali-
cious or virus-infected endpoints. With respect to comroatidn over the Internet the
protocols themselves are rarely the target of attacks.ckétas focus on the endpoints
because their security mechanisms are usually much easigetcome.

This leads to the central problem of today’s secure chamwtbpols: using a se-
cure channel to communicate with a peer whose integrityngatetely unknown opens
doors for a wide range of attacks, e.g., so called “phishorgdata theft by infiltrat-
ing a platform with a Trojan. Thus, sensitive data trangf@éro a counterpart could
be compromised as soon as it arrives, no matter how secugrabecol chosen for
transmission is deemed. The conclusion is that the secaxésfon of digital services
over the Internet is not possible without considering enmulgotegrity.

For this purpose some sort of information and evidence ondbaterparts integrity
or configuration has to be provided. This has to be done inareemnd reliable man-
ner to enable the peers to judge each other’s “trustwortlsinkeased on information
received. Reporting configuration information of a remdsfprm is one of the main
features of Trusted Computing (TC) as proposed by the TduStmputing Group
(TCG)([74]). The basic idea is to securely capture confijonainformation or fin-
gerprints of the core components of the platform (firmware software). This infor-

48

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHONA49

mation is stored in a cost-effective, tamper-resistansted Platform Module (TPM).
The TPM in turn is mounted on the ma-inboard of the computiladgfgrm and acts
as trust anchor. It can sign gathered configuration infaonaand report it to a re-
questing party. This process is calletiestation by the TCG. Additionally data can
be stored bound to a specific platform configuration. The T@I& ¢his mechanism
binding/sealing data.

Thus, we chose to base our approach on the combination of TC@uiction-
ality and the TLS protocol, forming a Trusted Channel. Thetia feature of the
Trusted Channel is the capability to provide reliable emimbeconcerning the trust-
worthiness of a communication partner. Furthermore, bynaed a specific system
architecture based on virtualization we are able to enfaredidentiality, integrity,
authenticity and freshness of data not only during transmission but also on the in-
volved endpoints. It has to be pointed out that the linkageoofiguration information
provided by TC facilities to the TLS channel is crucial toyeetrelay attackswvhere
the configuration of a third platform, deemed trustwortlsyrélayed by an attacker,
acting as Man-In-The-Middle, to the counterpart, hiding #itacker's own malicious
system configuration.

Linking endpoint configuration information to secure chalsrhas been already
investigated in the literature (cfl_[29, 169,162] 46] B7| [18]) 5often also combined
with the TLS protocol because it is the most common possibiti provide secure
communication channels. The TCG also addresses this issusgecific work group
(cf. [73,[80]). However, none of the solutions so far addeegte problem fully. In
a recent approach (cf. [28]) a protocol and a generic systehitacture for establish-
ing and maintaining Trusted Channels, using TC functispaind the TLS protocol,
was proposed that overcomes the shortcomings identifidtkiprteviously referenced
concepts. But, that approach in turn incorporates othecidafiies. Some concepts di-
rectly violate the TLS specification (cf._[19]), e.g., by atiag specified data formats
within the key exchange messages or adding data to sessyocokeputation. Fur-
thermore, only a RSA key transport handshake is possibleceShe Diffie-Hellman
variants of the handshake are at least as important it iSatriacprovide support for
them. Additionally, fundamental functional requiremeliks, e.g., backwards com-
patibility, technical feasibility, costs of certificatiggrocesses or updates of the TCB
are not taken into account.

Main Contribution: To overcome the described shortcomings we present a hew ap-
proach that bases on [28] but, in turn, respects functi@girements listed in detail

in Sectior 5.2 and focuses on a reference implementatiendble the deployment

of our approach.

Thus, our main contribution is that our concept (1) fully ad¥s to the TLS specifi-
cation and uses existing message extension formats to yoowdiguration informa-
tion. Thus, no time consuming and complicated specificgtimtess has to be con-
ducted. This, in turn, enables a fast deployment of our gwiufTo further facilitate a
widespread deployment we (2) designed our concept to incatp functional require-
ments like, e.g., the possibility to update systems wittloeitneed for re-certification,
backwards compatibility, performant system design as aglhcurring no additional
costs for the users. Apart from that (3) support for all ratenkinds of key exchange
methods is provided. Furthermore, we (4) present a referenplementation of our
Trusted Channel protocol and security architecture.

Outline: In Sectiof 5.2 we define the properties to be provided by &u€hannels.
Then, in Sectiof 513, we show the basic idea that our apprstachs from, followed

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

50 OpenTC D05.4 — Design of the Cross-Domain Security Services

by the detailed description of the security architecturé #re protocol our Trusted
Channel bases on in Sectidns|5.4 5.5. Subsequentlyomecslt implementation
of a secure TLS framework in detail in Section]5.6. Finaltyttie Sectiong 517 and
5.8, we present considerations regarding the securiiteglas well as the functional
requirements described in Sectfon|5.2, concluded by a Suwnimary in Sectionh 5.9.

5.2 Requirement Analysis

In this Section we define the properties of our Trusted Chlacorecept and derive the
requirements necessary to provide those properties.

Adversary Model: The attacker may be a normal user or even the administrétor o
a platform, either eavesdropping the communication betwe® platforms or con-
trolling one of the peers directly involved in the communica. He is capable to
manipulate the software running on a platform, further he eavesdrop, replace, re-
play, relay or manipulate data transferred. But, we do nosicter hardware attacks on
any platform directly involved in the communication usingrasted Channel.

5.2.1 Security Requirements

In this paper, we adopt the security requirements presém{2&] for a Trusted Chan-
nel:

(SR1) Secure channel propertiestntegrity and confidentiality of data, freshness to
prevent replay attacks, and authenticity both during trassion as well as within
the endpoints have to be provided.

(SR2) Authentic linkage of configuration information and seure channel: Au-
thentic configuration information has to be delivered dgtime establishment and
while the Trusted Channel is in place (e.g., the system steages).

(SR3) Privacy: Creation and maintenance of the channel should adhere teake
information paradigm, i.e., disclosure of a platform’s figaration information
not beyond what is necessary for proper validation. Funtioee, platform con-
figuration information has to be protected against disclsu a third party.

5.2.2 Functional Requirements

Looking at the wide area of application of TLS on, e.g., sesvdesktop-PCs, laptops
and infrastructure devices like gateways, all with différeinctional needs concerning
the setup of Trusted Channels, it becomes obvious that quoaph has to adhere to
certain functional requirements. Thus, in addition to theusity-related, our approach
fulfills the following functional requirements:

(FR1) Fast deployment support :The alterations to existing software have to be as
small as possible and additional concepts introduced dimake use of and have
to adhere to existing specifications. Apart from that alevaht key exchange
techniques have to be supported.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHAONS1

(FR2) No additional costs are induced:The whole approach must not incur any
additional costs for users like, e.g., for expensive hardwsoftware or certifica-
tion.

(FR3) Minimal performance overhead during handshake:The overhead induced
by exchanging additional configuration information haseafinimal.

(FR4) Flexible configuration reporting: It has to be possible to apply different
approaches to integrity reporting (e.g., see [59]) to suppmultitude of differing
system and use-case designs.

(FR5) Backwards compatibility: Systems supporting the Trusted Channel ap-
proach have to be able to establish conventional securenelsre.g., to peers
that do not provide the means to create and maintain TrudtediiIs.

5.3 Basic Concept

The fundamental idea behind this approach consists of tiétat platforms involved
in a communication comprise a small, protected base systesefsitive operations
as well as application and further system code for nonealitomputations. The pro-
tected base system is not accessible for other code runminigeoplatforms except
over specific interfaces and thus cannot be tampered usitvgase. Two asymmetric
key pairs are held inside the base system, their usage seborend to the base sys-
tem’s configuration using TC functionality: a signature Kgy;,,, and an encryption
key Kene-

TLS offers key agreement or key transport schemes as ogtotise initial hand-
shake protocol. During a Diffie-Hellman (DH) key agreemenfit Eigurel5.1)K 4,
is used by both peers to sign configuration datafig) and the public DH valuds.
In a RSA key transport handshaken fig is signed with/(,;,, and then the{,,,. of
the server®) is used by the client]) to encrypt session key material (see also Figure
E.1). In both cases evidence is provided that the protecisd bystem, whose con-
figuration is included ircon fig, is in place, by providing proof of possession of the
respective private parts of the keys. Subsequently, dfeeevaluation of theon fig
of the counterpart, the peers either trust in the other eintlp@rotected base system
to enforce their security requirements or they break theneotion. In any case all
security sensitive information related to the channeludiig the session key is kept
inside the protected base system and hence cannot be compdoon misused.

5.4 System Architecture

Our logical system architecture is shown in Figlurd 5.2. lased on security frame-
works as proposed, e.g., in [61], [64], and consists oApplication Trusted Service
Virtualizationas well asTC-enabled Hardware Layeie kept our approach generic,
thus it would be possible to implement/integrate the congpé;mon common operating
systems like, e.g., Linux or windows.

1Sig(m; k) denotes a signature of kéyover datam.
21f monolithic operating systems are applied some congsdiave to be considered when looking at
the security of such implementations because in generglatenot capable to ensure strong isolation of

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

52 OpenTC D05.4 — Design of the Cross-Domain Security Services

DH Key Agreement RSA Key Transport

Client Server Client Server

channel _initialization channel _initialization -

Sig(config® ;SKS,,) Sig(config® ;SK3,,)

Sig(DH _public®; SK5,,) PK,.

c

Sig(config®;SK&,,) Sig(config®,; SK¢,,)

Sig(DH _public®; SK&) Enc(session_key ; PKS)

£ £
2 2 2
] @ @
> > >
[7) [7) 7
o o A
@ @]
© 1 ©
] 4]]
° ° o
] 2 2
° ° °
2 2 2
° ° °
o o o
o o o

Protected Base Syste!

Yy v Vv

session _key _confirmation session_key _confirmation

Figure 5.1: Key Agreement and Key Transport in our concept

5.4.1 Basic Definitions

The underlying system architecture considers clientesargmmunication where each
involved endpoint may require configuration informationtleé other endpoint to be
able to judge its trustworthiness.

