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ABSTRACT

This report summarizes and consolidates the main resaolts ®penTC Workpackage
05 “Security Management and Infrastructure”. The goal ofMgackage 5 has been to
develop mechanisms for managing security of virtual systefmle leveraging trusted
computing technologies for verifiability and protection.

Part | of the deliverable introduces our goals and survegsagiproach we have
taken from a high-level perspective. Part Il then descrideguilding blocks in detail.
Part Il describes the WP5 concepts in the demonstrator andudes the deliverable
by evaluating our prototype and documenting our futurecmi!
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Chapter 1

Introduction and Outline

1.1 Introduction

Hardware virtualization is enjoying a resurgence of irgefaeled in part by its cost-
saving potential. By allowing multiple virtual machinestie hosted on a single phys-
ical server, virtualization helps improve server utilinat reduce management and
power costs, and control the problem of server sprawl.

A prominent example in this context is data centers. iffi@structure provider
who owns, runs, and manages the data center, can transfesghsavings to its cus-
tomers oroutsourcing companiesvhose virtual infrastructures are hosted on the data
center’s physical resources. A large number of the compaha outsource their op-
erations are small and medium businesses or SMBs, whictotafford the costs of a
dedicated data center in which all the data center’s resglare used to host a single
company’s IT infrastructure. Hence, the IT infrastructbeéonging to multiple SMBs
may be hosted inside the same data center facility. Today Evsuch “shared” data
centers, each run on distinct physical resources and theceresource sharing among
various customers. In this so-callpllysical cagemodel, the customers are physically
isolated from each other in the same data center.

Limited trust in the security of virtual datacenters is oreggonreason for customers
not sharing physical resources. Since management is ygeformed manually, ad-
ministrative errors are commonplace. While this may leaddan times in virtual
datacenters used by a single customer, it can lead to infmml@aakages to competi-
tors if the datacenter is shared. Furthermore, multipl@oizations will only allow
sharing of physical resources if they can trust that secumitidents cannot spread
across the isolation boundary separating two customers.

Security Objectives Our main security objective is to provide isolation amonfy di
ferent domains that is comparzﬂ)uzith the isolation obtained by providing one infras-
tructure for each customer. In particular, we require asgcarchitecture that protects
those system components that provide the required isolatiallow to verifiably rea-
son about their trustworthiness of and also of any peer @ntifiocal or remote) with
a domain, i.e., whether they conforms to the underlying scpolicy.

We achieve this by grouping VMs dispersed across multiplgsiglal resources
into avirtual zonein which customer-specified security requirements areraatically

INote that unlike physical isolation, we do not solve the feobof covert channels.
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Figure 1.1: TVD Architecture: High-Level Overview.

enforced. Even if VMs are migrated (say, for load-balangingposes) the logical
topology reflected by the virtual domain should remain umgjeal. We deploy Trusted
Computing (TC) functionalities to determine the trustvaaress (assure the integrity)
of the policy enforcement components.

Such a model would provide better flexibility, adaptabjlitpst savings than to-
day’s physical cages model while still providing the maiowg#y guarantees required
for applications such as datacenters.

1.2 Our Contribution

In this deliverable, we provide a blueprint for realizingggrity and isolation in virtual
systems. We do this by supporting a logical cages model,riticpéar for virtualized
data centers, based on a concept called Trusted Virtual DesaTVDs [16]. Based
on previous work, we describe a security management framketivat helps to realize
the abstraction of TVDs by guaranteeing reliable isolatod flow control between
domain boundaries. Our framework employs networking andage virtualization
technologies as well as Trusted Computing for policy veatfan. Our main contribu-
tions are (1) combining these technologies to realize TUIis(@) orchestrating them
through a management framework that automatically enosmation among differ-
ent zones. In particular, our solution aims at automatiegvirification, instantiation
and deployment of the appropriate security mechanisms ahdilzation technolo-
gies based on an input security model, which specifies thanesdjlevel of isolation
and permitted information flows.

1.3 Outline of this Report

This report is structured in three parts. Part | surveys arkvand summarizes related
work in Chaptel¥. Part Il describes selected building béaaflour security architecture
in detail. Part Il describes WP5 components of our protetgpd finally reflects on

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



CHAPTER 1. INTRODUCTION AND OUTLINE 9

our lessons learned and documents our outlook onto theefatutrusted computing
and virtualization.

The first technical component in Part Il is the integrity asduaance management
of the OpenTC Security Services. This has two aspects: Itidség we describe how
integrity statements about virtual machines can be madenanddata can be bound
to the integrity of a machine. We also describe how to proteetprivacy of users
using our system. In Sectidh 6 we extend these results ta tweearchical integrity
management, i.e., the integrity protection of packagesufipte virtual machines and
the related components.

The second component is our network security architecteseribed in Chaptét 7.
It implements two key ideas. The first idea is to provide seaurtual networks (so-
called trusted virtual domains) that transparently cohiét¢s on multiple hosts. The
second idea is to automatically provision the requiredgaidn mechanisms such that
the networks guarantee a given set of user requirements.

The third component described in Chajbier 8 is the public késastructure (PKI)
that manages the keys used four security mechanisms. linglsoles trusted comput-
ing extensions to existing PKI standards.

The fourth component are trusted channels in Chapter 9 ttatle to establish a
secure channel while verifying the integrity of the peerisTdlows users to not only
guarantee the integrity of a given machine but also to sécuomnect to the machine
that has been validated.

The fifth and final concept is our approach to attack and faitesilience as doc-
ument in Chaptel 10. This concept comprises three main .id€he first is to use
introspection to detect viruses and other failures insidenaing VM. The second is
to implement redundancy for VMs and key hypervisor comptssach as network or
disk drivers. The final idea combining them is to monitor VMelaejuvenate VMs
that are failed or are at risk of failing. Overall, this allew substantial increase in the
resiliency of the services running on this platform.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)
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1.4 Dependability of Virtual Systems

We now provide a sampling of related work in the area of usiMgVYor improving de-
pendability. We also compare our X-Spy intrusion detectiamework with previous
hypervisor-based intrusion detection systems. Many afeheorks, including ours,
implicitly trust the virtualization layer to function preply, to isolate the VMs from
each other, and to control the privileged access of certdds Y6 other VMs. Such a
trust can be justified by the observation that a typical hyiger consists of some tens
of thousands lines-of-code (LOC), whereas a typical opegaystem today is on the
order of millions LOC [40]. This allows a much higher assumifior the code of a
hypervisor.

Bressoud and Schneidér [15] implemented a primary-backpication protocol
tolerant to benign faults at the VMM level. The protocol fess non-determinism
by logging the results of all non-deterministic actionsetalby the primary and then
applying the same results at the backups to maintain statgstency.

Double-Take[124] uses hardware-based real-time synocluoreplication to repli-
cate application data from multiple VMs to a single physioalkchine so that the appli-
cation can automatically fail over to a spare machine by irtipgthe replicated data in
case of an outage. As the replication is done at the file syleshbelow the VM, the
technique is guest-OS-agnostic. Such a design could prdki basis for a business
model in which multiple client companies outsource thesadter recovery capability
to a disaster recovery hot-site that houses multiple phayb@ackup machines, one for
each client.

Douceur and Howell [29] describe how VMMs can be used to enguat VMs
satisfy determinism and thereby enable state machineediglh at the VM level rather
than the application level. Specifically, they describe lad¥M’s virtual disk and clock
can be made deterministic with respect to the VM's execufldre design relieves the
application programmer of the burden of structuring theliappon as a deterministic
state machine. Their work is similar to Bressoud and Sclemsicipproach[[15] of
using a VMM to resolve non-determinism. However, the ddfere lies in the fact
that whereas Bressoud and Schneider’s approach resolwedaterminism using the
results of the primary machine’s computation, Douceur and/¢ll’'s design resolves
non-determinisna priori by constraining the behavior of the computation.

Dunlapet al.describe ReVirt[31] for VM logging and replay. ReVirt encagates
the OS as a VM, logs non-deterministic events that affecthis execution, and
uses the logged data to replay the VM'’s execution later. Suchpability is useful
to recreate the effects of non-deterministic attacks, ag sfow later in[[59]. Their
replay technique is to start from a checkpoint state and bk forward using the log
to reach the desired state.

Joshiet al. [59] combine VM introspection with VM replay to analyze whet a
vulnerability was activated in a VM before a patch was appliehe analysis is based
on vulnerability-specific predicates provided by the patctier. After the patch has
been applied, the same predicates can be used during thendvtisal execution to
detect and respond to attacks.

Backtrackeri[64] can be used to identify which applicationning inside a VM was
exploited on a given host. Backtracker consists of an omiamponent that records OS
objects (such as processes and files) and events (such asrig@adand fork), and an
offline component that generates graphs depicting thelgesgiain of events between
the point at which the exploit occurred and the point at whiehexploit was detected.

An extension of Backtrackelr [66] has been used to tracklketirom a single host
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13

at which an infection has been detected to the originatdreéttack and to other hosts
that were compromised from that host. The extension is basddentifying causal
relationships, and has also been used for correlatingsdlern multiple intrusion de-
tection systems.

King et al. [65] describe the concept of time-traveling virtual magsfTTVMs),
in which VM replay is used for low-overhead reverse debuggihoperating systems
and for providing debugging operations such as reverseklpemt, reverse watch
point, and reverse single step. Combining efficient cherkjg techniques with Re-
Virt, TTVMs can be used by programmers to go to a particulantia the execution
history of a given run of the OS. To recreate all relevantestat that point, TTVMs
log all sources of non-determinism.

Garfinkel and Rosenblum [40] introduced the idea of hypervizmsed intrusion
detection, and pointed out the advantages of this approagtits applicability not
only for detection, but also for protection. Their Livewisgstem uses a modified
VMware workstation as hypervisor and implements variouSmpbased and event-
driven sensors. Compared with Livewire, our X-Spy systenplegs more extensive
detection techniques (e.g., by checking not only procedsésalso kernel modules
and file systems) and protection techniques (such as pikicigeand white-listing of
binaries, and kernel sealing) with an explicit focus on kidaletection. In addition,
X-Spy enables easy forensic analysis.

Zhanget al.[132] and Petronet al. [85] use a secure coprocessor as the basis for
checking the integrity of the OS kernel running on the maotpssor. However, as the
coprocessor can only read the memory of the machine moditordy polling-based
intrusion detection is possible. In contrast, X-Spy canfgrer both polling-based
and event-driven intrusion detection. Specifically, it ¢arercept and deny certain
requested actions (such as suspicious system calls), arefdhe has the capability to
not only detect but also protect.

Laureancet al.[[71] employ behavior-based detection of anomalous systdise-
guences after a learning phase in which “normal” systens ea#l identified. Processes
with anomalous system call sequences are labeled suspidtouthese processes, cer-
tain dangerous system calls will in turn be blocked. The arstllescribe a prototype
based on a type-Il hypervisor, namely, User-Mode Linux (UNEZS].

The ISIS system of Litty[[75] is also based on UML. ISIS runsigsocess in the
host operating system and detects intrusions in the guesatipg system by using
thept r ace system call for instrumenting the guest UML kernel. UnlikeSgy, ISIS
focuses mostly on intrusion detection and not protection.

Jianget al.[57] describe th&Mwatchersystem, in which host-based anti-malware
software is used to monitor a VM from within a different VM. Spy and VMwatcher
are similar in that both use the hypervisor as a bridge faMM inspection, and both
tackle the semantic gap problem. While their work focusebriaging the semantic
gap on a multitude of platforms (hypervisors and operatysgesns), our work focuses
on employing more extensive detection mechanisms (suchexking not only pro-
cesses, but also kernel modules, network connections, englytems) on a single
hypervisor. In contrast to X-Spy, VMwatcher does not inéwyent-driven detection
methods or protection techniques.

The Strider GhostBuster system by Beatlal. [12] is similar to X-Spy in that both
use a differential view of system resources. Strider Ghosti® compares high-level
information (such as information obtained by an OS commauith) low-level infor-
mation (e.g., kernel information) to detect malicious w@aite trying to hide system
resources from the user and administrator. However, sudmgarison has limited

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)
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effectiveness as detection takes place in the same (paitgrtompromised) OS envi-
ronment. Beclet al. also compare the file system view obtained from a potentially
compromised OS with the view obtained from an OS booted fratean media. The
disadvantage of such an approach is that it requires mailtgidoots and is limited to
checking only persistent data (such as file system) and netime data.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



Chapter 2

Security Policies for Virtual
Data Centers

Data centers provide computing and storage services tapteutustomers. Customers
are ideally given dedicated resources such as storage arsic@hmachines. In the
physical cages approach, only few resources such as th@éh@nnection may be
shared between multiple customers. For cost efficiencylagical cages approach
promotes securely extending sharing to other resourcésasistorage and networks.
This is enabled by preventing unauthorized informatiorhexge via shared resources.

To model and implementthe logical caging approach, we thice a domain-based
security model for enforcing unified security policies imtualized data centers. We
focus on isolation policies that mimic physical separatibdata center customers. Our
goal is to logically separate networks, storage, VMs, ysard other virtual devices of
one customer from another customer. For our purposes, weedkefimain isolatioras
the ability to enforce security policies within a domainépendently of other domains
that may co-exist on the same infrastructure and interattt thiat domain. The core
idea is to use this isolation property as a foundation forgni@eing desired security
properties within each virtual domain while managing saervices under mutually
agreed policies.

We now explain the policies that describe this controllédimation exchange in a
virtualized data center. In Sectiph 3 we describe the indiai components that enable
us to enforce these policies.

2.1 High-level Policy Model

The security model includes two high-level policies definthe security objectives
that must be provided by the underlying infrastructure:

Inter-TVD Policy: By default, each TVD is isolated from the outside world. The
high-level information-exchange policy defines whethed &iow information
can be exchanged with other TVDs. If no information flow wither TVDs is
permitted, no resources can be shared unless the data opetator can guar-
antee that the isolation is preserved. If information floWrton other TVDs is
allowed, sub-policies further qualify the exact infornaatiflow policy for the
individual resources.

15
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Roles of Single-Domain VPE, VPE, VPE,
Machines (subjects): (Roley, || (Role, | (Role,
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(mode):

Multi-Domain Resources
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Figure 2.1: Policy Model: Single-TVD Machines operate omi®ll Resources

Intra-TVD Policy: Domain policies allow TVD owners (e.g., customers) to deffivee
security objectives within their own TVDs. Examples of symdiicies include
how the internal communication is to be protected and undetwonditions
resources (e.g., storage, machines) can join a particMBr T

We further define more fine-grained policies by the useot#fs that can be assigned
to any member VM, say to a member machine. This allows us toeeind enforce
role-based policies within and across TVDs. For exampleshimes can now assume
internal or gateway roles with corresponding permissiamsle a workstation may not
be allowed to connect to non-TVD networks, machines with'‘tinewall” role can be
allowed to connect to selected other networks. Figure Zictethree VMs in a single
TVD. Each VM is given different levels of access to resoumgitl respect to their role
for that TVD.

2.2 Security Objectives and Policy Enforcement Points

Policies are enforced for all shared resources in the TViastfucture (see Figure 2.2).
The basis of all policies is isolation at the boundary of e@etD. By default, each
resource is associated with a single domain. This achiebesia level of isolation. If
information flow between TVDs is allowed, resources can bisamember of different
TVDs. For example, a TVD can allow certain types of resoumesertain hosts to
provide services also to other domains. Each TVD defines magarding in-bound
and out-bound information flow for restricting communicativith the outside world.
The underlying policy-enforcementinfrastructure theg teeensure that only resources
trusted by all TVDs are shared.

Architecturally, there are two ways of enforcing such rukepending on the trust
between the TVDs. The first method involves two shared ressuconnected by an
intermediate domain. In this method, each TVD enforcesidits sf the flow control
by means of its own shared resource. An example of this typemfiection is the one
that exists betweemVD AandTVD Bin Figure[Z2. This method is used when the
trust level betweeTVD AandTVD Bis low, and the two cannot agree on a shared
resource that is mutually trusted. The shared resouré®'d Awill enforce TVD As
policies regarding in-bound traffic fromVD B, even if the shared resourceTvD B
does not enforc@VD Bs policies regarding out-bound traffic. The shared resesirc
can be thought of being a part of a “neutral” TVIDYD AB) with its own set of mem-
bership requirements. The second method that requiresdhrast is to establish one
or more shared resources that are accessed from both TVDsallbiving controlled
information flow. This mechanism is used betw&&D BandTVD Cin FigureZ.2.
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TVD A

Membership
Constraints

Isolation | I Flow Enforcement Flow Enforcement
Enforcement } by Single-trust by Mutually Trusted
Internet 7 Shared Resources Shared Resources

Figure 2.2: Usage Control for Shared Resources: Machiresssurces belonging to
TVDs.

From/to| D; Dp D;

Dy 1 1 0
Dp 0 1 1
D, 0 1 1

Table 2.1: High-level Directed Flow Control Matrix for Inteet D;, DMZ Dp, and
IntranetD;.

Security within a virtual domain is finally obtained by defigiand enforcingnem-
bership requirementthat resources have to satisfy prior to being admitted tartie
and for retaining the membership. This may also include ispeequirements for
different machine types: Because, for example, sharediress play a key role in
restricting information flow between TVDs, the software bnde machines may be
subject to additional integrity verification as compareth®software on regular VMs.

2.2.1 Permitted Flows in Data Centers

At a high level flow control policies define the allowed traffiow between two do-
mains and how the domains should be protected. Allowed imdtion flows can be
represented by a simple flow control matrix as depicted inef2d, where allows in-
formation flow and) denies it. This example implements a basic enterpriseypthiat
regulates incoming flow from untrusted outside entiti®g)(through a semi-trusted
intermediary domaini ), and disallows any outgoing flow. Note that this matrix is
directional, i.e., it might allow flows in one direction bubtin the opposite direction.
If flow policies between two TVDs are asymmetric, only sharesources that can
enforce these policies are permitted.

Device-specific policies (network, storage) can then refiese basic rules. If an
information flow is not permitted, then also shared resaiace not permitted between
these TVDs.

2.2.2 Membership Requirements

Membership requirements define under what conditions ressunay join a domain.
From a high-level policy perspective, several criteria barapplied to decide whether
an entity is allowed to join a domain, for example:

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)
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e Certificates An authority defined by the TVD policy can certify a resoutoe
be member of a TVD. A common example is that an enterprisessmachine
certificates to allow its machines to join the corporate oekw

e Integrity Proofs A resource may prove its right to join a TVD using integrity
proofs. It may, e.g., prove that the integrity of the baserafieg system is intact
and that all required patches have been applied [103].

e User-identity Only machines operated by a certain user can join. This ean b
validated by user-name/password or by a cryptographiatoke

In general, a resource may need to show proper credentigdsot@ that it fulfills
certain properties before allowing the resource to joinT® [06]. More formally,

a machinen is permitted to join a TVLX if and only if there is at least one property
of m that satisfies each security requirement.oT he validations of these properties
are usually done on a per-type and role basis. For exampjeiremnents for a shared
resource are usually stronger than the requirements forlifiternal resource.

2.3 Example Policy Refinements for Protected Re-
sources

Policies alone are not sufficient to enforce customer séiparan a virtualized data
center. Ultimately, one needs to transform these policigsdata center configurations
and security mechanisms specific to each resource (e.g.Nutohfiguration). To do
so, we introduce a policy management scheme that accepisevigl domain policies
and transforms them into resource-specific low-level pedi@and configurations. In
Sectior Il we demonstrate a prototype based on this artthigethat enforces high-
level TVD policies by lower-level network and infrastruotLconfigurations, which is
then deployed onto each physical platform to assist custseparation.

2.3.1 Refinement Model

The high-level policy defines the basic flow control, protattand admission require-
ments. We aim at enforcing these high-level objectivesuhout all resources in the
data center.

In the high-level model, flow control across customer domasnspecified by a
simple matrix such as the one in Figlrel2.1 that defines whdlitves are permit-
ted. This however is not sufficiently fine-grained for specisources. TVDs, for
example, want to restrict their flow across boundaries bynaed firewall rules. As
a consequence, we need to introduce a notion of policy reénefi27], because as
translation moves towards lower levels of abstraction,ilitiequire additional infor-
mation (e.g., physical arrangement of the data centerjéstibe” trust information) to
be correctly and coherently executed.

Our notion of policy refinement mandates the enforcementnof flow” objec-
tives while allowing each resource to refine what it meansaoftows are permitted
and how exactly unauthorized flows shall be prevented. Sitgilwe do not allow
resources to deviate from the confidentiality/integrityeatives; however, certain re-
sources can be declared trusted so that they may enforeedbgsctives without addi-
tional security mechanisms such as encryption or autheidit
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Flowto — Dy Dp D;
Enforced by | ‘ gate internal gate internal gate internal|
Dy 1 1 Prp 0 0 0
Dp 0 0 1 1 Pp; 0
D;| O 0 Pp; 0 1 1

Table 2.2: Example Network Flow Control Policy Matrix for fge TVDs.

Similarly, the fact that admission is restricted is thennedi by specific admission
control policies that are enforced by the underlying infnasture.

Note that conflict detection and resolution [127], 76] caarlae used to extend this
simple notion of refinement. However, we currently stay andhfe side: Connections
are only possible if both TVDs allow them. Similarly, if onerdain requires confi-
dentiality, information flows are only allowed to TVDs thds@arequire confidentiality.
Other schemes for more elaborate flow control have been peatia [33[ 17, 32, 38].

2.3.2 Network Security Policies

We now survey the policy model df [1.8] and show how it relatethte corresponding
high-level policy. Similar to our high-level policies, tteeare two types of policies
governing security in the network. The first limits flow beewenetworks, whereas the
second defines membership requirements to each network.

Network Security Policies across TVDs A policy covers isolation and flow control
between TVDs as well as integrity and confidentiality againgsiders. These basic
security requirements are then mapped to appropriateigslior each resource. For
example, from a networking perspective, isolation refethé requirement that, unless
the inter-TVD policies explicitly allow such an informatidlow, a dishonest VM in one
TVD cannot (1) send messages to a dishonest VM in another TiBrination flow),
(2) read messages sent on another TVD (confidentialitypl{8) messages transmitted
on another TVD (data integrity), and (4) become a member ofter TVD network
(access control).

TVDs often constitute independent organizational unitt tihhay not trust each
other. If this is the case, a communication using another T¥D be established (see
the communication between TVD A and B in Figlirel2.2). The atage of such a
decentralized enforcement approach is that each TVD igdgudérom security failures
in other TVDs, thus contribute to domain isolation. For natvs, the main inter-
TVD security objectives are controlled information shgraamong the TVDs as well
as integrity and confidentiality protection of the channel.

While the high-level model specifies whether informationtenge is allowed be-
tween domains or not, we now refine this policy as follows:

e We refine the active elements (subjects) of given domainsitsgducing roles
that machines can play. This allows us to set different pgsioins to boundary
machines as compared to internal machines.

e In case information flow is permitted in principle, we refite thetwork secu-
rity policies by introducing flow control rules that can flet restrict the actual

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



20 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

information exchange. A network policy may disallow flow ew@ough it has
been allowed from a high-level policy perspective.

An information flow control matrix is a simple way of formalligy these network con-
nectivity objectives. TablE_2.2 shows a sample matrix fer tthree example TVDs
introduced earlier. Each matrix element represents aysfiecifying permitted con-
nections between a pair of TVDs, as enforced by one of the TVDise depicted
policies P, that limit information exchange will be implemented by fidlrules that
are used to program the boundary firewalls. Thealues along the matrix diagonal
convey the fact that there is free information exchangeiwigach TVD. The0 val-
ues in the matrix are used to specify that there should be neatdihformation flow
between two TVDs, e.g., between the Interhgtand the intraneD;. Care must be
taken to ensure that the pairwise TVD policies specifiedéniformation flow control
matrix do not accidentally contradict each other or allowlesired indirect flow.

Intra-TVD Network Security Policy  Within a TVD, all VMs can freely commu-
nicate with each other while observing TVD-specific integend confidentiality re-
quirements. For this purpose, the underlying infrastmgcimay ensure that intra-TVD
communication only takes place over an authenticated and/gted channel (e.g.,
IPSec), or alternatively, a trusted netwllrk

2.3.3 Towards Storage Security Policies

Virtual disks attached to VMs must retain the advantagesredf by storage virtualiza-
tion while at the same time enforcing TVD security policidsdvantages of storage
virtualization include improved storage utilization, gilified storage administration,
and the flexibility to accommodate heterogeneous physioedge devices. Similar to
network, we now show a refinement of the high-level TVD pelcinto access control
policies for VMs in certain roles to disks belonging to a dama

Inter-TVD Storage Security A virtual disk has a single label corresponding to the
TVD it belongs to. Whenever a virtual machine operates otu&irstorage, the global
flow matrix described in Sectidd 2 needs to be satisfied. Fribfléty, each TVD can
define a set of storage policies that govern usage and seotiiis storage. A single
policy is then assigned to and enforced for each storagenalu

As the starting point of our storage policy refinement, werdeimaximum per-
mission policyas follows:

1. Any machine in domaiff'VD 4 playing any role can write to a disk of domain
TVD p iff flow from domain TVD 4 to domainTVD g is permitted.