The evaluation of configuration information is done accogdio the locally ap-
plied security policy. If the other endpoint’s configuratimformation conforms to the
security policy, this endpoint is considered to be trusttwarThis security policy con-
sists of a set of requirements and guidelines that have tollikel by the platform
configuration of the counterpart, e.g., that an appropdatess control enforcement
mechanism is in place, no malware installed, etc.

The configuration of a platform is represented by a comlonatif credentials
vouching for security relevaniroperties (cf. [6Q]) of the platform’s components
(hardware and/or software) which are e.g., their statefigoration and 1/0 behav-
ior. Examples for different credentials used in our implatatéion are signed digital
fingerprints or certificates that represent certain progert

In this context reference values represent digital fingetgpprovided and signed
by a Trusted Third Party (e.g., the distributor or manufestof a component) that can
be compared to fingerprints provided by the peer.

The mechanism of deriving digital fingerprints is callecasurement. In the
TCG approach measuring a component means computing a hlashoweer its code
and/or its configuration file. There exist also alternatippraaches to attest to certain
properties like, e.g., Proof-Carrying-Code (¢f. [[6] 26,/50]) or Semantic Attestation
(cf. [33], [53]) but further research is needed in this fiedrtake those concepts usable
for real-world applications.

The communication endpoints of our implementation opdyased on components
called compartments. A compartment is one or a group of sséhwomponents that is
logically isolated from other software components. ISolameans that a compartment
can only access data of another compartment using specitidaces provided by a
controlling instance.

The set of all security critical components of a platfornpissible for preserving
its trustworthiness is calletrusted Computing Bag@ CB) in analogy to the protected
base system mentioned in Secfion 5.3. The TG®issidered trustworthy by definition

processes and corresponding data.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHAONS3

Application (e.g., server)
using Trusted Channel
Application (e.g., Browser)
using Trusted Channel Other Compartments TLS frontend

r 3 7 y

Application Layer Ll—]

[oomparient | Il Compartment
PrOXy ‘ Manager Manager
Policy TLS backend
L TLS fronten ?EE] Manager
Trust Manager Storage
TLS backend Manager Trust Manager RN
Trusted TSS Trusted 1SS
Service Layer| ETHO Service Layer ETHO

‘ Hypervisor/Microkernel

Virtualization ‘ HyperVIsor/MlcrokerneI ‘ Virtualization

aver Layer TPMH-CRTM
r:N,C TC-enabled Hardware ’—TE TC-enabled Hardware (cRTv]

Hardware Hardware
Layer Layer

| unencrypted data [encrypted data /. TCB component [untrusted

Figure 5.2: Layered Logical Architecture

because it is kept protected against software attacks arallydwvas analyzed with
respect to a certain security evaluation scheme (e.g., Gom@riteria). Thus, the
main goal of our system design is to keep the TCB as small aslpgeso avoid known
problems and vulnerabilities arising along with code caerijby.

5.4.2 The different Layers of the Architecture

In this section we present the different layers (cf. FiuB} &e need for the realization
of our approach.

TC-enabled Hardware Layer: We assume that the reader is familiar with the TC
concept of the TCG and fundamental virtualization conceptsthus keep this section
covering these topics short and refer to AppeindiX A.1 fottfer reading.

The hardware layer has to offer TC extensions that are conforthe relevant TCG

specifications (e.g.[_[74]). This essentially means thabimprises a TPM offering

basic cryptographic functionality and a small amount oftgcted storage to store im-
portant keys and measurements taken.

Virtualization Layer : The virtualization layer offers and mediates access te cen
tral hardware components like, e.g., CPU and MMU (Memory Bgement Unit).
These tasks can be performed by many kinds of virtualizagohniques, namely hy-
pervisors, microkernels or a monolithic OS running a vilizgdion application, e.g.,
VMware (cf. [81]). As already mentioned we aim for a small T@Bd thus do not
consider the last option although it could also be used.

Trusted Service Layer. This layer consists of security services and providesfiates

to the Application Layer. These interfaces allow applicasi to use enhanced security
functionality strengthened by Trusted Computing. It alsdimtes and monitors access
to virtualized hardware resources. The following servesesthe main components of
the TCB in our approadﬁ!:

3Some components, namely Storage Manager, Compartmentgetanad Trust Manager have been
developed within the OpenTC (cf._[54.]140]) and EMSCB ($ed)[pbojects.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

54 OpenTC D05.4 — Design of the Cross-Domain Security Services

e Trust ManagenTM) provides functionality used for establishing Trus@dan-
nels. To be able to provide this functionaliy/ bundles multiple calls to the
TPM into a simple API for calling instances. It enables aall® create com-
plete certificates including measurements and bound kegditidnally, it offers
functionality to bind/unbind, seal/unseal (cf. [74]) thdseys to specific platform
configurations or to report current measurement valuesdioside the TPM.

The keys used to set up and attest in the Trusted Channelmiosmeecomputed
and held by thel'Ml . They never leave the TCB. The session keys of the TLS ses-
sions are computed in a special component of ffié: the TLS backend. This
component represents the back-end of #eS frontend doing the actual en-
cryption and decryption of the data packets. Furthermok&allocates memory

for transferred data and controls access to it according pplication security
policy held by thePolicy Manager PM.

e TLS frontend is the front-end to th€'LS backend within TM . Itis responsible
for setting up TLS connections and doing the message foimgathterpretation
and creatior'%

e Compartment ManagefCM) measures compartments when starting them. To
differentiate client compartment€A/ assigns a unique ID to every compartment
(complID). The compartment’s configuration is appended togethdr igtID in
a Configuration Data StructurCDS). CM takes care of keeping' DS secure
(inside the TCB) and providing it to other TCB component3)/ also acts as
root for a set ofmonitoring agent®ach one running in a different compartment
keeping track of code execution. Thus, every change in tinfigiaration of a
running compartment will be reported by one of these clibatk to theC'M that
stores them and in turn reports the measurements taken o iogtances like,
e.g., theTM l

e Policy Managen(PM) stores platform and application policies and provithesn
to other components of the TCB when neefled.

e Storage Manage(SM) handles persistent data storing for the different carap
ments. It can encrypt keys and data usingrithe — migratable Kiorege that is
bound to the complete TABEvery compartment owns some storage (e.g. a hard-
disk partition) that is bound to this compartment by enangthe data stored
using K.omprp. Thus, no other compartment is able to access this compattme
storage unless this is explicitly allowed by the securitliqyo

e Proxyis a small proxy server that acts as endpoint for the TLS cctioreand is
configured byT'M.

e TPM Software StackTSS) presents an API to access TPM functionality. This
component is defined in the according TCG specifications[f&]). In our im-
plementation we usefirouSerS (cf. [57]).

For direct communication between processes, IPC (Intecdds Communication)
functionality are used. Additionally, virtual Ethernetrstections are applied for inter-
compartment communication. For our implementation we eto®ffer two possibili-
ties to use the Trusted Channel: either directly by usindlthg frontend or indirectly

4For a more detailed view on the TLS components and their impfgation see Secti¢n 5.6.

5The Integrity Measurement Architecture (df. [65]) that wdesigned by IBM Research shows how this
can be done.

6This component is not implemented yet, for the prototype pmied fixed policies.

" Kstorage represents thStorage Root Key (cf. [74]) that is kept inside the TPM as root for the whole
key infrastructure. This key is labeletbn — migratable. That means the key’s private part never leaves
the TPM.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHONS5

by using a proxy server that in turn includes tfisS frontend. The second one is es-
pecially useful for the “transparent” deployment of Trus@hannel§

Application Layer: The application layer consists of different compartmemts ap-
plications. This may be whole operating systems or spedgifdieations running di-
rectly on the hypervisor/microkernel.

5.5 Credentials, Extensions and their Usage

In this section we show which credentials and extensionsefiaeld to adapt the nor-
mal TLS handshake to our approach.

The new credentials are necessary to bind the TLS chanrte tertdpoints whose
configuration is reported and to be capable to prove that t&inefCB is in place
without interaction with the TPM every time a Trusted Chdniseet up. Otherwise,
this would result in a significant performance loss, esplgdiaconnection with server
systems. Additionally, we want to be able to change the TCifigaration without
requesting a new TLS certificate every time this is done. Wusld not be possible
if a non-migrateable key was used during the handshake becasgealing such keys
to a different TCB is not permitted. Therefore, we presentcez@dure that allows the
update of the TCB without compromising the TLS keys and thresgrves the validity
of the TLS certificate.

The introduced extensions are necessary to trigger andiatgthe exchange of
configuration information as well as for the transport of éldelitional data.

5.5.1 Keys and Certificates

Binding Key (Ksxag) and SKAE: The non — migratable asymmetric key pair
Kskarp (PKskag, SKskag) is created after an Attestation Identity Kel A ;x)1 has
been installed. Its private pasti sk 4 £ is sealed to a specific TCB usitQ;orqqe and
never leaves the TPM unencrypted (see Fifure 5.3). We makefuleSubject Key
Attestation Evidenc€ SKAFE) as proposed by the TCG (cf._[72]yKAFE can vouch
that Ksx 4 was created by @rusted Platfornthat conforms to the TCG specification
(cf. [74]) and that a certain TCB configuration has to be ircplduring release.

Bound Encryption Key (K.,.) and Bound Signature Key (K;4,,): We introduce the
asymmetric key paiBound Encryption KeyBEK) K.,.. (PKcne, SKene) andBound
Signature KeYBSK) Kgign (PKsign, SKsign), that are considered long-lived and us-
able for all client compartments that wish to establish ast&#d Channel to a remote
party. They are created and sealedlby usingK:orq.qe atany time before the Trusted
Channel is set up. TheRK.,. and PK,,,, are included in a specifi€LS certificate
(certrors). The certreors of S will likely be signed by a CA like e.g. Verisign. In

8“Transparent” deployment means that applications runitinglient compartments are not involved in
setting up the Trusted Channel. This is instead triggerethéyplatform or the application policy kept by
the PM, e.g., during the installation of the TCB or the applicatitself.

9This is a specific signing key defined in the TCG specificatitvas can be used to authenticate a user
and/or his system. It is kept securely inside the TPM and céwy lze used for signing stored measurement
values or certifying other non-migratable keys (cf.1[74]).

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

56 OpenTC D05.4 — Design of the Cross-Domain Security Services

sealed

compIDx " [Kpsk -mi Ky

signs signs

Figure 5.3: The key hierarchy

contrast thecertcrs Of C could also be self-signed I But, if C wants to be able
to attest to its state, some kind efrtr¢s is needed during for the TLS handshake.
SKene andSKy;g, are loaded during the start of the platform and kept insid€l@B.

We needKgsk 4 to authenticatek,,,. and Ksign By signing PK.,. and PK;gy,
using SKsxar_we provide evidence thaiK.,. and SK;4, are kept secure inside
the same TCE] To use K 4k directly for this purpose is not allowed by the TCG
specification. Thus, the usage Btk 4 indirectly vouches that a certain TCB is in
place. Therefore, tHePM_Sign() function is applied to sig.,,.'s and K, 's public
parts withSKgx 4. This is done wherf'M is initialized.

5.5.2 TCB Update Management

It has to be possible to update the TCB without requiring a me® certificate. The
problem here is that a system in an updated state (and ity lpeeto be able to judge
the former state, because otherwisg,. and K4, may have been compromised and
a new certificate is needed. To be able to do this we keep aesekutigelog. The
changelog holds the name and hash value of the component that has bdatedpor
replaced. Additionally it contains a link to a certificate &dyrusted third party (e.g.,
the manufacturer) that vouches for these values. If a caeiplaew component is
installed without replacing or updating an old one, thistesed in the same form but
marked as new.

The update process begins with unsealff¥,;,, and SK.,.. Then the new
package s downloaded from a trustworthy entity together witht,,,44¢. CONtaining
the hash value of the component after installation. Th@#h computes the foreseen
configuration of the platform after the installation usihg thash value comprised in
the certificate replacing the values of the updated comgaon#me CDS and it updates
changelog. Subsequenth¥K,;,, and SK.,. are sealed to this state and the resulting
encrypted keys stored byM. In a last step the newackage is installed. After this
process the platform has to be rebooted to let the changesttdct.

101t would also be possible to ug€sx 4 instead ofK ;4n, for signing during the handshake. But then
the involvement of the TPM every time a Trusted Channel isipetould be necessary.

11The TCB must checkligest at creatiorand digest at releasef the stored key data objects (cf._[76,
p.89]) before signing it witl6 K s 4 g to be sure that they were not compromised by a former TCB.

12This may be considered like a package structure as it is useeveral Linux distributions, e.g., rpm or
deb.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTER 5. TRUSTED CHANNELS WITHREMOTE INTEGRITY VERIFICEON57
5.5.3 Extensions used in the TLS handshake

TLS message extensiong(cf. [24]): Attestation FEaxtension (AEXt) or
State Change FEaxtension (SCExt) are transmitted within th&lientHello or
ServerHello messages. The first one is used in the initial handshake tdiatgwhich
side C and/orS) has to attest to its state, the type of attestation and-statgtoring
supported or if privacy of attestation information is dedirSCFExt is used to inform
the peer of a state change on the counterpart and to transpdiguration data in a
re-handshake (cf. Sectién 5.5.6). This re-handshakegigdred when a state change
occurs on any side and if the corresponding state monitarpipn was selected in
AFEaut.

Additional handshake message To convey configuration information additional
SupplementalData extension messages are used (Sek [66]). They includextdr,
keys, a digeBf of the nonces sent in the TLS Hello messagesangertics depend-
ing on what kind of attestation and key exchange was chosethérmore, a Signature
Sig.p over the attestation data) is appended:

nonceSD «— digest(nonce$p,,,noncespy,)

Sigpspi « sign(digestPKenc, PKsign); SKskAr)

properties := { CDS, certificates, re ference values, changelog }
aD :={ SKAE, PKskag, Sigpsex, nonceSD, properties }

SigaD — sign(aD; SKsign)

Apart from our approach also other concepts of attestatiersapported. If, e.g., the
TCG attestation mechanism should be used, a digestwfeSD, PK.,. and PK;g,

is given as external data to th@M_Quote() function of the TPM (cf. [[74]).aD then
contains the following values:

propertiestceg = { CDS, TPM_Quote, certificates, reference values,
changelog }

aDrea = { nonceSD, properties }

SigaD — Sign(aDTCG; SKsign)

In caseprivacy of attestation information is desired by one of the commaiiba
partners, ndSupplementalData messages are sent within the first handshake. Thus,
a second handshake is performed directly after the first orex¢hange attestation
information encrypted using the session key negotiatelddmptevious handshake (see
[66]).

5.5.4 Trusted Initialization

To be able to attest to a platform’s configuration, its hartti aoftware components
have to be measured reliably and those measurements hagestorbd securely. An

13The term digest stands for a SHA1 message digest(cf. [22]).

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

58 OpenTC D05.4 — Design of the Cross-Domain Security Services

TPM

TPM _UnSeal (encrypted(SK .., SK y40))

SK ., SK g5~ deC(SK ye, SK 005 K grorage)

torage

Skenc 4 Sszn

TPM _Sign(encrypted (SK gr), digest (PK u,., PK 440))

SK siar = deC(SKsiar s K storage)

SigBESK «sign(digest (PK ,,., PK ,,,) ; SK sgar)
SigBESK

Figure 5.4: Initial Interaction with TPM to retrieve necasskeys and credentials

ongoing measurement process is effected originating flenCore Root of Trust for
Measuremef that initiates the measurement process up to the Applicatyer. Ev-

ery componentthat has to be loaded during the boot procassdasured before passing
control over to it. Consequently,@Ghain of Trust{(CoT) is established and the TCB is
measured reliably. These measurements consisting of lahistswover loaded code are
stored inside the TPM and represent $itegtic configuratiorin our approach because it
must be only modifiable with a following reboot. After the hpoocess platform moni-
toring is conducted by'M . CDS that reflects the platform configuration is maintained
by CM. The configuration of compartments that run above the TCBemt thealy-
namic configuratiorbecause we allow state changes to happen. In our approach the
CoT is initially built-up until the TCB is loaded and runningo be able to provide
support for Trusted Channels a random generator, seedeglTP{_GetRandom() at
boot-time, provides randomirp,,. After the system has booted-up and the TCB is

in place, TM unsealsk.,. and K;4, and signs their public parts withk sx 1 (See
Figure[5.4). TM now holdsrdrpy, KS... KS,,, PK§ap andSigpsex. Now, the
system is initialized and ready to build up a Remote Trustedn@el. Subsequently,
CM extends the CoT when a client compartment is loaded thatomihsp of the TCB.

5.5.5 Adapted TLS Handshake

In this Section we describe the linkage of integrity repagtio the TLS protocol. We
designed our approach to be able to use all common TLS keyexgettypes like DH-
RSA, RSA, DHE-RSA and DH-anon (cf.[19]). In the followingample the RSA key
exchange will be applied in a mutual attestation scenaribauit need for priva(ﬁ

Negotiating Security Parameters:To setup a Trusted Channel t&.S frontend (cf.
Section5.4.R) requests the start of its back-end. Thenatbearties involved in the
communication negotiate the attributes of the Trusted Gbhtiney want to establish
(see FiguréXkl5). Those attributes are. e.g., the ciphigrthat will be used or details
concerning the configuration data that is exchanged. Tiifeon each side is responsi-
ble for composing thel Ext and fetchinguonce$p,, from rd Sy, ,. Therefore, TM has
to take care that the channel set-up respects platform guictajion policy provided
by PM.

14This is a small piece of code initiating the measurementgs®eat the very beginning of the boot process.
Usually, this code is located within the BIOS.

15Examples using different key exchange types are describadechnical report available at
http://ww. trust.rub. de.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

http://www.trust.rub.de

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHAONS9

nonceSD® —digest (noncefy,,, noncejy,,)

get(nonceyy,, , AExt®) aD®:=(SKAE®, PKjy,; , Sig}sx ,nonceSD®, properties®)
i0S s S GKS
ClientHello(nonceS,,, , AExt®) Sig,p—sign(aD”;SK gq,)
- s s S @inS
get(nonces,, , AExt®) aD",Siggy)
ServerHello(nonce$,,, , AExt®) " o s s s -
- clo(nonce py ALXE eval(digest(aD®)=ver(Sig3,; PK3,,))

SupplementalData(aD®, Sig5,) « — — — — —{ eval(digest(nonce,, noncey,,)=nonceSD?)

Phase
|

- 51 s
ot (cert?, eval(SKAE®)
o Certificate(certSy_ps) geticertic_ns eval(digest(PKS,,, PKS,,)=ver (Sigh o ; PKixar))
- Certyficate(certe.ns) .
g eval(properties®)
S CertificateRequest ()
ow
SupplementalData(aD®,Sigg,) «— _ _ _ _| noncesp-digest(noncef, nonces,,)

aD®:=(SKAE®,PK$y,; , Sigsx ,nonceSD® , properties®)

_ Certificate(certfc o), Sigiy—sign(aD® ;K1)

get(certic_ns

c
K
EX]
8 | _get(rdse) (aD® SiaC
& 2 | TAMSonolrdu PG, SupplementalData(aD®, SigS,) _
o) iaC . PKC
ClientKeyExchange(PMS) evalidigest(aD®)=ver (Sigy; P iyn)
eval(digest(noncefp, , nonces,y)=nonceSD®)
<
Sig,,.,—sign(prev;SKE,) rdg, —dec(PMS;SKS,,) eval(SKAE®)
" ” e eval(digest (PKS,,, PKS,,)=ver (Sigesx ; PK)
CertificateVerify(Sig,,.,) eval(properties®)

prevver(Sig,,,; PKS,,)

ms« PRF ('ms', nOnCe p, ,nONCe sy, Tdscx) Attestation Data Composition, Transfer and Evaluation

compute(SeK) ms PRF ('ms’, nONCeSp, ,NONCE Sy, 1d k)

) compute(SeK)
ChangeCipherSpec

Finished

Session Key
Computation

Figure 5.5: Adapted TLS with Attestation Data

Configuration Exchange: Every side provides evidence related to its configuration
and integrity. On each sid€upplementalData messages are composed for this pur-
pose. Thus, thd'M fetches platform credentials as well as those relate@iap /D
from storage usingM (cf. Sectiof5.42). Th&€M provides the curren€DS. Fur-
thermore, M computesnonceSD and puts all those elements into th® structure
and signs it usin@K;gn, -

Configuration Validation: In this step every side evaluates the configuration of the
counterpart. Therefore, the data received inside&tagplementalData message is
analyzed and verified byi'’M. First, the SKAF is evaluated using either the op-
tional certsxag Or reference values and additionakerti ficates provided by the
peer and/or trusted third parties. Subsequer@#),S is verified the same way and
nonceSD? is compared tomonceSDC. Finally, Sigpsrpr and Sig,p are inspected
by TM using PKskar and PKj;,, of the counterpart. Theertrcrs is checked by
the standard TLS software. If any signature check or corditipm verification fails,
communication is aborted issuing a corresponding TLS &&r{19]). The platform
policy could allow the evaluation of the configuration evide reported by the peer to
be shifted or extended beyond the initial handshake. In stimemstances this may
be desirable to further increase performance of the chaetep.