2. Any machine in domaifi’VD 4 playing any role can read from a disk of domain
TVD p iff flow from domain TVD g to domainTVD 4 is permitted.

3. Any single machine in any domain can read/write mount akbthsk. After data
is written, the disk changes ownership and is now assignétetdomain of the
machine who has written data.

1A network is calledtrustedwith respect to a TVD security objective if it is trusted td@ce the given
objective transparently. For example, a server-interrihéaet can often be assumed to provide confiden-
tiality without any need for encryption.
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Flowto — Dy Dp D;
Disk | gate internal  gate internal gate internal
Dy r/w r/w w 0 0 0
Dp r 0 r/w r/w r/w 0
D; 0 0 r/w 0 r/w r/w
Blank r/ 0 r/ 0 r/ 0
w — Dy 0 w — Dp 0 w — Dy 0

Table 2.3: Example of a Refined Disk Policy Matrix for ThreeD&/

Table[2.8 shows the resulting maximum disk access conttimypd\ctual policies are
then valid with respect to a maximum-permission policy fatcamain if they permit
a subset of its permissions. Note that as flow within a domsialivays allowed,
this implies that disks of the same domain as the machine riveaya be mounted
read/write.

Intra-TVD Storage Security By default, we consider the content of a disk to be
confidential while the storage medium (possibly remotegmmded to be untrusted. As
a consequence, if a given domain does not declare a giveagstonedium as trusted,
we deploy whole-disk encryption using a key that is mairgdiny the TVD infrastruc-
turef Another aspect reflected in the disk policies is the factWeahave a notion of
blank disks. Once they are written by another domain, theyghk color, and are then
associated with this other domain while being encrypteceutite corresponding key.
In the future, it would be desirable to have integrity-potésl storage [24, 89] where
the TVD can validate that its content have not been changeshtrysted entities.

For protecting the data in a particular TVD, virtual storagay in addition specify
which conditions on the system must be satisfied before andégkbere-mountedy a
VM that has previously unmounted the disk, and whether shaa@unting by multiple
systems is allowed. Note that these membership restrctiequire bookkeeping of
disks and management of access of VMs to disks.

2Note that the VM only sees unencrypted storage, i.e., the TAfiastructure automatically loops in
encryption.
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Chapter 3

Unified Policy Enforcement for
Virtual Data Centers

In this section, we introduce a TVD-based policy enforcenfimmework that or-
chestrates the deployment and enforcement of the type dfigmiwve presented in
Sectior 2 across the data center. Existing storage and rietivtualization technolo-
gies as well as existing Trusted Computing components {twaoce and hardware) are
the building blocks of our solution. Our framework (1) comés these technologies to
realize TVDs and (2) orchestrates them using the TVD infuastire, which provisions
the appropriate security mechanisms.

3.1 TVD Infrastructure

The TVD infrastructure consists of a management layer andrdarcement layer.
The TVD management layer includes TVD masters, proxies,factries, whereas
the TVD enforcement layer consists of various securityises: Each TVD is iden-
tified by a uniqueTVD Masterthat orchestrates TVD deployment and configuration.
The TVD Master can be implemented as a centralized entityn(asir prototype de-
scribed in Sectiofh11) or have a distributed fault-toleierglementation. The TVD
Master contains a repository of high-level TVD policies amddentials (e.g., VPN
keys). The Master also exposes a TVD management API throdmthwhe TVD
owner can specify those policies and credentials. In théoglepent phase, the TVD
Master first verifies the suitability and capability of theypltal host (which we refer to
as pre-admission control). It then uses a genEviD Factoryservice to spawn avD
Proxy, which acts as the local delegate of the TVD Master dedicatéidat particular
host. The TVD Proxy is responsible for (1) translation ofthigvel TVD policies into
low-level platform-specific configurations, (2) configuoat of the host and security
services with respect to the translated policies, and (@&raction with the security
services in TVD admission and flow control.

Security services implement the security enforcementlafeur TVD infrastruc-
ture. They runin atrusted execution environment on eackipalhost (e.g., Domain-0
in Xen) and (1) manage the security configuration of the hyiper, (2) provide secure
virtualization of resources (e.qg., virtual devices) to YHds, and (3) provide support
to TVD proxies in enforcing flow and access control policigthim and across TVD
boundaries. Figure_3.1 shows a high-level list of secugtywiges and their interac-
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TVD Master
L{ Compartment Manager ]—q TVD Proxy

Integrity Manager
. 5 Storage Manager Network Manager
Virtual Device Manager (sub-proxy) (sub-proxy)

(O TVD Component [ Security Service

Figure 3.1: TVD Components and Security Services.

tion with the TVD components. Most importantly, thtempartment manageservice
manages the life-cycle of VMs in both para-virtualized antlyfvirtualized modes.
This service works in collaboration with the TVD Proxy to ativMs into TVDs.
Theintegrity manageiservice implements Trusted Computing extensions andtgssis
the TVD Proxy in host pre-admission and VM admission conffalevirtual network
managerandvirtual storage manageservices are invoked by the TVD Proxy. They
implementresource virtualization technologies and ex&@parts of the high-level TVD
policies that are relevant to their operation. Lastly,\threual device manageservice
handles the secure resource allocation and setup of viliates assigned to each
VM.

Our TVD infrastructure is geared towards automated depétrand enforcement
of security policies specified by the TVD Master. Automatefinrement and transla-
tion of high-level policies into low-level configurationseaof particular interest. For
example, for information flow between two hosts in a trustatha@enter environment,
other mechanisms need to be in place than for a flow betweelmbsts at opposite
ends of an untrusted WAN link. In the latter case, the hostsilshbe configured to
allow communication between them only through a VPN tunnel.

Another important consideration is policy conflict detentiand resolution [127,
[76]. In fact, conflicting high-level policies (e.g., a comwtien being allowed in the
inter-TVD policy but disallowed in the intra-TVD policy) ogpotentially result in an
incorrect configuration of the underlying infrastructui®e cannot solely rely on the
TVD owner to specify conflict-free policies. It is importatot detect policy conflicts
and provide feedback to the owner in case one is detectedelpresent prototype,
policy refinement is performed manually. The result is a $ebafiguration files that
we use for configuring the security services at the policps@ment layer (e.g., the
virtual networking infrastructure). In future work, we Whihvestigate the automation
of this step using, for example, the IETF policy modell[91Hamrious graph-based
mechanisms from the literature. We will also investigatéedént techniques for re-

solving conflicting policies[33, 17,32, 38].

3.2 Virtual Networking Infrastructure

Virtual networking (VNET) technologies enable the seamieserconnection of VMs
that reside on different physical hosts as if they were nugrin the same machine.
In our TVD framework, we employ multiple technologies, inding virtual switches,
Ethernet encapsulation, VLAN tagging, and VPNSs, to viizeathe underlying net-
work and securely group VMs that belong to the same TVD. Alsipgivate virtual
network is dedicated to each TVD, and network separatiomssieed by connecting
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Figure 3.2: General vSwitch Architecture.

the VMs at the Ethernet level. Logically speaking, we preval separate “virtual
infrastructure” for each TVD in which we control and limitafsharing of network re-
sources (such as routers, switches) between TVDs. Thipatsides the TVD owner
with the freedom to deploy a wide range of networking sohsion top of the TVD
network infrastructure. Network address allocationg)gpeort protocols, and other ser-
vices are then fully customizable by the TVD owner and wodnsparently as if the
VMs were in an isolated physical network. To maintain segetd confidentiality of
network data (where necessary), network communicatiostébéished over encrypted
VPN tunnels. This enables the transparent use of untrust®ebrks between physical
hosts that contain VMs within the same TVD to provide a seasgew of the TVD
network.

In this section, we introduce the technologies we use to émpht a security-
enhanced VNET infrastructure for TVD owners. The conceptigfial switching is
central to our architecture, which is then protected bytadsVPN technologies that
provide data confidentiality and integrity where needede VNET infrastructure acts
as the local enforcer of VNET policies. As described in Sedl. 3.2, these policies
are based on the high-level TVD policies and translatednietavork configurations by
the TVD Proxy. The Proxy then deploys the whole VNET infrasture with respect
to the translated configuration.

3.2.1 Virtual Switching

The virtual switch (vSwitch) is the central component of the virtual netwotkin-
frastructure and operates similarly to a physical switdhis fesponsible for network
virtualization and isolation, and enables a virtual netwtr span multiple physical
hosts. To do so, the vSwitch uses EtherlE [52] and VLAN tag{d®)] to insert VLAN
membership information into every network packet. The \t8walso implements the
necessary address-mapping techniques to direct pacKgtsoothose machines that
host member VMs. Virtual switches provide the primitives iimplementing higher-
level security policies for networking and are configuredtsyhigher-level TVD man-
agement layer.
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Figure[3:2 illustrates an example architecture in whichgital machines host mul-
tiple VMs with different TVD memberships (the light and daskades indicate dif-
ferent TVDs). Hosts A, B, and D are virtualized machines, ieas Host C is non-
virtualized. Furthermore, Hosts A, B, and C reside on theesa#N, and thus can
communicate directly using the trusted physical infragttice without further protec-
tion (e.g., traffic encryption). For example, tlight VMs hosted on Hosts A and B are
inter-connected using the local VLAN-enabled physicatskui In this case, the physi-
cal switch separates the TVD traffic from other traffic pagshrough the switch using
VLAN tags. Similarly, thedark VMs hosted on Host A and the non-virtualized Host
C are seamlessly inter-connected using the local switcleoitrast, connections that
require IP connectivity are routed over the WAN link. The Walud in Figurd 3.P
represents the physical network infrastructure able td d@é&h TVD-enabled virtual
networks; it can include LANs with devices capable of VLANjgng and gateways
to connect the LANs to each other over (possibly insecureNVliAks. For connec-
tions that traverse untrusted medium, we employ EtherlBgndation to denote TVD
membership and additional security measures (such aspimryto ensure compli-
ance with the confidentiality and integrity requirements.

3.2.2 Virtual Private Networking

In Figure[3:2, VMs hosted on Host D are connected to the otrerhines over a
WAN link. A practical setting in which such a connection migixist would be an
outsourced remote resource connected to the local datar¢brdugh the Internet. As
an example, lightly shaded VMs on Host D connect to the lone &fivHost B over
this untrusted link. In this setting, we use a combinatio&tiferIP encapsulation and
VPN technology to ensure the confidentiality and integrityh@ communication. To
do so, we use point-to-point VPN tunnels with OpenVPN that@nfigured via the
TVD Proxy from the TVD policies. This enables reconfigurataf the topology and
the involved VPNs within a TVD from a single administratiooipt, the TVD Master.
TVD policies distributed from the TVD Master to the TVD Proaiso include the
secret key for the VPN along with other VPN-specific settings a physical host, the
VPN'’s endpoint is represented as a local virtual networ&rface (vif) that is plugged
into the appropriate vSwitch controlled by the TVD Proxy.eNBwitch then decides
whether to tunnel the communication between VMs, and if sesihe VPN module
to establish the tunnel and access the VPN secret for traitig/ption and decryption.

3.3 \Virtual Storage Infrastructure

We focus on a simplified security management of virtualizedsgje. Broadly speak-
ing, storage virtualization abstracts away the physicabsfe resource(s). It is desir-
able to allow a storage resource to be shared by multipledorsputers, and also to
provide a single storage device abstraction to a computspective of the underly-
ing physical storage, which may be a single hard disk, a shaaf disks, a Storage
Area Network (SAN), etc. To satisfy both requirements, ag@r virtualization is typ-
ically done at two levels. The first level of virtualizationvblves aggregating all the
(potentially heterogeneous) physical storage devicesane or more virtual storage
pools. The aggregation allows more centralized and coemédata management. The
second level of virtualization concerns the unified grantyldi.e., blocks or files) at
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Figure 3.3: Security Enforcement for Virtualized Storage.

which data in each pool is presented to the higher-levetiest{operating systems,
applications, or VMs).

Figure[3.8 shows our storage security enforcement ar¢hidn which existing
heterogeneous physical storage devices are consolidated ijjoint pool. This vir-
tual storage pool is then subdivided into raw storage fohéa¢D. Each raw storage
volume has an owner TVD that determines its policy (indiddtg the labels TVD
A, TVD B, and TVD C at the per-TVD raw storage layer in the figurtn addition,
when a volume shall be shared among multiple TVDs, theresis alset of member
TVDs associated with it. The access control and encryptger helps enforce the
storage-sharing policy defined by the owner TVD, e.g., amifigr read, write, create,
and update access permissions for the member TVDs. Thisikagdogical layer that
in reality consists of the virtual storage managers (patti@fsecurity services) located
on each physical platform. The virtual storage manager ch paysical platform is
responsible for enforcing the owner TVD's storage secynitlcies (see Sectidn 2.3.3)
on these volumes. If a certain intra-TVD security policyuigs confidentiality and
does not declare the medium as trusted, the disk is encrypted a key belonging to
the owner TV If conditions for (re-)mounting a disk have been defined disk is
also encrypted and the key is sealed against the TCB whiledimg these conditions
into the unsealing instructions. The policy and meta-datahald on a separate raw
volume that is only accessible by the data center infrasirac

An administrator of a domain may request that a disk be maltatex particular
VM in a particular mode (read/write). In Xen, the disk is upanounted in the
management machine Domain-0 aback-end devicand then accessed by a guest
VM via a front-enddevice. The virtual storage manager on the platform vadgittie
mount request against the policies of both the TVD the VM ig phand the owner
TVD for the disk. Once mounted, appropriate read-write pesians are granted based
on the flow control policy for the two TVDs, e.g., read accesgrianted only if the
policies specified in the disk policy matrix allow the VM’s D/such an access to the
disk belonging to the owner TVD.

3.4 TVD Admission Control

When a VM is about to join a TVD, different properties will berified by the local
TVD Proxy to ensure that policies of all the TVDs that the VMcigrently a member
of as well as of the TVD that it wants to join are not violated.the verification is
successful, then the VM will be connected to that TVD. The Tadnission control

IFor efficiency reasons, we currently do not provide intggibtection.
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protocol is the procedure by which the VM gets connectedeol¥iD. In the case of
a VM joining multiple TVDs, the admission control protocsl éxecuted for each of
those TVDs. We now describe the steps of the protocol.

We assume that the computing platform that executes the \évigees mechanisms
that allow remote parties to convince themselves aboutltworthiness. Example
mechanisms include trusted (authenticated) boot and theteesattestation protocol
(see Sectioh 412) based on TPM technology.

TVD Proxy Initialization Phase: To allow a VM to join a TVD, the platform host-
ing the VM needs access to the TVD policy, and upon succeasfuission, to TVD
secrets, such as the VPN key. For this purpose, TVD Proxycenare started on the
platform for each TVD whose VMs may be hosted. The TVD Proxy ba started at
boot time of the underlying hypervisor, by a system servicél§ Proxy Factory), or
by the VM itself, as long as the TVD Proxy is strongly isolafemn the VM.

Pre-Admission Phase: When a VM wants to join a TVD that is going to be hosted
on the platform for the first time, the TVD Master has to esshba trust relationship
with the platform running the VM, specifically with the TVD &ty. We call this
step thepre-admissiorphase. It involves the establishment of a trusted chaneel (s
Sectiori4.B) between the TVD Master and the TVD Proxy (or t#®Proxy Factory).
The trusted channel allows the TVD Master to verify the initggpf the TVD Proxy
(Factory) and the underlying platform. After the truste@chel has been established
and the correct configuration of the Proxy has been veriffedT¥¥D Master can send
the TVD policies and credentials (such as a VPN key) to the rdxy.

Admission Control Phase: The Compartment Manager (part of the platform secu-
rity services shown in Figufe_3.1) is responsible for stgrtiew VMs. The Compart-
ment Manager loads the VM configuration and enforces therggairectives with
the help of the Integrity Manager (also part of the platfoeawgity services shown in
Figure[3.1). The security directives may include gathetirgyVVM state information,
such as the VM configuration, kernel, and disk(s) that areagto be attached to the
VM.

If the VM configuration states that the VM should join one orrm®VDs, then the
Compartment Manager interacts with the corresponding TY@xyies) and invokes
TPM functions to attest the state of the VM. The TVD Proxy fies certain properties
before allowing the VM to join the TVD. More concretely, thé&/D Proxy has to
ensure that

o the VM fulfills the integrity requirements of the TVD;

e the information flow policies of all TVDs the VM will be a membef will not
be violated,;

e the VM enforces specific information flow rules between TVDauich rules are
required by the TVD policy, and that

e the underlying platform (e.g., the hypervisor and attactiedces) fulfills the
security requirements of the TVD.

Platform verification involves matching the security reguients with the platform’s
capabilities and mechanisms instantiated on top of thegehilities. For example,
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suppose that data confidentiality is a TVD requirement. THérard disks or network
connections are not trusted, additional mechanisms, ssibloak encryption or VPN
(respectively), need to be instantiated to satisfy theireqent.

TVD Join Phase: If the VM and the provided infrastructure fulfill all TVD redre-
ments, a new network stack is created and configured as bedéni Sectiof 312. Once
the Compartment Manager has started the VM, it sends arhatgoest to the corre-
sponding TVD vSwitch. Once the VM is connected to the vSwittls a member of
the TVD.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



Chapter 4

Background and Related Work

In order to put our work in context we survey key concepts timaterlie our approach.
Section[Z.1l presents the TVD concept, which can be thoughsd virtualization

of today’s security zones while making security requireteexplicit. Sectioi 412
describeSrusted Computingoncepts. The core of this concept is a security hardware
device calledlrusted Platform Modul¢hat guarantees certain security functionalities
in spite of attacks. We finally survey related work on trustednnels in Sectidn 4.3
and on secure virtual networking in Sectfonl4.4.

4.1 Overview of Trusted Virtual Domains

Bussaniet al. [16] introduced the concept of TVDs. A Trusted Virtual Domaion-
sists of a set of distributed Virtual Processing ElemenBESY), storage for the VPEs,
and a communication medium interconnecting the VPEK[[1646R The TVD pro-
vides a policy and containment boundary around those VPEB&s\Wvithin each TVD
can usually exchange information freely and securely wibheother. At the same
time, they are sufficiently isolated from outside VPEs, inithg those belonging to
other TVDs. Here, isolation loosely refers to the requiratiibat a dishonest VPE in
one TVD cannot exchange information (e.g., by sending ngessar by sharing stor-
age) with a dishonest VPE in another TVD, unless the inteDTpolicies explicitly
allow such an exchange. There is a TVWfirastructure(for each TVD) that provides a
unified level of security to member VPESs, while restrictihg interaction with VPEs
outside the TVD to pre-specified, well-defined means onlyifieth security within a
virtual domain is obtained by defining and enforcmgmbership requiremeritsat the
VPEs have to satisfy before being admitted to the TVD anddtaining membership.
Each TVD defines rules regarding information exchange vhighdutside world, e.g.,
restrictions regarding in-bound and out-bound networfitra

Figure[T.1 shows customer VMs as VPESs belongin@1aD; spanning two plat-
forms (contained in the dashed boxes). The Mast®i{1 Master) and Proxy compo-
nents Proxyl on each platform) are part of the TVD infrastructure, whighdescribe
in detail in Sectiol_3]1. The TVD Master is the orchestrafathe TVD deployment
and configuration. There is one TVD Proxy for each platforratimy VMs belonging
to that TVD. If the platform hosts VMs belonging to multiple/Ds, then there are
multiple TVD proxies on that platform, one per TVD. The TVDoRy on a platform
is configured by the TVD Master and can be thought of as thd IB¢® policy en-
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forcer. VMs belonging to the same TVD can usually exchanfgimation freely with
each other unless restricted by VM-level policies. For eplentraffic originating from
VM a1 0r VM 42 on Host Ais routed td/M g, (i = 1,--- ,4) on Host B without any
restrictions. Information exchange among TVDs can be ativMiowever, it is subject
to the network and storage policies stated by each TVD Mastetocally enforced by
each TVD Proxy.

4.2 Trusted Computing — The TCG Approach

It is important to have reliable mechanisms for a systemasaa and verify the trust-
worthiness (i.e., compliance with a certain security pglicf a peer endpoint (local
or remote). A recent industrial initiative towards realigisuch a mechanism was put
forward by theTrusted Computing Grou@@ CG) [113], a consortium of a large number
of IT enterprises that proposes a new generation of comgpptatforms that employs
both supplemental hardware and software (see, €.9..[&l).10he TCA has pub-
lished several specifications on various concepts of tilisfeastructures[121].

The Trusted Platform Module The core componentthe TCG specifies isThested
Platform Module(TPM). Currently, the widespread implementation of the TRM
small tamper-evident ctigghat implements multipleoots-of-trusfL22,[120], e.g., the
root-of-trust for reporting and the root-of-trust for sige. Each root-of-trust enables
parties, both local and remote, to place trust on a TPM-gmpdplatform that the lat-
ter will behave as expected for the intended purpose. By itiefinthe parties trust
each root-of-trust, and therefore it is essential that tftoés-of-trust always behave as
expected. Given that requirement, a hardware root-of-traspecially one that is com-
pletely protected from software attacks and tamper-evidgainst physical attacks, as
required by the TPM specification — is assumed to provide gebptotection than
software-only solutions.

Attestation and Integrity Verification ~ The Trusted Computing features we leverage
in this paper are protection of keys, secure recording efirity measurements, attes-
tation, and sealing. Integrity verification mechanismshéma remote party to verify
whether system components conform to certain securityciesliMeasuremenof a
component involves computing the SHA-1 hash of the binadeaaf that component.

In particular, each software component in the Trusted CdimguBase (TCB) is first
measured and then its measurement recorded before canpassed to it. The hash
values are then appended to a hash chain, which is kept imaspectected registers
calledPlatform Configuration Registe(®CRs), thus acting as accumulators for mea-
surements.Recordinga measurement means appending it to the hash chain by PCR
extend operaticﬂn The sequence of measured values are also storech#aaurement
Iogﬂ external to the TPM.

1 TCG’s claimed role is to develop, define, and promote opervandor-neutral industry specifications
for Trusted Computing, including hardware building bloekel software interface specifications across mul-
tiple platforms and operating environments.

2 Many vendors already ship their platforms with TPMs (maialytop PCs and servers).

3Extending of PCR values is performed as followRCR; 1 := SHA1(PCR;|I), with the old register
value PCR;, the new register valu®CR,; 1, and the inputl (e.g. a SHA-1 hash value).

4Since each PCR holds only the digest of (part of) the chainustt keeping the list of all measured
values is required if afterwards, during the attestati@tess, a remote party wants to identify each measured
component.
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Attestationrefers to the challenge-response-style cryptographitopod for a re-
mote party to query the recorded platform measurement sane for the platform to
reliably report the requested values. The verifier first senchallenge to the platform.
The platform invokes th@ PM_Quote command with the challenge as a parameter.
The invocation also carries an indication of which PCRs drmterest. The TPM
returns a signeduotecontaining the challenge and the values of the specified PCRs
The TPM signs using an Attestation Identity Key (AIK), whqaéblic key is certified
by a third party that the verifier trusts, call®livacy CAin TCG terminology. The
platform then replies to the verifier with the signed quotengl with the AIK public
key certificate and the log information that is necessaryetmnstruct the platform’s
configuration. Based on the reply, the verifier can decidetindrehe platform is in an
acceptable state.

Sealingis a TPM operation that is used locally to ensure that a cedata item
is accessible only under specific platform configuratiofieceed by PCR values. The
unsealingoperation will reveal the data item only if the PCR valueshattime of the
operation match the PCR specified values at the time of gealin

A more general and flexible extension to the binary attestas property-based
attestation[96],/90,69]: Attestation should only determine whetheratfpkm config-
uration or an application has a desired property. Howevarpoototype is still using
binary attestation.

In [47], the authors propossemantic remote attestatiamsing language-based
trusted VM to remotely attest high-level program propettidhe general idea is to
use atrusted VM(TrustedVM) that verifies the security policy of anothertwal ma-
chine on a given host.

In [77], [78], and [79], the authors propose a software dechiire based on Linux
providing attestation and binding. The architecture bistasrt-lifetime data (e.g., ap-
plication data) to long-lifetime data (e.g., the Linux kebnand allows access to that
data only if the system is compatible with a security polieytified by a security ad-
ministrator.

4.3 Trusted Channels

The standard approach for establishing secure channelghevimternet is to use secu-
rity protocols such as Transport Layer Security (TLS) [27]rdernet Protocol Secu-
rity (IPSec) [63]), which aim at assuring confidentialitytegrity, and freshness of the
transmitted data as well as authenticity of the endpoinsived. However, as men-
tioned before, secure channels do not provide any guaraaberit the integrity of the
communication endpoints, which can be compromised by &gus Trojans. Based
on security architectures that deploy Trusted Computimgtionality, one can extend
these protocols with integrity reporting mechanisms (¢hg TLS extension proposed
in [42,[9]). Such extensions can be based on binary attestati on property-based
attestation.