Computation of the Session Key:The C sends random key materialdis.) taken
from rd$5,, and encrypted usingK >, representing thé@reMasterSecret (PMS)

to the server inside thé€lientKeyExchange message. Furthermore, with the follow-
ing Certificate Verify message the possessionaﬂ’ggn is proven, as well asdg.x
authenticated by signing a digest over all previously ergleal handshake messages
(prev). The server in turn proves possessionSdéf?, . by decrypting PMS. Subse-
quently, the Session KeyS¢K) is derived from the samewaster secret (ms) on
both peers (cf.[[19, p.24]). Finally, key exchange and hhakls are finalized by the
ChangeCipherSpec protocol and finalFinished messages. Thed@nished messages
are already encrypted usitg K, thus, a failure in key exchange would be noticed (cf.

[19, p.51]).

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

60 OpenTC D05.4 — Design of the Cross-Domain Security Services

Application (or proxy) ; Comrqunical\on channel
| compartment ‘Application (or proxy) using | | [:
i ion Inter TC Enhanced TLS E V TCh engine (back-end) |
f 5

Trust
Manager

TCh management

i libss| i
i Standard OpenSSL libcrypto i
i engine interface]

{1 TCh engine TCh engine interface i
i1 (front-end) il
i client-side stub 3

Storage

Compartment
Manager i

Manager

|:| OpenSSL enhancements

Figure 5.6: OpenSSL enhancements

5.5.6 State Change

In case the parties agreed on state change notificationgdmininitial handshake the
following procedure takes place: A state change on onegslatis noticed byCM (an
efficient monitoring agent assumed, cf. Secfion .42}/ can block access to the
SeK and/or instructSM to restrict access to data belonging to the session depgendin
on the security policy of the application. Both sides ardfimat using Hello Request,
ClientHello and ServerHello, respectively. The updatedDS’ for validating the new
configuration is securely transmitted to the counterpartygted usingSeK (since the
Trusted Channel is still in place between the involved TC8g] included inSCEzt.
Subsequently, a TLS resume message flow takes place (¢j. Afe@r the short TLS
resume handshake the new session%e¥’ is computed and the communication can
continue, or the channel is torn-down because the requitenod the security policy
of the peer are not fulfilled any longer (for details see AgfiriA.3).

5.6 Implementing a Trusted Channel with OpenSSL

To implement a TLS-based Trusted Channel, we chose OperiESpha$ basis: this is
a multi-platform and widespread software toolkit implerieg cryptographic opera-
tions. It consists of two shared librarids (bss! andl i bcr ypt o) implementing all
OpenSSL features and a console commameass|) wrapping them. The libraries
can also be directly used by generic applications.

We identified three different areas where OpenSSL needsieah®ents: TLS ex-
tension support, TC management and TC engine. These aesegped in figure 5.6:
the standard OpenSSL libraries and the first two enhancertmgether with a portion
of the TC engine form th&'LS frontend while the core of the engine implements the
TLS backend. The implementation has been tested using a Proof of Compeeti-
type.

TLS extensions The development version of OpenSSL (0.9.9x) includes sugpr

the extensions t@lientHello and ServerHello messages defined in [19] which are
hard-coded. We implemented a mechanism to easily add gamsei-defined exten-
sions to these messages. The new extensions are handladttwallback functions
implemented and registered by the calling applicationkmaliy. This mechanism has
then been used to implement the Hello extensidiz:t and SCExt that trigger the
delivery of theSupplementalData handshake messagde [66]. Not originally supported

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHAONG1

Communication channel (TCP/IP) | DomU compartment ‘Application memory
| || (questdomain) i 2qqress space

i ‘Application using i
TCh Enhanced TLS]

TCh management

DomO0 compartment (privileged domain)

TCh engine (back-end), f
including Trust and Storage managers |

Server-side stub

[Trusted Platiorm Software crypto
Agent (TPA; engine (liberypto) |

libss!

| |[Hello extiSug

libcrypto

TCG Software Stack (155) | TCh engine (frontend)] ||
[Linux kernel Linux kernel
Xen Hypervisor -l
[Tordware CRTM'CPUTPM]
1 components forming the TCB [—_"1 OpensSSL enhancements

Figure 5.7: Proof of Concept prototype

by OpenSSL, this is a new hard-coded message added to carpydper attestation
data. All enhancements are implemented as patches to smdeefl i bssl library.

TC management module This is a completely new module that contains the logic of
the TC-specific operations. Indeed it deals with all operetibound to the attestation-
related extensions. It also handles the parsing and thdatalh of the credentials
received during the handshakBK s ;x, PKsign and PK,,.) and it manages the val-
idation of the attestation data. To perform some of theseatipas, the TC engine is
also used. Finally it provides the application with an ifdee to set up the Trusted
Channel.

TC engine We implemented an OpenSSL engine split into two parts. The
TLS frontend runs in the application (or proxy) memory space and it is tbieia
engine module loaded by OpenSSL. ThBS backend is the core of the engine actu-
ally implementing the functions needed by TLS protocolsipart of the TCB and it
runs in a different compartment.

When the library implementing TLS { bssl) needs to use one of the functions pro-
vided by the engine, it invokes the front-end engine’s itegéxl functions. The front-
end does not implement the cryptographic functions, tleeedf forwards the requests
over a communication channel to the back-end which hankéa t

Proof of Concept prototype We built a Proof of Concept prototype of the OpenSSL
split based on Xen, whose architecture is represented in€flg 7. The back-end of the
TC engine runs in Domain0, the Xen privileged domain, andémgnts the features of
the Trust Manager. It uses TrouSerS, an open source TCG &efBtack (TSS) [75],
to access the TPM capabilities. The communication charet@ldenTLS frontend
and T'LS backend is currently a TCP-based protocol. The back-end of the TGneng
can be decomposed in: (1) server-side stub, the endpoitttdazommunication with
the front-end, (2) the Trusted Platform Agent (T@li)] charge of dealing with the life-
cycle management of all credentials and implementing amahStorage Manager and
(3) a software engine that performs all cryptographic oj@na during the handshake
and the TLS session (we chose to use the OpenSSL libidvgr ypt 0).

The verification of the attestation data carried throughStagplementalData message
is a task under control of the application via TC managemnieraty: it can be directly
performed by the application or delegated to the TPA.

16TPA is a component developed within the OpenlTC [54] project

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

62 OpenTC D05.4 — Design of the Cross-Domain Security Services

5.7 Security Considerations

Here we do a short reevaluation of the security requiremahdgted from[[28] and
presented in Sectidn 5.2.1 with regard to our new approach.

(SR1) Secure channel propertiesTLS provides secure channel properties during
transmission over insecure networks. On the endpoints@iedffers those prop-
erties. Confidentiality and integrity are provided by tagkinitialization, isolation
of the TCB and platform monitoring. The TCB also takes carauthenticity and
freshness by securely storing nonces and session keys. ésul of platform
monitoring every manipulation of a compartment is noticed access to sensi-
tive data can be barred if necessary to ensure the secuipepies. Furthermore,
SM provides trusted storage that can preserve secure dhanoperties in case
that data is stored persistently.

(SR2) Authentic linkage of configuration information and seure channel: Au-
thenticity of communication is guaranteed by providing tee ¢ s that is used
to authenticate the endpoints (cf. Section 3.5.5). Therselinkage of con-
figuration information to the endpoints is verified by evdilng the SKAFE (or
certskag), Sigpspx andSig.p.

We assume a secure as well as specification conformantam@dii ., ,qq. (Stor-

age Root Key) andl] K. We further assume that a TCB whose configuration has
been evaluated by the counterpart is able to reliably teareinfiguration infor-
mation related to the client compartments and takes careafdcure storage and
application of the keys used within the handshake. A pdyilior the retrieval

of CA keys for verification of signatures is also anticipated

After a successful evaluation of the credentials tranetethe following state-
ments can be made: All keys are bound to the same TCB. This $GBdcified
by measurement values incorporatedSIRAE. Thus, theproperties and the
Changelog sent have to originate from this TCB becau§é,;,,, is sealed to this
TCB and signed bysKsxag. Hence, key material sent t8 necessary for the
computation of the session ke8eK is only available to this specific TCB be-
causeSK.,. is also sealed to this TCB and signed 8 sxax. The Finished
message that is already encrypted usiiag assures authentication of endpoints
and linkage of configuration information to the Trusted Qelr(for details see
AppendiXA.2).

SeK, Kgign and K., are kept inside the TCB during the whole session. Due
to the strong isolation property of the TCB those keys catmotisclosed to
compartments running on the same TCB or to other platformslayRattacks
as well as attacks to obtain any keys establishing the TduSteannel are not
feasible assumed that no hardware attacks are applied seetizes TPM is only
considered secure against software attacks. Thus, tHeslise of keys likek..,,.

is very unlikely to happen but as a fallback mechanism retiocdists have to be
maintained.

(SR3) Privacy: With regard to configuration data transmitted we decideddoige
a possibility to send it encrypted to protect potentiallpstve data (see Sec-
tion[5.5.3). Only the configuration of TCB and the TLS clienomgartments is
reported to the peer keeping the information disclosed ¢oadtier platform as
minimal as possible, in contrast to other approaches wherednfiguration of

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

CHAPTERS. TRUSTED CHANNELS WITH REMOTE INTEGRITY VERIFICHONG3

all components running on a platform is disclosed. Furtloeemevery commu-
nication partner can assess the trustworthiness of itsteqpart and thus, make
a judgment on whether it will treat personal information@ding to its security

policy.

5.8 Functional Considerations

To meet these functional requirements enlisted in Seci@@ $he following measures
have been taken:

(FR1) Fast deployment possiblelTo make a fast and wide-area deployment of our
approach possible we decided to adapt TLS as a commonly us>pl to sup-
port the exchange of endpoint configuration informationttrermore we took an
existing implementation (OpenSSL) of the TLS specificatiad adapted it to our
needs. So the effort that has to be put into the implememtafiour approach was
moderate and will presumably be moderate for other existing implementa-
tions. Additionally, we only applied mechanisms and cotsefready defined in
existing specifications (cf._[72], [74]. 17 7], [v6], [75]24], [19], [6€]). Thus, itis
not necessary to go through a time-consuming specificatiocegs. Last but not
least our new concept is able to support all common key exgdhamethods ap-
plied within the TLS handshake. This is important keepingiind that different
key exchange methods are used in different scenarios.

(FR2) No additional costs are induced: For the implementation of our concept
we used commercial of-the-shelf hardware. Thus, no experwsiptographic
hardware is necessary. Only Open Source Software was usétefoealization
of the software part. The resulting code is available withtharge and incurs
no additional license costs for the user. In contrasi to [28]also decoupled
TLS certificates from the platform configuration informatid his is an important
issue because on the one hand re-certification of the TLSoémicknd its keys is
expensive but on the other hand we want the keys to be setoehd to a specific
platform configuration to be able to prove that they have metnbcompromised.
We solved that problem by introducing a TCB update mecharfigm section
[£.5.3) that enables the underlying TCB to be updated withaming track of the
states the platform went througlhThis can be done by evaluating thieangelog.
Thus, it is always possible to verify if the keys may have beempromised by a
previous insecure configuration of the platform and the paarchoose whether
to trust or not to trust in the keys included in the TLS cerdific

(FR3) Minimal performance overhead during handshake:To be able to have fast
response times during the handshake we do not rely on thet disage of the
TPM. This would induce too much overhead since the TPM is aolynected
to an LPC-Bus that has only limited bandwidth and its proogspower is also
very restricted. So we decided to involve the TPM only at thialization of the
system to be sure that the TCB is well configured. From therldarectionality
are provided by TCB software components. Measurementsaeglsand reported
by those components, they keep track of the platform stadepaovide secure

17In a microkernel approach for example the configuration effEB will change rather rarely while the
TCB of monolithic systems like Windows OS may change fredyen

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

64 OpenTC D05.4 — Design of the Cross-Domain Security Services

encryption and decryption routines. Thus, even in a semrer@enment that has
to be able to set up many TLS connections in a short periotiréaponse times
are ensured.

(FR4) Flexible configuration reporting: By incorporating the possibility to trans-
fer whatever properties (e.g., seel[59]) one may want toigepe.g., certificates,
hash values, signed configuration files or other credentisdsnsured interoper-
ability with any existing attestation concept and safeddarward compatibility
of our concept. Thus, we exemplary showed that the TCG apprtmuse a
TPM_Quote() (cf. [77, p.160]) result as way to transfer configuratioroimfiation
is also usable within our approach (see Sedfion b.5.5).

(FR5) Backwards compatibility: To be sure that also peers only supporting the
normal TLS handshake can communicate with systems thatuwrseoacept, we
kept the TLS certificate in its traditional form and used oflyS extensions to
provide a Trusted Channel. Those extensions are per defir(i¢if. [24, p.3])
ignored if they are not supported. Thus, the peer that thieaty would support
attestation extensions has to decide whether to contintheseiting up a common
TLS secure channel for a given purpose or breaking the caiondor the reason
of insufficient security. Furthermore we kept the whole iempentation separated
from the application layer offering a transparent usagenefTrusted Channel.
Thus, applications do not have to be adapted to make use cbogept.

5.9 Summary

In this paper we presented a security architecture as wealhaglaptation of the TLS
protocol to provide a Trusted Channel that combines therggdaatures of a secure
channel with the ability to reliably determine the trustithimess of the communication
endpoints.

After a detailed description of our design and its impleradoh we showed that
our approach is able to meet the strict requirements seeitéginning. By meeting
these requirements we are able to provide a means to fightaoff tihreats to today’s
and tomorrows distributed applications with a conceptithdeployable for the short-
term.

In a next step we plan to adapt IPsec to provide Trusted Ch&imeonnection
with our security architecture and we work on an implemeatetf a run-time integrity
measurement agent. A formal security analysis of the ptedgrotocol is subject to
future work as well as the adaption of other protocols, &§H, to fit the needs of a
Trusted Channel.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Chapter 6

Conclusion and Outlook

Matthias Schunter (IBM)

In this report, we have described the OpenTC Security SesvicThese service
are the foundation for enforcing policies for Xen-based étyjsors. In addition, the
trusted channels allow L4 machines to validate Xen mactanésvice versa.

These building blocks are currently used to build a secutealidatacenter. This
datacenter reliably and verifiable isolates customer fraoh@ther while guaranteeing
proper policy enforcement for each customer.

65

Appendix A

Some detalls on Trusted
Channel Implementation

A.1 Details of Hardware and Virtualization Layer

A.1.1 TC-enabled Hardware Layer

The hardware platform has to provide additional componastdefined by the TCG

in various specifications (e.gL, [[74]). The central comparierms the TPM which is
currently implemented as a dedicated hardware chip. Irofienongst others some
amount ofprotected storagelt provides a set of registers in protected storage called
Platform Configuration Registef®CR) that can be used to store hash values. Protec-
tion mechanisms ensure that the value of a PCR can only befiebai a predefined
wayd (see also Sectidn 5.5.4). Protected storage is also usédreocertain security
sensitive keys, e.gAttestation Identity KeygAIK). An AIK is non-migratablei.e.,

its private part never leaves the TPM'’s protected storaglecan only be applied for
signing data (e.g., via thePM_Quote() command) that originates from the TPM (cf.
[74, p.18]). An AIK certificatecert4;x can be obtained from@ertification Authority
(CA) that vouches for the mentioned AIK properties. Funthere the TPM provides
functionalities such abindingandsealingthat allow to cryptographicallyelate/bind
data to a certain platform configuration, which is reflectg@lsubset of PCR values.

A.1.2 Virtualization Layer

The Virtualization Layer is part of the TCB and consists ofypérvisor/microkernel.
We used the Xen hypervisor (cf._[82]) and the L4 microkeroé&l[44]) for our imple-
mentation.

The hypervisor/microkernel provides and mediates acodsardware components
of the platform by presenting virtualized instances of hesmponents to the upper
layers. By providing virtual memory that solely directs n@gnaccesses to logical
address spaces, interfaces for access control mechamshnsamitorednter Process
Communicatior(IPC) the virtualization layer guarantees separation ofigartments

1 PCR; 11 « Hash(PCR;|x), with old register value°CR;, new register valu®®CR;. 1, and input
z (e.g., a SHA-1 hash value). This process is catiendinga PCR.

66

APPENDIXA. SOME DETAILS ON TRUSTED CHANNEL IMPLEMENTATION7

(runtime isolatiOI)E The code of the TCB resides in a protected memory region and
is only accessible to higher layers by using specific inter$a Additionally, only the
hypervisor/microkernel runs in kernel mode. All devicevdrs and compartments in
turn run in user mod@.Thus, separation from software layers operating on topef th
virtualization layer is also guaranteed.

2Direct Memory Acces@DMA) is not considered here. To protect against attackssitig) DMA new
security concepts likéntel Trusted Execution TechnologyXT, cf. [35]) or AMD 1/O Virtualization Tech-

nology; (cf. [4]) have to be applied.
30n top of the Xen hypervisor the kernels of the guest OSs ruiminl. Everything else in ring 3.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

68 OpenTC D05.4 — Design of the Cross-Domain Security Services

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

APPENDIXA. SOME DETAILS ON TRUSTED CHANNEL IMPLEMENTATION9

A.2 Linkage of Configuration Information to Secure
Channel

As an Example we show the evaluation steps for the client side

Client holds :={PK? , PK?

ones sign’ certS s, changelog®, cert ., CDSS,

reference values, SeK, noncefp,;, nonce$p,;, nonceSD?,
5
SZg(LD }

()

cert%CLSF { PKS‘S;LC, PK&%gn’ SigCABSEK }

eval : digest(certag«CLS) == dec(SigCApsex ; PKca)
= S authenticated

(i)

SeK is verified by theFinished message
= SeK S == SeK ¢

= SeK authenticated

= msS == mSC

= (rdSessionKey, nonce®

,nonce’)° ==
(rdSessionKey, nonce®, nonces)®

= (nonce®, nonce®)° == (nonce® nonce®)®

= freshness ofSeK ensured

= rdSessionKey® == rdSessionKey® == rdSessionKey

= rdSessionKey == dec(enc(rdSessionKey; PK?2,);SK5) ==
rdSessionKey

= S proved possession ofK 5,

(iii):

aD?% = { SKAES, PKSSKAE, SiggSEK, nonceSDS, CDS?, changelogs }
eval : digest(aD®) — dec(Sigdy ; PKS,,)
= S proved possession of K,

eval : digest(PKf;w ,PKS‘S;gn)« dec(SigCApsek ; PKca)

= aD* authenticated to be fromS

eval : nonceSD® «— digest(noncespy,, nonceSpy,)

= freshness ofaD* verified

SKAES= { Sigigap TPM_CERTIFY_INF025, PKSam:
re ference values}

eval : digest(SKAES) « dec(SigSxar ; PK515)

= SKAE® authenticated

cert] = { PK3c, SigCAS 1 }

eval : digest(certs i) « dec(SigCAS ;i ; PKca)

= K3, authenticated

= TCB of S is in the state included inSKAE® when SK5y , ; is used
eval : digest(PKs‘S;gn, PKZ) « dec(Sighspr s PKSkap)

= TCB of S is in the state included in SKAE® becausePK;,,, PKJ,.

were signed bySK ., » and a state change of the TCB is only possible
with a following reboot and the creation of a newSigs, ¢

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

70 OpenTC D05.4 — Design of the Cross-Domain Security Services

A.3 State-Change Protocol Flow

To be able to transfer information about a state change waetb§iCExt that carries
encrypted configuration informati@hin the following we present the protocol flow in
case of a state change 6n State changes ahare managed accordingly.