4.4 Secure Network Virtualization
Previous work on virtualizing physical networks can be tdygrouped into two cat-

egories: those based on Ethernet virtualization and thasedoon TCP/IP-level virtu-
alization. Although both categories include a substaatiabunt of work, few of these

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



32 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

studies have an explicit focus on security.

A secure network virtualization framework was proposed lapuket al. [18] for
realizing the network flow aspects of TVDs. The focus[of [&8hisecurity-enhanced
network virtualization, which (1) allows groups of relategt¥ls running on separate
physical machines to be connected together as though theyomeheir own separate
network fabric, and (2) enforces intra-TVD and inter-TVI2z8sgty requirements such
as confidentiality, integrity, and inter-TVD flow controlhi has been achieved by an
automatic provisioning of networking components such abl§¥,fEthernet encapsula-
tion, VLAN tagging, and virtual firewalls.

A second concept for managing VLAN access has been propgdgerberet al. in
[14]. Both papers contain similar concepts for managing WsAnside the data center
with some differences. The work of Berget al. has more of a focus on integrity
assurance using Trusted Computing. The work of Cabuk eBab]lows provisioning
of secure virtual networking even if no VLAN infrastructusepresent.
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Chapter 5

Policy Enforcement and
Compliance Proofs for Xen
Virtual Machines

Bernhard Jansen, HariGovind V. Ramasamy, Matthias Sch(lBtel)

5.1 Introduction

Hardware virtualization is enjoying a resurgence of intefaeled in part by its cost-
saving potential in data centers. By allowing multiple wat machines to be hosted
on a single physical server, virtualization helps improsever utilization, reduce man-
agement and power costs, and control the problem of servawkp

We are interested in the security management of virtual inashi.e., the pro-
tection, enforcement, and verification of the security afual machines. Security
management is a non-trivial problem even in traditional-mtualized environments.
Security management of virtual machines (VMs) is even moreglicated because the
virtual machines hosted on a given physical server may petodifferent virtual orga-
nizations, and as a result, may have differing securityirequents. Protecting a VM
against security attacks may be complicated by inadeqgsalation of the VM from
other VMs hosted on the same server. Verifying the secufity\dM may be compli-
cated by confidentiality requirements, which may dictatd the information needed
for verification of a VM'’s configuration should not divulgerdiguration information
of other co-hosted VMs.

We address two main problems relating to security managgrparticularly in-
tegrity management, of VMs: (1) protecting the securityigges of a VM against
modification throughout the VM's life cycle, and (2) verifig that a VM is com-
pliant with specified security requirements. We describeranél model that gen-
eralizes integrity management mechanisms based on the¢edréatform Module
(TPM) [120] to cover VMs (and their associated virtual deggand a wider range
of security policies (such as isolation policies for seaigeice virtualization and mi-
gration constraints for VMs). On TPM-equipped platformgstem compliance can
be evaluated by checking TPM register values. Our modelalfiner-grained com-
pliance checks by handling policies that can be expresspdeaiécates on system log
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Figure 5.1: Xen virtual machine architecture
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Figure 5.2: System model for integrity management

entries. Verifying compliance involves showing that thetsyn integrity state, as re-
flected by secure write-only logs, satisfies certain coodgi \We build on previous
work by others[[30 45, 101, 104,113] who have used the TruBtatform Module
(TPM) [120] to protect the integrity of the core virtual mawé monitor (VMM) and to
reliably isolate VMs. Based on the formal model, we descaibéntegrity architecture
called PEV (which stands for protection, enforcement, aarification) and associated
protocols. The architecture incorporates integrity petioe and verification as part of
the virtualization software itself, and at the same timeagrtes its policy enforcement
capabilities. We describe a prototype realization of owh#ecture using the Xen
hypervisor [11]. We demonstrate the policy enforcement emmipliance checking
capabilities of our prototype through multiple use cases.

Our generalized integrity management mechanisms are tehsble and flexi-
ble. Extensibilitymeans that it is possible to guarantee compliance even ifviréual
devices are attached to the VM§&lexibility means that the verifier is able to spec-
ify which aspects of the enforced security policies are tdri@st, and obtain only the
information corresponding to those aspects for validadiosystem compliance.

5.2 Formal Integrity Model for Virtual Machines

Figure[5.2 shows our system model for integrity manageménta high level, the
system consists of VMs and a TCB, and is configured throughipsl The TCB peri-
odically logs the integrity state of the rest of the systeiine Tog repository contains a
record of the integrity history of the system, andgécure write-onlyi.e., log entries,
once written, cannot be modified or removed by any entity enrést of the system.
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Figure 5.3: Tre¢ of log entries

The log data includes the list of software components, cardigpn parameters, poli-
cies, and any updates to them. The log contents are usefubloating compliance
with those security properties that can be expressed agptes on the contents. The
compliance proof involves showing that correct policied &ealthy policy enforce-
ment mechanisms are in place. The TCB also provides conditielease of secrets,
where the condition is expressed as predicates on the lag dhat allows a sensitive
data item and a condition to be stored such that the data #eebéased only if the log
data satisfies the condition specified.

For flexibility and extensibility, the log data is stored irtrae structure instead
of a monolithic log file. The log tre€ is shown in Figuré¢ 513. Each tree node is a
triple containing log data for one system component. To kbepree size manageable,
only those components that have an impact on the systersgrityt or those that are
of interest from an integrity verification point of view arepresented in the log tree.
A triple for a componenk contains an identifieid;,, a component typéypey, and a
vectorlog;, of log values. Sub-components are modeled as children odle.riche tree
can be extended by adding or removing children nodes. Fangbea the addition of a
new virtual device to a VM can be easily reflected in the log trg adding a new node
as a child of the sub-tree that corresponds to the VM.

The integrity requirements of a user or verifier are modelefllfp(7)), wherell
is a predicate angd() is a projection function. We introduce the notion gb@jection
function denoted byp(), to model the specific aspects of the system’s integrityestat
that is of interest to a user or verifier. For example, a vernifiay be interested only in
a disk’s access control list and not the actual disk contémisen applied on the log
tree, the function returns a subset of the tree nodes andsatsobthe vector elements
from the log vector of each node. Formalpy,Z7) = {lx}, wherel, € log;, and
(idg, typeg,logg) € T.

We now use our formal model to generalize TPM-based integribtection and
verification. We also enhance our model by adding accessatdathe log contents.

5.2.1 Generalized Sealing to Protect Integrity

A TPM-equipped system caseala data item, i.e., the system can encrypt the data item
and bind it to the system configuration prevalent at the tifhgealing. The system
configuration is reflected by the contents of a specified suliske TPM's PCRs. The
data item may be a key generated by the TPM itself or sometfeéngrated outside the
TPM. Decryption of the data item, callethsealingis possible only when the system
configuration (reflected by the contents of the same sub$¥EBf) is the same as that
at the time of sealing.

We generalize sealing for protecting the integrity of a g&msdata itemd by mak-
ing d inaccessible to the system (or some component) unlessfiggeicitegrity re-
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quirements are met. We use two operatieas| andunseal, to model the concept of
generalized sealing. Lef, denote the log tree at timg.. Theseal operation, per-
formed at timet,, takes as input the data itedn a projection functiorp(), a sealing
predicatell, and the public parf, of an encryption keyX. The operation logg()
andll, and encryptg using K, to produce the encrypted outputThus, the contents
of 7, includep() andIl. Theunseal operation, performed at timg, (wheret,, > t),
takes as input and7,,, and outputg iff the conditionII(p(7,)) holds. In other words,
the private part of the keyx used for decrypting is revealed iff the condition holds.
Here,p() andII are retrieved from the log. A simple sealing predicate may gom-
pare the result of(7,,) with a reference value (e.g(7;)). A more complex predicate
may extract the high-level properties of the system fgdffi,) and compare them with
desired properties (similar to property-based attestd€8, 20/ 47]).

One can easily see that our generalized sealing conceptsciinespecial case of
TPM sealing. For TPM sealind,, consists of the values in the PCRs; the projection
functionp() specifies the subset of PCRs whose values are of interestdessing the
system’s integrity; the sealing predicdiechecks whether their values at the time of
unsealing are the same as at the time of sealing.

5.2.2 Generalized Attestation to Verify Integrity

A TPM-equipped system can use the TPM to engage in a chalerspeanse style
cryptographic protocol, calleattestation with a verifier. The protocol allows the ver-
ifier to query and reliably obtain the measurement valueshfersystem stored in the
PCRs of the TPM. Reliable reporting of the measurement gdkidue to the signing
of the values by the TPM, which is trusted by the verifier. Bbase these values, the
verifier can assesses the integrity state and the trustiwesth of the system.

We generalize attestation so that the verifier can specifgiwéspects of the sys-
tem’s integrity state are of interest to her. In our modeg #itestation operation
attest() obtains as input a challengean attestation predical& a projection function
p(), and a secret kei;. The operation outputs a signed messsge; (f(p(7)), c).

Our attestation operation is a generalization of both lyimad property-based at-
testation [[90[ 20, 47]. For binary attestation, the pre@itais simply the identity
function, i.e.,.II(x) = z, and the result of attestation is simply the signature on the
result of the projection function applied on the log tree.MIBttestation is a special
case of binary attestation in whic¢h simply consists of the values in the PCRs and
the projection functiomp() specifies a subset of PCRs. For property-based attestation,
the predicatél extracts high-level properties from the result of the pctg@ function
applied on the log tree.

Whereas previous works such as the Integrity Measuremettitécture (IMA) of
of Saileret al. [I04] provide a good way of checking the hash of softwareb&s,
our generalized attestation enables better assessmere afirti-time behavior of the
system. In this respect, our model has goals similar to thbskaldaret al. [47]. How-
ever, unlike Haldaet al. who focus on attesting the behavior of a software appboati
our model has a focus on VMs and virtual devices. For exanopileattestation oper-
ation enables a verifier to check the number and type of VMaingnon the system.
Because of their reliance on the Java virtual machine whiok on top of an operating
system, their TCB includes the operating system. In contoas TCB includes only
the VMM and underlying system layers, and is much smallen thairs.
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Figure 5.4: Architecture for integrity protection and Vig@tion

5.2.3 Access Restriction

The integrity of certain aspects of the system (such as thMyMay be important to
multiple users. Conversely, certain aspects of the systeambe confidential to one
or more users, e.g., the state of a particular VM may be vdrdidy by the users of
that VM. Hence, it is important that attestation and sealisgpplied not directly on
the system state, but on appropriate projections of the.statirthermore, if a state
that is relevant for integrity verification contains infoation about multiple users, it
should be possible to prove integrity without revealing élceual state. We formalize
such requirements using two concescess restriction specificatiandprojection
assessment function

Given a set of user# and a log treeZ, an access restriction is specified by a
function r() that assigns a subset 6f to each vector element in each node of the
tree. The subset assigned to a given vector element in a goamis called thaccess
control list (ACL) for that element. Despite the potentially large numifenodes in the
log tree, ACLs can be efficiently implemented by attachind A@nly to some nodes
and vector elements. ACLs of children nodes may be derivexuithh inheritance of
the parent node’s ACL. Scoping rules may be used to apply dntd@ultiple vector
elements of a given node.

A projection assessment function can determine whethevengirojection con-
forms to or violates access restrictions. A projectig) applied by a uset. € U
conforms to the access restriction specificatipnif the output only contains vector
elements in whiclx was contained in the ACL. Any predicdiefor attestation or seal-
ing can be applied on such a projection without violatingaheess restrictions. If the
projection does not conform ), then prior to applying the predicate, aocess filter
is used to hide those partspf7) thatw is not authorized to see.

5.3 The PEV Integrity Architecture

Figure[5.4 shows the PEV architecture for protecting, emifigy, and verifying the
integrity of VMs and virtual devices. There ixantral integrity manageandcompo-
nent integrity manageithat are associated with individual system componentsasich
storage, VMM, networking, and other devices. Each compbiméegrity manager is
responsible for the part of the log tree corresponding tactimponent. For example,
the storage integrity manager is responsible for maintgittie storage sub-tree of the
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system log tre€d . Hereafter, we refer to the central integrity managethasntegrity
Manager.

The Integrity Manager hasmaster plug-in modulér each log projection func-
tion that needs to be implemented. The module obtains stiteriation about various
aspects of the system that may be of interest to a potentidilever user by invoking
the appropriateomponent plug-in modulesd aggregating their outputs. A compo-
nent plug-in module is part of the component integrity mamamd reveals particular
aspects of the component’s integrity that are relevantferprojection function.