Notifying State Change:If the monitoring component ofM © detects a state change
within an involved compartment;DS*® is updated toCDS’S by CMS. TM? is
notified that a state change occurred. As consequéide can restrict access to
SeK and data belonging teessionID depending on the security policy of the ap-
plication. Thus, access to data could be barreddapID. Then TM?® issues a
command to triggel'LS_frontend® to send aHelloRequest indicating that some re-
handshake is necessary. As reaction toAfalloRequest the TLS_frontend® issues

a ClientHello message that comprisesssionlD, nonce’¢ and anSCExt¢ included

in the hello_ext_list® to inform S that no state change occurred©f. TMS asks
CM* for CDS’S. Subsequently]’M S composegroperties's.

properties’:= This data structure comprises th®S’, additional certificates
and/or links to reference values for the evaluatio@®fs’.

Then TM® createsSigs .. change PY Signing a digest of the nonces apebperties
usingSK,,.

S

SigstateChange < sign(digest(nonce’s, nonce’C, properties’); SKsig,,L)H

a|n case of a state change 6ronly nonce’ is included.

In the next steppCExt® is composed and given tBLS_frontend®.

SCEzt:= { Sigstate Change, Properties’ }

TLS_frontend® sends the samgessionID asC, nonce’® and SCEztS indicating
that its state has changed usifig-verHello. Now C is aware that this is not a normal
resume message exchange &0} ., ¢y, Properties’ sent withinSCEzt® have
to be evaluated.

Updating Session Key:nonce’® andnonce’® are mingled with the existingeX to
form SeK’ (cf. [19]). This is done on both sides, i.e., also®where the state change
occurred. This is necessary to g&tk’ on both sides. If the new state does not satisfy
the security policy of the application, all data exchangetll this very moment and
the correspondingeK are treated depending on that policy, that means, datahiereit
deleted on both sides by ¢ and TM* or stored with the help oM ¢ as well

4One could also add an additionsitipplementalData message to transfer configuration information
in the resume handshake but we aimed at easy implementatibthas we chose to us@lientHello and
ServerHello extensions for that purpose. But if the amount of configarathformation that has to be
transferred is against our assumptions big, this posilhiis to be considered.

5In this scenario we want the server to provide informatios d¢lient did not request explicitly in its
extension and this is not yet clearly specified. But in the Eix&nsion specification this issue is already
mentioned (see [24, p.6])

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

APPENDIXA. SOME DETAILS ON TRUSTED CHANNEL IMPLEMENTATION1

asSM*, respectivelﬁ Alternatively, access to this data may still be possiblerdy o
somehow restricted, but no further data is sent by the copaute

Finally, the ChangeCipherSpec protocol is used to inform the endpoints th&tK’
has to be used from now oiseK is deleted byT’M® and TM €. In the last step the
Finished message is sent to check if the state change was handledlgrope

6The data is stored bound to the previous state consideregptatae if recommended by the application.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

Bibliography

[1] Microsoft security advisories archive. htt p://wav. m crosoft.com

(2]
[3]
[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

technet/security/advi sory/archive. nspx.
TrustedGRUBht t p: / / sour cef or ge. net/ proj ect s/t rust edgr ub.
XSLT Transformationsht t p: / / www. w3. or g/ TR/ xsl t.

Advanced Micro Devices, Inc. IOMMU Architectural Spécation. Ad-
vanced Micro Devices, Inc.:http://wwv. and. com us- en/ asset s/

content type/white papers_and tech docs/ 34434. pdf, Feb.
2007. PID 34434 Rev 1.20.

M. J. Anderson, M. Moffie, and C. |. Dalton. Towards trustthy virtualisation
environments: Xen library os security service infrastiuet Research report, HP
Labs, Bristol, UK, 2007.

A. W. Appel and E. W. Felten. Models for security policiesproof-carrying
code. Technical report, Dept. of Computer Science Primceloiversity, 2001.
ftp://ftp.cs.princeton.edu/techreports/2001/636. pdf.

W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure arigibée bootstrap
architecture. InProceedings of the IEEE Symposium on Research in Security
and Privacy pages 65-71, Oakland, CA, May 1997. IEEE Computer Society,
Technical Committee on Security and Privacy, IEEE Comp8tariety Press.

P. T. Barham, B. Dragovic, K. Fraser, S. Hand, T. L. HarAs Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the Art of Virtuatiza. In Proc. 19th
ACM Symposium on Operating Systems Principles (SOSP-28(fs 164-177,
October 2003.

S. Berger, R. Céaceres, K. Goldman, R. Perez, R. Saildrl.aman Doorn. vTPM:
Virtualizing the Trusted Platform Module. IRroc. 15th USENIX Security Sym-
posium pages 21-21, Aug. 2006.

S. Berger, R. Caceres, D. Pendarakis, R. Sailer, E.ezalg. Perez, W. Schild-
hauer, and D. Srinivasan. Tvdc: Managing security in thetéd virtual data-
center. Technical Report RC24441 (W0711-219), IBM RegeBieision, Nov.
2007.

A. Bussani, J. L. Griffin, B. Jansen, K. Julisch, G. KanjoH. Maruyama,
M. Nakamura, R. Perez, M. Schunter, A. Tanner, L. van DoornV.EHer-
reweghen, M. Waidner, and S. Yoshihama. Trusted Virtual Bios1 Secure

72

http://www.microsoft.com/technet/security/advisory/archive.mspx
http://www.microsoft.com/technet/security/advisory/archive.mspx
http://sourceforge.net/projects/trustedgrub
http://www.w3.org/TR/xslt
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/34434.pdf
ftp://ftp.cs.princeton.edu/techreports/2001/636.pdf

BIBLIOGRAPHY 73

Foundation for Business and IT Services. Research Repo23@2, IBM Re-
search, Nov. 2005.

[12] S. Cabuk, C. Dalton, H. V. Ramasamy, and M. Schunter. afde Automated
Provisioning of Secure Virtualized Networks. Rmoc. 14th ACM Conference on
Computer and Communications Security (CCS-208dQes 235-245, Oct. 2007.

[13] S. Cabuk and D. Plaquin. Security Services Managenmeatface (SSMI). In-
terface document, HP Labs, Bristol, UK, 2007.

[14] L. Chen, R. Landfermann, H. Loehr, M. Rohe, A.-R. Sadeghd C. Stiible. A
protocol for property-based attestation. 9iMC '06: Proceedings of the first ACM
workshop on Scalable trusted computibgw York, NY, USA, Nov. 2006. ACM
Press.

[15] P. M. Chen and B. D. Noble. When Virtual is Better than R&@aProceedings of
HotOS-VIII: 8th Workshop on Hot Topics in Operating Systgmages 133-138,
May 2001.

[16] D. Chess, J. Dyer, N. Itoi, J. Kravitz, E. Palmer, R. Rer@nd S. Smith. Us-
ing trusted co-servers to enhance security of web intemactiUnited States
Patent 7,194,759ht t p: / / www. f r eepat ent sonl i ne. coni 7194759.
ht m , Mar. 2007.

[17] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Seewirtual architecture:
A safe execution environment for commodity operating syste In SOSP '07:
Proceedings of twenty-first ACM SIGOPS symposium on Operagistems prin-
ciples pages 351-366, New York, NY, USA, 2007. ACM.

[18] I. B. Damgérd, T. P. Pedersen, and B. Pfitzmann. StedisBecrecy and Multi-
Bit CommitmentsIEEE Transactions on Information TheoA4(3):1143-1151,
1998.

[19] T. Dierks and E. Rescorla. The Transport Layer SecuityS) Protocol Ver-
sion 1.1. Internet Engineering Task Forde:t p: //www. i etf.org/rfc/
rf c4346. t xt, Apr. 2006. Network Working Group RFC 4346.

[20] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, |. Rrat Warfield, P. Barham,
and R. Neugebauer. Xen and the art of virtualizatiorRiloceedings of the ACM
Symposium on Operating Systems Principstober 2003.

[21] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van DodsnW. Smith, and
S. Weingart. Building the IBM 4758 Secure CoprocesstiEEE Computer
34(10):57-66, 2001.

[22] D. Eastlake and P. Jones. US Secure Hash Algorithm 1 (SHAnternet En-
gineering Task Forcehttp://tool s.ietf.org/htm /rfc3174, Sept.
2001. Network Working Group.

[23] P.England, B. Lampson, J. Manferdelli, and B. WillmArtrusted open platform.
Computer36(7):55-62, 2003.

[24] S. B.-W. et al. Transport Layer Security (TLS) Extemsio Internet Engineer-
ing Task Forcehttp: //www. i etf.org/rfc/rfc4366.txt, Apr. 2006.
Network Working Group RFC 4366.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

http://www.freepatentsonline.com/7194759.html
http://www.freepatentsonline.com/7194759.html
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4346.txt
http://tools.ietf.org/html/rfc3174
http://www.ietf.org/rfc/rfc4366.txt

74

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

OpenTC D05.4 — Design of the Cross-Domain Security Services

European Multilaterally Secure Computing Base (EM$®Boject. Towards
Trustworthy Systems with Open Standards and Trusted CantuR008.
http://ww. emsch. de.

M. Franz, D. Chandra, A. Gal, V. Haldar, C. W. Probst, EidR and N. Wang.
A portable virtual machine target for proof-carrying coddournal of Science
of Computer Programmings7(3):275-294, sep 2005t t p: / / www2. i nm
dt u. dk/ pubdb/ p. php?4740.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Bbnderra: a virtual
machine-based platform for trusted computingA®M Symposium on Operating
Systems Principles (ASOSPBages 193-206. ACM Press, 2003.

Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Amok Beyond secure
channels. InSTC '07: Proceedings of the second ACM workshop on Scalable
trusted computingpages 30—40. ACM Press, 2007.