In Figurd 5.4, the various master plug-in modules are a¢t@doh the Integrity Man-
ager are shown using different geometrical shapes (ovabsadons, triangles, and
rectangles). For example, the triangular plug-in modul@suees certain aspects of
system storage and the VMM, as indicated by the presencéaofjtrilar component
plug-in modules in the Storage Integrity Manager and VMMegrity Manager. On
the other hand, the hexagonal plug-in module measures entgic aspects of sys-
tem devices. Each plug-in module has a unique identifier.Mapping between each
plug-in identifier and the functionality provided by the msponding plug-in module
is made publicly available (e.g., through a naming service jpublished table).

5.3.1 Sealing/Unsealing Protocol
At the time of sealing, the user provides the following irgout

Data The data item to be encrypted during sealing and to be revdaier only if
certain conditions are met.

Key The sealing key whose public part is used for encrypting tita dt the time of
sealing, and whose private partis revealed only if the Urgesration completes
successfully.

Identifier(s) of Plug-in Module(s) By listing the identifiers of plug-in modules, a user
can choose what aspects of the system’s integrity state &et¢hecked prior to
revealing the private part of the sealing key.

Predicate The predicate specifies user-defined conditions that thersisintegrity
state must satisfy at the time of unsealing in order for theape part of the
sealing key to be revealed.

Our sealing protocol requires the log projection functiqdescribed in Sec-
tion[5.2.1) to be implemented as plug-in modules as part ®i@B. The key used
for encrypting the sensitive data item is sealed away ag#iesstate of the TCB and
a hash of the user-specified projection functions and gpaliedicates. The Integrity
Manager stores the state of the TCB in PCRs that cannot beaedehe hash in a
resettable PCR (sal’C'R;). This ensures that the TCB is aware of the conditions to
be satisfied before the key can be revealed to the user. Torpettie unseal operation,
the TCB has to ensure th&C R; still contains the hash of the user-specified projec-
tion function and sealing predicates. Then, the unsealktiperreveals the key to the
Integrity Manager. The Integrity Manager then invokesglesicate evaluatomodule
(Figured5.4) to check whether the sealing predicates (at@dLon the output of the log
projection function) are indeed satisfied. If that is thee¢élsen the Integrity Manager
reveals the key to the user.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



40 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

Figure 5.5: Enforcing access restrictions on system state

The flexibility of our sealing protocol is due to the fact trabitrarily complex
conditions to reveal the sealed key can be coded as plug-ilules The extensibility
arises from the fact that new plug-in modules covering thegrity state of newly
added VMs or virtual devices can be easily added to the TCB.

5.3.2 Attestation Protocol

The verifier initiating the attestation protocol providesiaput a challenge (to ensure
freshness) and the identifier(s) of plug-in module(s) thatalevant to evaluating sys-
tem compliance with the verifier’'s integrity requiremenii&e flexibility of our attes-
tation protocol relies on the verifier being able to attestTICB and requires the log
projection functions (described in Sectlon 512.1) to belenented as plug-in modules
as part of the TCB. The extensibility of our attestation poals relies on the ability to
add new plug-in modules for new aspects of the system’siityesjate that the verifier
may be interested in.

5.3.3 A Blinding Technique For Enforcing Access Restrictias

Figurd5.b shows a simplgindingtechnique that usescammitment schente enforce
access restrictions on the log tree. Cryptographic comeritrachemes$[44] generally
consist of two phases. The first phase, cattechmit phasgis used to make a party
committo a particular value while hiding that value from anothentydlt is only in the
second phase, calledveal phasethat the value isevealedto the second party. Any
commitment scheme guarantees that (a) the committed vahuetbe obtained by the
second party before the reveal phase, and (b) the seconydoaartetect whether the
value revealed is indeed the same value that was commitiadte first phase.

For simplicity, we consider blinding at the granularity ofltree nodes instead of
at the granularity of log vector elements in the tree nodes, the access restriction
specificationr() assigns a subset &f to each node of the tree. ®andomtreeR is
bound to the original log tre& through amulti-bit commitment schente give the
blinded log treeZ . R is a tree that has the same structure as th@t afid whose nodes
are random numbers. Existing commitment schemes such asm#éby Damgard et
al. [2€] or those based on one-way hash functions can be osdhi$ purpose.

In a TPM-equipped system, logging is done by extending thR$>@ith the mea-
surement values. For blinding, it is the nodesZofthat are actually logged. This
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means that instead of doing the nornfdM_extend(n), a TPM_extend(r ® n) is
done, wheren is a node of7, r is a node ofR, and® denotes the commitment
operation used for hiding until the reveal phase.

A projection functiorp() that conforms to the access restrictions can be realized as
follows: when invoked at the request of usem() reveals7 and only those nodes in
7 that containu in their respective ACLs. Thug() implements the reveal phase of the
multi-bit commitment scheme and reveals only those nodés thatw is authorized
to access. Due to the guarantees of the commitment scheengystem cannot invent
arbitrary values for the nodes 1h without being detected by the user.

As a result of the blinding technique described above, amy uknows that all
components that have any effect on system integrity have tagen into consideration
in the system log tree; in addition, for those componentsitiauthorized to access,
u can check whether they indeed have the acceptable confiyueatd state value, by
comparing with its own reference values that may be provésheticertified by a trusted
third party. In particular, if the ACL for the root node i$ (i.e., all users can access
the root node), then any user can verify overall system fitiegust from the value of
root(7")) without knowing the exact configuration of any individeamponent in the
system.

Our approach of using commitment schemes for blinding ssifiem the disad-
vantage that two colluding verifiers can learn the valuesatd to the other. Alternate
schemes based on zero-knowledge proofs or deniable sigeateed to be investigated
to overcome this disadvantage.

5.4 Realization using Xen and Linux

Figure[5.6 shows an example implementation of our PEV achite with the Xen hy-
pervisor using Linux for DomO0. The main components of ourlengentation are the
Compartment Manager (CM), Integrity Manager (IM), and tleeBe Virtual Device
Manager (SVDM). All components are implemented in Dom0. T is responsi-
ble for the VM life cycle management. As the sole entry poartdser commands, it
communicates directly with the hypervisor and orchessrtite IM and the SVDM. Ta-
ble[5.1 shows the mapping between concepts in our formal haoditheir realization
in our Xen prototype. XSLT is a language for transforming oL document into
another XML documen(]6]. We assume that the XSLT interpristpart of the TCB.

ThegetCurrentState() function of the CM returns the current state of the physical
machine, which includes the list of hosted VMs, their stafadtive, suspended, or
hibernating), VM ownership information (e.g., the virtwajanization to which a VM
belongs), the amount of free memory available, etc. Usiegésult of the function,
a verifier can decide whether the physical machine satigfeegtegrity requirements
for performing certain actions (e.g., starting a new VM Ipglimg to a particular virtual
organization).

The IM in our Xen prototype has a storage integrity plug-iiPjSor measuring var-
ious disk images and files. The IM also has an Attestation &isgganodule (ASM)
that interfaces with the TPM for executing the sealing artésétion protocols (de-
scribed in Sections 5.3.1 ahd 513.2) as well as for invokiogmal TPM operations,
such asTPM_Quote. The ASM invokes normal TPM operations through the TPM
Software Stack (TSS) [116], which is the standard API foreasing the functions of
the TPM.
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Figure 5.6: Realization using Xen and Linux

Model Xen-based Prototype
Projection p() | component measurement plug-in
Predicate II | XSLT stylesheet

Access Filter

XSLT stylesheet

Table 5.1: From model to implementation
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The SVDM is responsible for managing virtual devices suchidgal hard disks,
virtual block devices, virtual network devices, and vitti®@Ms. The service offered
by the SVDM is realized through multiple specialized lowdecomponent plug-in
modules, one for each virtual device. Figlirel 5.6 shows twg-s in our Xen pro-
totype. One is for managing the virtual (encrypted) har# disd the other one is for
managing the virtual network interface card (NIC).

In DomO, secure device virtualization is implemented in kikenel space. Tasks
such as configuring virtual devices are done through the S\iDtkle user (or applica-
tion) space. The SVDM manages the security properties aédsviFor example, a se-
cure hard disk is implemented by means of B Crypt loopback device. Similarly,
network virtualization is done by providing virtual NICsrfthe VMs andbridging
these virtual NICs to the physical NIC. Security for netwshas two aspects. Topol-
ogy constraints define which VM is allowed to connect to whici-network(s). In
addition, confidentiality requirements dictate which cections need to be encrypted.

Secure management of virtual devices is a complex task. »@mple, there are
multiple steps involved in starting a virtual hard-diskvei First, a policy-based check
of the state of the physical machine is done based on thetsesigetCurrentState()
function. Depending on the logic implemented by the comesing plug-in, that
check may include verifying the measurements of the hyperyvbinary disk, and the
Dom0O image. Then, the virtual hard-disk is attached witldergials and connected
to a loop device (/dev/loop). The virtual hard-disk may bergpted, for example,
with a sealing key that is made available only if the platfasrin a certain state. The
decryption of the virtual hard-disk image is done using tirak hard-disk encryptor.
After decryption, the device file that gives access to theyjeed image is connected
to the front-end. Similar policy-based checks may be donenndtarting other virtual
devices. For example, before starting a virtual networkag\policies may stipulate
that the VM must be in some acceptable state and outside fisawast be configured
correctly.

5.5 Use Cases

In this section, we describe a few examples of how the compusrietroduced in Sec-
tion[5.4 interact for integrity protection, enforcememgdaverification purposes. We
assume that the core TCB (including Xen and DomO Linux) hanbeeasured at
start-up time. Additional services may need to be measuaisddon policy. The mea-
surement can either be done by a trusted boot loader suclusie@GRUBI[4] (which
measures the entire boot image) or by a more fine-grainedappisuch as Sailet

al’s IMA [LO4].

5.5.1 TPM-based Attestation on a VM Disk

Figure[5.T shows the component interactions for attestingtirrent state of the TCB
and the status of a VM’s disk image. The user/verifier interadgth the CM through
the attestationRequest call with anattestation descriptoanduser credentiahs pa-
rameters (step 1). The attestation descriptor is an XMLcttre that describes what
aspect of the system’s integrity state the verifier wanisstt. In other words, the
attestation descriptor is how the verifier chooses the lageption function suitable
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Figure 5.7: TPM-based attestation on a VM disk
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<attestation-desc>
<attestation type="tpm based"
chal | enge="0xaded. . ."
ai k="0xaada3..">
<measur enment - desc type="t pni >
<measur eTar get nane="di sk:/dev/sdbl"
dest =" PCR16"/ >
</ measur enent - desc>
<attest Target name="ALLPCRS"/>
</ attestation>
</ attestati on-desc>

Figure 5.8: Attestation descriptor in XML

for its purpose. As described before, projection functiaresrealized by a set of com-
ponent plug-in modules. Some of these plug-in modulesraasurement plug-ins
which not only return the relevant integrity states of thenponents but are also the
ones measuring their integrity states in the first place. &ttestation descriptor con-
tains one or moreneasurement descriptor8ased on the measurement descriptors,
the IM knows the exact set of measurement plug-ins to invoke.

Figurel5.8 shows an example attestation descriptor as a XMttare. It contains
an<at t est ati on> section, which defines the type of attestatiopr+ based)
and the parameters needed for attestation (the TPM Atimstiatentity Key orAl K
and achal | enge). Nested in the attestation descriptor is a measurementiges,
which specifies a measurement targegdsur eTar get ) and a destinationdest ).
The target indicates what is to be measured (in this case, aligkMimage), whereas
the destination indicates where the result should be s{orekis case, the TPM’'s PCR
number 16). Th&at t est Tar get > defines the scope of the requested attestation (in
this case, all PCRs).

Based on the user credential supplied, the CM checks whetaeferifier has the
right to request attestation of the system sub-statesatetidy the attestation descrip-
tor. The check is essentially a way of determining whetherdguested projection is
a projection that conforms to the access restriction spatifin; hence, it is useful in
enforcing access restriction. If the check reveals thatérdier wants to have more
attested than what he/she is allowed to, then the entirstatin request is denied.
Otherwise, the CM forwards the request to the IM (step 1.1).

The IM extracts the measurement descriptor(s) from thetatien descriptor and
delegates the measurement(s) to the appropriate plug-i(our example, the IM
invokes themeasurevHD function at the SIP passing the measurement descriptor as a
parameter (step 1.1.1). The plug-in completes the reqli@stasurement and returns
the measurement result back to the IM (step 1.1.2). Althatigih 1.1.2 might look like
an unnecessary extra step, the indirection via the IM alkbvsneasurement plug-ins
to be written independent of the TPM or similar future desitleat are indicated as
dest.