K. Goldman, R. Perez, and R. Sailer. Linking remotesttéon to secure tun-
nel endpoints. I'5TC '06: Proceedings of the first ACM workshop on Scalable
trusted computingpages 21-24, New York, NY, USA, Nov. 2006. ACM Press.

O. Goldreich, S. Micali, and A. Wigderson. Proofs théeN Nothing but their
Validity, or All Languages in NP have Zero-Knowledge Progb&ms.Journal
of the ACM 38(3):690-728, 1991.

J. Griffin, T. Jaeger, R. Perez, R. Sailer, L. V. Doorn¢gl @& Caceres. Trusted
Virtual Domains: Toward Secure Distributed Services. Phoc. 1st Workshop

on Hot Topics in System Dependability (Hotdep-20@8kohama, Japan, June
2005. IEEE Press.

V. Haldar, D. Chandra, and M. Franz. Semantic Remotesidition - virtual
machine directed approach to Trusted ComputingU8ENIX Virtual Machine
Research and Technology Symposipages 29-41, 2004. also Technical Report
No. 03-20, School of Information and Computer Science, ©irsity of Califor-
nia, Irvine.

V. Haldar, D. Chandra, and M. Franz. Semantic remotestdtion: a virtual
machine directed approach to trusted computing/MiO4: Proceedings of the
3rd conference on Virtual Machine Research And TechnolggypBsiumpages
3-3, Berkeley, CA, USA, 2004. USENIX Association.

M. Hohmuth, M. Peter, H. Hartig, and J. S. Shapiro. Réwolyd CB size by using
untrusted components: Small kernels versus virtual-nmectrionitors. InPro-
ceedings of the 11th ACM SIGOPS European workshop: beyenBGhACM
Press New York, NY, USA, 2004.

Intel Corporation. Intel Trusted Execution TechnagtegPreliminary Architecture
Specification. Intel.comht t p: / / downl oad. i nt el . con’ t echnol ogy/
security/ downl oads/ 31516803. pdf , Nov. 2006. Preliminary Architec-
ture Specification and Enabling Considerations.

B. Jansen, H. Ramasamy, and M. Schunter. Flexible iityegrotection an ver-
ification architecture for virtual machine monitors. The Second Workshop on
Advances in Trusted Computinfpkyo, Japan, November 2006.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

http://www.emscb.de
http://www2.imm.dtu.dk/pubdb/p.php?4740
http://www2.imm.dtu.dk/pubdb/p.php?4740
http://download.intel.com/technology/security/downloads/31516803.pdf
http://download.intel.com/technology/security/downloads/31516803.pdf

BIBLIOGRAPHY 75

[37] S. Jiang, S. Smith, and K. Minami. Securing Web Servgesrest Insider Attack.
In ACSAC '01: Proceedings of the 17th Annual Computer SecApplications
Conferencepage 265, Washington, DC, USA, 2001. IEEE Computer Saciety

[38] B. Kauer. OSLO: Improving the security of Trusted Cortipg. In Proceedings
of the 16th USENIX Security Symposiw$ENIX Association, 2007.

[39] S. Kentand K. Seo. Security Architecture for the IntgrRrotocol. Internet En-
gineering Task Forcént t p: / /www. i et f. org/rfc/rfc4301.txt, Dec.
2005. Network Working Group RFC 4346. Obsoletes: RCF2401.

[40] D. Kuhlmann, R. Landfermann, H. Ramasamy, M. Schur@eriRamunno, and
D. Vernizzi. An Open Trusted Computing Architecture - Securtual machines
enabling user-defined policy enforcement, 2006t t p: / / www. opent c.
net/i mages/otc_architecture_hi gh_| evel _overvi ew. pdf.

[41] U. Kuhn, M. Selhorst, and C. Stuble. Property-Based#tttion and Sealing
with Commonly Available Hard- and Software. ACM-STC 2007.

[42] The Fiasco micro-kernel, 2004. Available fromttp://os.inf.
tu- dresden. de/fiasco/.

[43] J. Liedtke. Onu-kernel construction. IfProceedings of the 15th ACM Sympo-
sium on Operating System Principles (SOSfges 237-250, Copper Mountain
Resort, CO, December 1995.

[44] J. Liedtke. Towards real micro-kernel€ommunications of the ACMB9(9),
1996.

[45] R. MacDonald, S. Smith, J. Marchesini, and O. Wild. BeAn open-source
virtual secure coprocessor based on TCPA. Technical RgR2003-471, De-
partment of Computer Science, Dartmouth College, 2003.

[46] J. Marchesini, S. Smith, O. Wild, A. Barsamian, and &b8ter. Open-source
applications of TCPA hardware. ROth Annual Computer Security Applications
ConferenceACM, Dec. 2004.

[47] J. Marchesini, S. W. Smith, O. Wild, and R. MacDonaldpExmenting with TC-
PA/TCG hardware, or: How | learned to stop worrying and Idwelbear. Techni-
cal Report TR2003-476, Department of Computer Sciencetnizarth College,
2003.

[48] A. Marx. Outbreak response times: Putting AV to the.tebtt p: / / ww.
avt est. or g, 2004.

[49] D. G. Murray, G. Milos, and S. Hand. Improving Xen setythrough disag-
gregation. InProceedings of the ACM conference on Virtual Execution ianvi
ments March 2008.

[50] G. C. Necula. Proof-carrying code. onference Record of POPL '97: The
24th ACM SIGPLAN-SIGACT Symposium on Principles of Programg Lan-
guagespages 106-119, Paris, France, jan 1997 eseer . i st. psu. edu/
article/necul a97proofcarrying.htm.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

http://www.ietf.org/rfc/rfc4301.txt
http://www.opentc.net/images/otc_architecture_high_level_overview.pdf
http://www.opentc.net/images/otc_architecture_high_level_overview.pdf
http://os.inf.tu-dresden.de/fiasco/
http://os.inf.tu-dresden.de/fiasco/
http://www.avtest.org
http://www.avtest.org
citeseer.ist.psu.edu/article/necula97proofcarrying.html
citeseer.ist.psu.edu/article/necula97proofcarrying.html

76 OpenTC D05.4 — Design of the Cross-Domain Security Services

[51] G. C. Necula. A scalable architecture for proof-camgycode. InFLOPS '01:
Proceedings of the 5th International Symposium on Funatiand Logic Pro-
gramming pages 21-39, London, UK, 2001. Springer-Verlag.

[52] Ned M. Smith. System and method for combining user aratf@m au-
thentication in negotiated channel security protocols. ité¢h States Patent
Application 20050216736: htt p: //ww. f reepat ent sonl i ne. conl
20050216736. ht i, Sept. 2005.

[53] J. Nick L. Petroni, T. Fraser, A. Walters, and W. A. Arlgdu An architecture for
specification-based detection of semantic integrity Viotes in kernel dynamic
data. INUSENIX-SS’06: Proceedings of the 15th conference on USERtXrity
Symposiunpages 20-20, Berkeley, CA, USA, 2006. USENIX Association.

[54] Open Trusted Computing (OpenTC) Project. The OpenTdjelet Homepage,
2008.ht t p: / / ww. opent c. net /.

[55] OpenSSL Project. The OpenSSL Project Homepage, 20G7.p: / / www.
openssl .org/.

[56] J. Poritz, M. Schunter, E. Van Herreweghen, and M. Waidn Property
attestation—scalable and privacy-friendly security asseent of peer computers.
Technical Report RZ 3548, IBM Research, May 2004.

[57] T. Project. TrouSerS - The open-source TCG Softwarek$t2008. ht t p: //
trousers. sourceforge. net/.

[58] Qumranet. KVM: Kernel-based virtualization driver. http://kvm
qgunr anet . com 2006.

[59] A.-R. Sadeghiand C. Stiible. Property-based attestédr computing platforms:
caring about properties, not mechanismsNBPW '04: Proceedings of the 2004
workshop on New security paradignmsges 67—77, New York, NY, USA, 2004.
ACM Press.

[60] A.-R. Sadeghi and C. Stiible. Property-based Attestafior Computing Plat-
forms: Caring about Properties, not Mechanisms.Ptac. 2004 Workshop on
New Security Paradigms (NSPW-200dages 67—77. ACM Press, 2005.

[61] A.-R. Sadeghi, C. Stible, and N. Pohlmann. Europeariilaeiral secure com-
puting base — open trusted computing for you and Datenschutz und Daten-
sicherheit DuD 28(9):548-554, 2004. Verlag Friedrich Vierweg & Sohn, ®Vie
baden.

[62] A.-R. Sadeghi, C. Stuble, M. Wolf, N. Asokan, and J.-EbErg. Enabling Fairer
Digital Rights Management with Trusted Computing, 2007.b&opresented at
ISCO7, Information Security Conference 2007.

[63] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. PereBefjer, J. L. Griffin,
and L. van Doorn. Building a MAC-Based Security Architeetdor the Xen
Open-Source Hypervisor. IAroc. 21st Annual Computer Security Applications
Conference (ACSAC-20Q%ages 276—285, 2005.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

http://www.freepatentsonline.com/20050216736.html
http://www.freepatentsonline.com/20050216736.html
http://www.opentc.net/
http://www.openssl.org/
http://www.openssl.org/
http://trousers.sourceforge.net/
http://trousers.sourceforge.net/
http://kvm.qumranet.com
http://kvm.qumranet.com

BIBLIOGRAPHY 77

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, Griffin, and S. Berger.
sHype: Secure hypervisor approach to trusted virtualigstesns. Techn. Rep.
RC23511, Feb. 2005. IBM Research Division.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desigt isnplementation

of a TCG-based integrity measurement architectureS$YM’'04: Proceedings
of the 13th conference on USENIX Security Sympasiages 16—16, Berkeley,
CA, USA, 2004. USENIX Association.

S. Santesson. TLS Handshake Message for Supplemaeattal ETF RFC 4680,
Sept. 2006http: //tool s.ietf.org/htm /rfc4680.

A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: Ajtimypervisor to provide

lifetime kernel code integrity for commodity OSes. SOSP '07: Proceedings
of twenty-first ACM SIGOPS symposium on Operating systeimsiples pages

335-350, New York, NY, USA, 2007. ACM.