The IM invokes thenrToTPM function at the ASM with the challenge, tiA¢ K,
the measurement result, and the destination PCR (step.ITh&actual writing of the
result into the PCR happens by thi@M_extend operation (step 1.1.3.1). Thereafter,
a TPM_Quote gets created and returned to the ASM (steps 1.1.3.2 and3).1The
ASM wraps thelT PM_Quote into anattestationResponse and returns it to the IM. The
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Figure 5.9: Creation of a VM with TPM-based sealing

attestationResponse includes not only th8 PM_Quote but also the relevant log files.
The IM returns thattestationResponse to the CM (step 1.2), which forwards it to the
verifier (step 2).

A verifier can check the attestation result by recomputingshlover the attestation
targets (i.e., the relevant log files) specified in shiestationResponse and comparing
the resulting hash with the hash in the PCR fromTHiM_Quote.

The PCR in which the measurement result is stored will be eftar the attestation
process has finished. Therefore, our prototype requiresa I.2 compliant TPM, and
thedest PCR has to bé&6 or higher.

5.5.2 (Re-)Starting a VM with TPM-based Sealing

Figure[5.9 shows the component interactions for (re-jaga VM with a sealed disk
image. In this use case, we show how to enforce a policy tleatifigs that the key for
decrypting the disk image be revealed only after measuhiaeglisk image and only if
the measurement value written into a specified PCR matcleegibe against which
the key was sealed.

The user interacts with the CM through theartVM call to (re-)start the VM
(step 1). After determining that the disk image has to bediestypted through unseal-
ing, the CM obtains theealing descriptothat was given to it at the time of sealing.
Like the attestation descriptor, the sealing descripteo abntains one or more mea-
surement descriptors, which are used to let the IM know tlaeteset of measurement
plug-in modules to invoke.
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<seal i ng- desc>
<seal ing type="t pm based" keyi d="0x01">
<measur enment - desc type="t pni >
<measur eTar get
nane="fil e:/ xeni mages/ vii nage"
desc="PCR16"/ >
</ measur enent - desc>
</ seal i ng>
</ seal i ng- desc>

Figure 5.10: Sealing descriptor in XML

Figure[5.10 shows an example sealing descriptor as an XMictstre. It contains
an<seal i ng> section, which defines the type of sealingp(n based) and the pa-
rameters needed for unsealing (the identifier of the keyeptet by the TPM). Nested
in the sealing descriptor there is a measurement descnpitich specifies a measure-
ment targetifeasur eTar get ) and a destinationdest ). The target indicates what
is to be measured (in this case, a VM disk image), whereasdhtndtion indicates
where the result should be stored (in this case, the TPM’s R@Rber 16).

The CM calls the IM interfacansealKey (step 1.1), passing the sealing descriptor
as a parameter. The IM extracts the measurement descriptortiie sealing descrip-
tor and calls themeasurevHD interface of the SIP with the measurement descriptor
(step 1.1.1). The plug-in reads the listrdfasur eTar get s, and accordingly mea-
sures the disk image. It returns a measurement result lisietdéM (step 1.1.2). The
IM calls the ASM, which handles TPM-related functions (step.3). The ASM writes
the measurements to the TPM by invoking fhieM_Extend operation (step 1.1.3.1).
Furthermore, the ASM performs the unsealing of the key retgaeby invoking the
TPM_Unseal operation (step 1.1.3.3). If thiest PCR value matches the value at the
time of sealing, then the disk is in the desired state andniseal operation is success-
ful (step 1.1.3.4); in that case, the ASM returns a key batke¢dM (step 1.1.4), which
in turn returns the key to the CM (step 1.2). In case the urgeatdation fails, the ASM
would return a failure. The CM calls the SVDM functieonfigAndUnlock() to attach
and unlock the disk (steps 1.3 and 1.4). Upon successful letimp of that function,
the CM instructs the Xen hypervisor to actually start the \&#ps 1.5 and 1.6).

For the sake of simplicity, Figute 8.9 does not show detdiley handling such as
loading a sealing wrapper key into the TPM.

5.5.3 Enforcement and Compliance Proofs for Information Fow
Control

Consider, for example, the virtual network topology showrFigure[5.11L with four
virtual network zones. The topology shows the network of emgany (which we
shall call thecustomercompany) connected to the Internet via a demilitarized zone
(DMZ). The customer network is also connected management netwotkat allows
an outsourcing provider to manage the customer systemsn@ihagement network is
not connected to the Internet.

An information flow-control matrix is a simple way of formaiing the system-wide
flow-control objectives[[18]. Figure 5.112 shows a samplerixdor the four virtual
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Customer Management
Network Network
DMz Internet

Figure 5.11: Virtual network topology

from/to Cust. DMZ Mgmt. Internet

Cust. 1 1 1 0
DMZ 1 1 0 1
Mgmt. 1 0 1 0
Internet O 1 0 0

Figure 5.12: Flow control matrix

<f Il ow pol i cy>
<zone id="customner-net">
<permit id="nmgnt-net" />
<permt id="dnz" />
</ zone> ...
</ flow policy>

Figure 5.13: Flow control policy in XML

network zones. Each matrix element represents a policyifgperthe information

flows permitted between a pair of network zones. The 1 elesn@lohg the matrix
diagonal convey the fact that there is free information floithim each network zone.
The 0 elements in the matrix are used to specify that theraldhxe no information
flow between two zones, e.g., between the management zorikeahdernet.

In [18], we described a Xen-based prototype of a secure mktwictualization
architecture that is based on the concept of Trusted Vifdoahains. The architecture
allows arbitrary network topologies connecting VMs. Foaewple, different VMs on
the same physical infrastructure may belong to differemtial network zones. Despite
this, the architecture ensures the enforcement of poléget information flow control.
We can use the architecture for enforcing the policies shavirigure[5.1P.

By combining the Xen prototypes of our PEV architecture andsecure network
virtualization architecture, it is possible to validate ttonfiguration of the virtual net-
working subsystem on each host. The subsystem exports anw&kion of its flow-
control matrix, as shown in Figute 5]13. The network measerg plug-in outputs
the XML structure of the flow-control policy, when invoked liye IM. By request-
ing attestation of the TCB and this policy, a verifier can obtacompliance proof for
the correct configuration of the virtual networking subsyston a given host. At the
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<xsl:tenplate
mat ch="/f | ow pol i cy/ zone[ @ d=" custoner-net’']">
<xsl :choose> <xsl :if
test="count(*[@d="dnz’'])=1
and count (*[ @d="ngnt-net’])=1">
<true />
</xsl:if>
</ xsl : choose>
</ xsl:tenpl ate>

Figure 5.14: XSLT condition

verifier, a XSLT stylesheet is used to perform further transiations on the XML file
returned by the platform. The XSLT stylesheet is a concrefgémentation of the at-
testation predicatH (described in Sectidn5.2.2), which assesses whetheratfeywh
is trustworthy from the verifier's point of view. The resufttbe predicate will serve to
convince the verifier that the policy in Figure 5112 is theuatflow-control policy as
enforced by the network subsystem. If access restricti@am isnportant concern, the
XML output from the plug-in modules may be first processed hyX&LT stylesheet
that implements a access filter before passing it on to théererin such a case, the
stylesheet would be embedded in the platform TCB.

A user can also protect sensitive information (say, an exioy key) against access
by an untrusted network configuration using a two-stagequoe. The first stage is
sealing, in which the user has to specify the binary configpmaf the TCB and condi-
tions for checking whether a given network configuration fsuated one. Figule5.114
shows an XSLT script that encodes the condition that theooust network should be
directly connected only to the DMZ and the management néwbthe outsourcing
provider, but not to any other network. The input to the XStfifg is the XML pol-
icy that is output by the network measurement plug-in. Th&TXScript is a concrete
realization of the user-specified predicateén our formal model (Section3.2). The
user seals the key to both the state of the TCB and the valueesfedtable PCR; the
latter reflects the integrity of the XSLT script and the intggof the plug-in identifier.
The second stage is unsealing, in which the IM (i) obtainseisalt of the plug-in, (ii)
applies the result as input to the XSLT script, (iii) extetius resettable PCR with the
hash of the XSLT script and the network measurement pludentifier, and (iv) tries
to unseal the actual key. For steps (iii) and (iv), the IM ike® the ASM. The TPM
should only reveal the key if the TCB is correct and the XSL&leated to<t r ue/ >
when executed on their output.

5.6 Conclusion

We introduced a formal model for managing the integrity dfitaary aspects of a
virtualized system and evaluating system compliance wagpect to given security
policies. Based on the model, we described an architeatalied PEV, for protecting
security policies against modification, and allowing staXders to verify the poli-
cies actually implemented. We generalized the integritpagement functions of the
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Trusted Platform Module, so that they are applicable ndtfprssoftware binaries, but
also for checking security compliance and enforcing ségpolicies. We described
a prototype implementation of the architecture based orX#rehypervisor. We also
presented multiple use cases to demonstrate the policycem@nt and compliance
checking capabilities of our implementation.
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Chapter 6

Hierarchical Integrity
Management for Complex
Trusted Platforms

Serdar Cabuk, David Plaquin (HP), Theodore Hong, Derek 8uiEric John
(CuCL)

6.1 Introduction

Trusted Computing has been proposed as a means of providiifgble trust in a
computing platform. However, as virtualization becomesermopular and platform
changes (such as security patches) occur more frequemlyestablished model for
Trusted Computing is insufficient to cope in real-world soéos. We therefore intro-
duce an extensible integrity management framework thagttebsuited to deal with
complicated trust dependencies and change management.

The goal of Trusted Computing is to enable third parties toately attest and
verify the configuration of a computing platform in a securammer. Existingrusted
platformstypically contain a component that is at least logicallytpobed from sub-
version. The implicitly trusted components of a trustedfplan — in particular, the
hardware Trusted Platform Module (TPM) — can be used to stdegrity measure-
ments, and subsequently report these to users (or remdaie®nwith a cryptographic
guarantee of their veracity. Users can then compare thetezbmeasurements with
known or expected values, and thereby infer whether thégpiatis operating as ex-
pected (e.qg., it is running the expected software with thpeeted configuration while
enforcing the expected policies).

Present implementations of Trusted Computing technola@gy take immutable
shapshots of a whole platform, which can then be used as mftiustworthi-
ness|[[104, 39, 54, 85]. They do not, however, provide moraudea verifications of
platform components such as individual virtual machined$¢yand applications. The
platform is treated as a whole, and while it is possible toestategrity measurements
of VMs and applications, the limited amount of storage in aMTiAeans that it is not
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possible to represent individual components and the degrmies between them. Fur-
thermore, it is not possible to manage changes to measurepgarents. The current
scheme advocated by the Trusted Computing Group (TCG) de#rmach changes
to be malicious[[114]. This is certainly impractical for mesd server environments,
which undergo a constant bombardment of security patchégalicy changes. In
2007 alone, Microsoft released 11 security related patfdrabe Windows operating
system [[B], while a typical enterprise anti-virus applicatwill undergo two to five
updates in an average weéek|[80].

In this paper, we introduce an extensible integrity manag@nframework that
addresses these two shortcomings. To improve integrityagement, we explicitly
represent integrity dependencies between platform coemtsrby giving individual
registers to each component to store their integrity measents, and chaining these
components together in a dependency graph. To improve ehawagagement, we
introduce a new distinction between reversible and irrgtés changes to measured
components. A reversible change is one that can be undonis gi@dranteed not to
have any permanent effects. The introduction of reversidsges allows the platform
integrity to be modified temporarily, for example when a devis hot-plugged and
then removed. Although the platform may no longer be comsidigustworthy during
the time that the change holds, its integrity can be safedjored after the change is
undone.

Our resulting framework gives a better understanding oa&@m’s security prop-
erties, which can be used in policy verification. Like exigtiTrusted Computing im-
plementations, our services can be used to grant accessterfad resources (such
as encrypted storage) only when the policy is satisfied; keweinlike existing im-
plementations, these policies can be more fine-grainedardisy and flexible. Our
prototype implementation, built on the Xen virtual machimenitor [30], includes
the integrity management framework and a credential marssyeice, which demon-
strates the use of enhanced policy checks to control accesstrity credentials.

Chapter Outline Section6.P outlines the motivation and high-level designdur
integrity management framework. Sectlon]6.3 presents #siclframework, which
provides integrity services to individual components;t®ed6.4 extends this into re-
versible integrity changes and an explicit dependencylgrapd provides use cases
for this model. Sectiof 615 presents some examples of seaaivices that could
make use of our framework. Sectionl6.6 describes our prpgdtyplementation of the
framework and the credential management service on Xemll{im Sectiod 6.7 we
draw some conclusions.