S. W. Smith. Outbound authentication for programmadgleure coprocessors.
In D. Gollmann, G. Karjoth, and M. Waidner, editoRrpceedings of the Seven-
thEuropean Symposium on Research in Computer SecurityRESE) volume
2502 ofLecture Notes in Computer Scien@ages 72-89, Zurich, Switzerland,
Oct. 2002. Springer-Verlag, Berlin Germany.

F. Stumpf, O. Tafreschi, P. Roder, and C. Eckert. A rotategrity Reporting
Protocol for Remote Attestation. IRroceedings of the Second Workshop on
Advances in Trusted Computing (WATC '06 Fall), Tokyec. 2006.

J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtaglg I/O devices on
VMware workstation’s hosted virtual machine monitor. Pmoceedings of the
General Track: 2002 USENIX Annual Technical Conferepegies 1-14, Berke-
ley, CA, USA, 2001. USENIX Association.

TCG. TCG Software Stack Specification. htt ps:// ww.
t rust edconput i nggr oup. or g/ specs/ TSS/, Aug. 2006. Version
1.2.

TCG Infrastructure Working Group (IWG). TCG Infrastture Work-
group Subject Key Attestation Evidence Extension. Trus@umputing
Group: https://wwv. t rust edconputi nggroup. or g/ specs/ | W&

| WG_SKAE_Ext ensi on_1- 00. pdf , June 2005. Specification Version 1.0
Revision 7.

TCG Infrastructure Working Group (IWG). TCG Infrastture Working
Group Reference Architecture for Interoperability (Part Trusted Computing
Group: https://wwv t rust edconputi nggroup. or g/ specs/ | W&

| WG Architecture vl 0 rl. pdf, June 2005. Specification Version 1.0
Revision 1.

Trusted Computing Group. TCG Specification ArchiteetuOverview.
Trusted Computing Groupht t ps://www. t r ust edconput i nggr oup.
org/ groups/ TCG 1 3_Architecture_Overvi ew. pdf, Mar. 2003.
Specification Revision 1.3 28th March 2007.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0OpenTC Public (PU)

http://tools.ietf.org/html/rfc4680
https://www.trustedcomputinggroup.org/specs/TSS/
https://www.trustedcomputinggroup.org/specs/TSS/
https://www.trustedcomputinggroup.org/specs/IWG/IWG_SKAE_Extension_1-00.pdf
https://www.trustedcomputinggroup.org/specs/IWG/IWG_SKAE_Extension_1-00.pdf
https://www.trustedcomputinggroup.org/specs/IWG/IWG_Architecture_v1_0_r1.pdf
https://www.trustedcomputinggroup.org/specs/IWG/IWG_Architecture_v1_0_r1.pdf
https://www.trustedcomputinggroup.org/groups/TCG_1_3_Architecture_Overview.pdf
https://www.trustedcomputinggroup.org/groups/TCG_1_3_Architecture_Overview.pdf

78

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

OpenTC D05.4 — Design of the Cross-Domain Security Services

Trusted Computing Group. TCG Software Stack (TSS) Bigation Version 1.2.
Trusted Computing Groupht t ps://www. t r ust edconput i nggr oup.
or g/ specs/ TSS/ TSS Version_1.2 Level _1_FI NAL. pdf, Jan.
2006. Specification Version 1.2 Level 1 Final.

Trusted Computing Group. TCG TPM Main Part 2 TPM Struetu
Trusted Computing Groupht t ps: //ww. t r ust edconput i nggr oup.
org/ specs/ TPM Mai n_Part2 Rev94. zi p, Mar. 2006. Specification
Version 1.2 Level 2 Revision 94.

Trusted Computing Group. TCG TPM Main Part 3 Commandsisied Com-
puting Groupht t ps: / / www. t r ust edconput i nggr oup. or g/ specs/
TPM mai nP3Commandsr ev103. zi p, July 2007. Specification Version 1.2
Level 2 Revision 103.

Trusted Computing Group (TCG). TCG TPM specificationsien 1.2 re-
vision 103. https://ww. t rust edconputi nggroup. or g/ specs/
TPM | July 2007. See also [V9] ard t p: / / www. t r ust edconput i ng.
org/ |

Trusted Computing Platform Alliance (TCPA). Main sfaation version 1.1b.
https://wwv. t rust edconputi nggr oup. or g/ specs/ TPM , Febru-
ary 2002. See also [V8] afd t p: / / www. t r ust edconput i ng. or g/ .

Trusted Network Connect Work Group. TCG Trusted Netw@Gonnect TNC
Architecture for Interoperability. Trusted Computing @po ht t ps: / / wwaw.

t rust edconput i nggr oup. or g/ specs/ TNC/ TNC Architecture_
vl 2 r4. pdf, May 2007. Specification Version 1.2 Revision 4.

VMware In. VMware Virtualization Software, 2008t t p: / / www. vimnar e.
com .

Xen Community. The Xen Hypervisor Open Source Projecindpage, 2007.
http://ww. xen. org/.

B. S. Yee.Using Secure CoprocessoBhD thesis, School of Computer Science,
Carnegie Mellon University, May 1994. CMU-CS-94-149.

OpenTC Document D05.4/V02 — Final R6505/2008/05/26/0penTC Public (PU)

https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pdf
https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pdf
https://www.trustedcomputinggroup.org/specs/TPM/Main_Part2_Rev94.zip
https://www.trustedcomputinggroup.org/specs/TPM/Main_Part2_Rev94.zip
https://www.trustedcomputinggroup.org/specs/TPM/mainP3Commandsrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/mainP3Commandsrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/
https://www.trustedcomputinggroup.org/specs/TPM/
http://www.trustedcomputing.org/
http://www.trustedcomputing.org/
https://www.trustedcomputinggroup.org/specs/TPM/
http://www.trustedcomputing.org/
https://www.trustedcomputinggroup.org/specs/TNC/TNC_Architecture_v1_2_r4.pdf
https://www.trustedcomputinggroup.org/specs/TNC/TNC_Architecture_v1_2_r4.pdf
https://www.trustedcomputinggroup.org/specs/TNC/TNC_Architecture_v1_2_r4.pdf
http://www.vmware.com/
http://www.vmware.com/
http://www.xen.org/

	Kopie von otc_D05.4_DesignOfSecServices_004_20080529.pdf
	Kopie von otc_D05.4_DesignOfSecServices_003_20080529.pdf
	otc_D05.4_DesignOfSecServices_002_20080528.pdf
	otc_D05.4_DesignOfSecServices_002_20080528.pdf
	Introduction and Outline
	Introduction
	Outline of this Report

	Related Work
	Trusted Computing
	Machine Virtualization
	Trusted Virtual Domains
	Property-Based Attestation
	Trusted Channels

	Compliance Proofs for Xen
	Introduction
	Formal Integrity Model for Virtual Machines
	The PEV Integrity Architecture
	Realization using Xen and Linux
	Use Cases
	Conclusion

	Hierarchical Integrity Management
	Introduction
	Design Overview
	Basic Integrity Management
	Hierarchical Integrity Management
	Policy Verification for Security Services
	Implementation in Xen
	Related Work
	Conclusions

	Trusted Channels with Remote Integrity Verification
	Motivation
	Requirement Analysis
	Basic Concept
	System Architecture
	Credentials, Extensions and their Usage
	Implementing a Trusted Channel with OpenSSL
	Security Considerations
	Functional Considerations
	Summary

	Conclusion and Outlook
	Some details on Trusted Channel Implementation
	Details of Hardware and Virtualization Layer
	Linkage of Configuration Information to Secure Channel
	State-Change Protocol Flow

	Bibliography

	Kopie (2) von otc_D05.4_DesignOfSecServices_003_20080529.pdf
	otc_D05.4_DesignOfSecServices_002_20080528.pdf
	otc_D05.4_DesignOfSecServices_002_20080528.pdf
	Introduction and Outline
	Introduction
	Outline of this Report

	Related Work
	Trusted Computing
	Machine Virtualization
	Trusted Virtual Domains
	Property-Based Attestation
	Trusted Channels

	Compliance Proofs for Xen
	Introduction
	Formal Integrity Model for Virtual Machines
	The PEV Integrity Architecture
	Realization using Xen and Linux
	Use Cases
	Conclusion

	Hierarchical Integrity Management
	Introduction
	Design Overview
	Basic Integrity Management
	Hierarchical Integrity Management
	Policy Verification for Security Services
	Implementation in Xen
	Related Work
	Conclusions

	Trusted Channels with Remote Integrity Verification
	Motivation
	Requirement Analysis
	Basic Concept
	System Architecture
	Credentials, Extensions and their Usage
	Implementing a Trusted Channel with OpenSSL
	Security Considerations
	Functional Considerations
	Summary

	Conclusion and Outlook
	Some details on Trusted Channel Implementation
	Details of Hardware and Virtualization Layer
	Linkage of Configuration Information to Secure Channel
	State-Change Protocol Flow

	Bibliography

	Kopie von otc_D05.4_DesignOfSecServices_001_20080528.pdf
	Introduction and Outline
	Introduction
	Outline of this Report

	Related Work
	Trusted Computing
	Machine Virtualization
	Trusted Virtual Domains
	Property-Based Attestation
	Trusted Channels

	Compliance Proofs for Xen
	Introduction
	Formal Integrity Model for Virtual Machines
	The PEV Integrity Architecture
	Realization using Xen and Linux
	Use Cases
	Conclusion

	Hierarchical Integrity Management
	Introduction
	Design Overview
	Basic Integrity Management
	Hierarchical Integrity Management
	Policy Verification for Security Services
	Implementation in Xen
	Related Work
	Conclusions

	Trusted Channels with Remote Integrity Verification
	Motivation
	Requirement Analysis
	Basic Concept
	System Architecture
	Credentials, Extensions and their Usage
	Implementing a Trusted Channel with OpenSSL
	Security Considerations
	Functional Considerations
	Summary

	Conclusion and Outlook
	Some details on Trusted Channel Implementation
	Details of Hardware and Virtualization Layer
	Linkage of Configuration Information to Secure Channel
	State-Change Protocol Flow

	Bibliography