6.2 Design Overview

The typical design for a trusted platform comprises a hardw#&M and software in-
tegrity management services. These services measurerplatbmponents, store in-
tegrity measurements as immutable logs and attest thessune@aents to third parties.
The services use the TPM to provide a link with the CRTM. In a-notualized plat-

form, with relatively few components to be measured, thisletds sufficient. How-

ever, it does not scale to complex virtualized platformg tieve a plethora of com-
ponents and dependencies between these components. $edhien, we first discuss
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the limitations of the existing model. We then present tighHevel design goals that
motivate our integrity management framework.

6.2.1 Hardware Limitations

Current integrity management systems typically employitA® as the sole repository
for integrity measurements (see Secfidn 4). Unfortunagelgh schemes are funda-
mentally limited by the hardware capabilities of a TPM:

1. A TPM contains a small, limited amount of memory (PCRs)e TCG spec-
ification recommends that a TPM has at least 16 PCRs| [114] reTore, for
portability, we cannot assume that a TPM will have any moenth6 PCRs.
Hence, it is not feasible to store individual measurements flarge number of
virtualized platform components.

2. Thelimited number of PCRs is typically addressed by aggafieg measurements
in the same register. Where two components are indeperttienintroduces a
false dependency between them. Furthermore, the defirdfidhe ext end
function introduces an artificial dependency on the ordewtiich they are ag-
gregated.

3. It is not possible to reverse the inclusion of a measuréinea TPM register.
Therefore, it is impossible for a platform component to m@ochange to its
integrity (e.g. by the dynamic loading of some code, or theneation of a new
device) and revert back (after unloading/disconnection).

To illustrate these limitations, consider the followingaexple. A server platform
hosts tens of small VMs, each of which runs a particular servio keep track of the
platform integrity on a traditional TPM-based system, theasurements must be ag-
gregated, because there are more VMs than PCRs. For exanmpight be necessary
to store measurements for a virtual network switch and aaiigtorage manager in the
same PCR, which creates a false integrity dependency betihese two VMs. If a
malicious change is made to the virtual network switch, disl¢change is reported to
the appropriate PCR, the integrity of the storage managerapears to be compro-
mised. The same is true for all other VMs whose measurementsggregated in that
PCR.

It would be possible to extend the set of PCRs by giving a &lritPM to each
platform componen{[13]. However, by allocating indepemdeértual PCRs to each
component, it is no longer possible to represent real deg@sies between compo-
nents. Furthermore, since the virtual TPMs emulate the behaviartmrdware TPM,
it remains impossible to revert changes.

6.2.2 High-level Design

It is clear that software measurement support is requireditivess the limitations of
hardware capabilities. We refer to the set of software camepts that comprise the
integrity framework as theoftware root of trust for measurement (SRTW)ese com-

ponents are part of the platform TCB, and should be isolatsd bther components;

1Some virtual TPM designs share a fixed number of PCRs betwleeintaal TPMs and the hardware
TPM, and these could be used to express dependencies. Hp#eveeliance on the hardware TPM leads
to the same limitations as a single-TPM scheme.
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| CRTM | | BIOS | |BaatLoader| Dynamic
OS Kernel SRTM —— Component
hashes stored
hashes stored
Dynamic
Platform TCB Component

Figure 6.1: The position of the SRTM within the overall ingmanagement frame-
work.

for example, by virtualization. Dynamic components owtside platform TCB rely
on the SRTM to store measurements on their behalf, ratharttre|aunderlying TPM.
Figure[6.1 illustrates the position of the SRTM within theeadl integrity management
framework.

Our framework has the following design objectives:

Unlimited measurement storageThe framework should allow the storage of individ-
ual integrity measurements for an arbitrary number of comepés.

Explicit dependency representationThe framework should allow the explicit and
unambiguous representation of an arbitrary number of dégeries between
platform components. There should be no false or artificé@lesthdencies intro-
duced by aggregation.

Static integrity management The framework should provide a superset of the func-
tionality of a traditional TPM, with respect to static intéy.

Dynamic integrity management The framework should enable the integrity state of
a platform component to revert to a previous trusted stai égontrolled and
verifiable manner.

Link to hardware TPM The software framework should be linked in a chain of trust
to the hardware TPM. This can be achieved by storing the measants for the
SRTM and other static components in the platform TCB (sudha$ypervisor
and any physical device drivers) in the TPM. As this set of ponents is small
and non-changing, the limitations of a hardware TPM do naiemto effect.

Minimal TCB In order to improve the trustworthiness of the frameworle, 8RTM
and other componentsin the TCB should have a minimal amdaote and size
of interface. This paper does not focus on minimizing the TB& a possible
approach would involve using disaggregation [83].

Platform independence The framework should not be limited to a single hypervisor
technology. Although the implementation (see Sedfiochwa) carried out using
Xen, it should be possible to use alternative technologigsh as VMware [109]
or an L4 microkernel[74].

6.3 Basic Integrity Management

In this section, we present a basic design for the SRTM sertiat we introduced
earlier. This platform-independent service provides tlieimmal functionality needed
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Figure 6.2: Basic integrity management components — Coeptaconfiguration reg-

ister table.
| Management I | Protected Storage. | Integrity I
| | 1

BIM

| 1 1
BMSI
VMM and Hardware

Figure 6.3: Basic integrity management components — The &iitecture.

to manage the integrity of dynamic (non-TCB) platform comeoats, which will be
extended further in Sectidn 6.4. Section 6.3.1 sets out élseckmeasurement model,
while Sectior 6.312 describes the corresponding servidgtacture and interfaces.

6.3.1 Measurement Model

The Basic Integrity Management (BIM) service stores siatiegrity measurements of
dynamic components that are arranged in a flat hierarchi asdhe one shown in
Figure[6.4. Each component has a single Component Confignifaegister (CCR)

associated with it. A CCR is analogous to a PCR and holdsrityegeasurements for
that component. The measurements are held together in algIaiR table similar to

the one depicted in Figufe 6.2.

Static Measurements

The BIM measurement model mimics TPM measurement cagabiliiut stores in-
tegrity measurements in software rather than hardwareh Eegyistered dynamic com-
ponent is assigned a BIM CCR to which its measurements am@tegp This is

achieved by arext end operation, which stores a new measurement in a CCR by

hashing it together with the current value of the CCR. Dyrmaoamponents use this
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Figure 6.4: Simple integrity use case — a flat hierarchy.

operation to report ongoing measurements when their ctmtérange. For example,
a firewall service would extend its CCR if its rule-set was#hto be changed. The
specifics of when/how measurements are taken is compoepetadent, but the logic
that performs this activity must be trusted to report charfgéhfully. This behavior
is assured by the initial measurement of the component byadhmonent that starts it.
In the BIM model, this can only be a static (platform TCB) campnt.

This measurement model provides better scalability thadeisahat use the TPM
as the sole repository for measurements. By using softwagisters, the BIM can
store a virtually unlimited number of individual measurertse Hence, no aggregation
is needed. However, the measurements are still accumwudaetthe CCRs are irre-
versible. That is, recording a measureméant, followed by a changed measurement
Mo, followed by M; again, results in a different value than the original reauyef
M, alone. Hence, components are not allowed to change in anywitagut perma-
nent loss of integrity. Even if a change is later undone, tramonent cannot return
to its previous trust state. In Sectibnl6.4, we will addréss problem by employing
dynamic registers for reversible measurements.

Simple Trust Dependency

The BIM service implements a flat hierarchy to capture thegrity dependencies
between platform components. In this model, the integritgymamic components
solely depends on the integrity of the underlying platfor@Bl We show an example
flat hierarchy in Figur€ 6]4. The components labeded two, andthreeare virtual
machines running directly on the trusted platform. Commpozerois the platform
TCB that includes the SRTM (in this case, the BIM service)cHE¥M depends only
on the platform TCB underneath. If the integrity of the TCBfgonentzerg is
compromised, then the integrity of all of the VMs is compreed as well. However,
the VMs are independent of one another and therefore do metdnrust dependency.
As an example, if the integrity of VIMis compromised, the integrity of Viand VMg
remains intact.

In what follows, we depict the integrity relationships beem components using
a dependency graph, and represent it using a dependeney falglure 6.4 shows a
simple graph and its dependency table equivalent. For ebeatiie second row in the
dependency table states that the integrity of the child @maptone (VM ;) depends
on the integrity of the parent componeetro(TCB).

In the simple BIM model, there is always a single trusted congmt (the plat-
form TCB) on which all other components depend. This yielts ‘flat hierarchy”
dependency graph and table in Figlurg 6.4. The flat hierantbgsa because a dynamic
component (such as a VM) can only be started by a trusted coempoSince the TCB
is static and platform-wide, it is not possible for a dynammenponent to start — and
hence become a parent of — another dynamic component. dhetbée BIM cannot
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Integrity Description

ext end Takes a hash value as an argument and irreversibly extead®th-
ponent CCR with that hash.

quot e Takes arbitrary external data (i.e., nonce) and returnsotatjan of

the current TCB measurements, the nonce, and the compo@it|C
value signed by a TPM attestation identity key (AIK).

Protected Stor- | Description

age

seal Takes data to be protected, seals it to the TPM binding it toeot
TCB and CCR measurements, and returns the sealed (engrifiibd

unseal Takes the sealed blob and unseals and returns the dataiffitdggity
of the TCB and the component are verified as intact.

Management Description

register Takes the initial measurement, adds the component to trendepcy
table, and fills the CCR with the initial measurement.

del ete Deletes the component and all its sealed data.

Table 6.1: BIM integrity, protected storage, and managenéerfaces.

manage, for example, the integrity of an application sthwtihin a VM. However, the
BIM serves as a basis to build the hierarchical model whiareskes this limitation,
which is introduced in Sectidn 8.4.

6.3.2 The BIM Architecture
As shown in Figur€®]3, BIM services are grouped under thresfaces:

Integrity interface This interface provides functions to report and quote iritgg
measurements of dynamic (i.e., non-TCB) components. Caemts use this
interface to extend their register values when they detgotfecant changes to
their measured content. A component is only allowed to dtiseown register,
while an integrity quote can be requested by any entity. ¢#ie underlying
TPM interface, the latter operation returns a signed intedrgest that contains
the measurements of the dynamic component and the platf@f Using this
digest, a third party can verify the complete integrity chai

Protected storage interfaceThis interface provides functions to store and reveal se-
crets on behalf of dynamic components. These secrets arglltothe integrity
of the TCB and the owner component, i.e., they are revealaddfonly if the
integrity of the component and its ancestors (in the BIM ctweplatform TCB)
is intact. The BIM uses the underlying TPM interface for 8&phnd unsealing
data to and from the TPM, which automatically implies a veaifion check on
the TCB. Verification of the component’s integrity can be éeither by the BIM
or delegated to a third-party verifier. Our prototype impéents the former case
in which the BIM needs to store the expected measurementsifoparison. We
use the TPM sealing operation itself to do so and use the CGRvat the time
of sealing as the future expected values. We concatenate tladues to the se-
cret and seal the whole blob. The unsealing operation atatiate returns not
only the sealed secret but also the expected set of measuisetinat we compare
to the CCR values at that time.
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Management interface This interface provides functions to register dynamic comp
nents to the framework so that their integrity can be tradkettie BIM. The BIM
is a passive service, and so only registered componentgaket. As discussed
in the previous sections, the initial measurement of thegment is provided
from outside by a trusted component that measures andésitihe component.
The interface also allows the deletion of components arid skealed data.

Table[6.1 details the individual functions provided by eaxtbrface. As shown in
Figurd 6.3, the BIM, in turn, makes use of the Basic ManagemanethSecurity Interface
(BMSI), which provides a platform-agnostic interface te tmderlying hypervisor and
hardware TPM. In particular, the BMSI provides functionattienable the BIM to
access the TPM and establish a link to the hardware root sif tfine implementation
of the BMSI is discussed in more detail in Section 6.6.

6.4 Hierarchical Integrity Management

In this section, we present an enhanced design for the SRTWtee¢hat we introduced
in Sectior 6.R. This platform-independent service feadymamic measurements and
a component hierarchy that we use to manage the integrityrafrdic (non-TCB) plat-
form components more effectively. We describe the secunitgel for measurements
in SectiorL 6.411. We describe the service architecturerstediaces in Sectidn 6.4.2.

6.4.1 Measurement Model

The Hierarchical Integrity Management (HIM) service stoigtegrity measurements
in a CCR table as illustrated in Figure6.2. To overcome tleetsbmings of the BIM
model (e.g., irreversible measurements), we have exteihtdgdntroducing two new
concepts: dynamic measurements and hierarchical trust.

Dynamic Measurements

The HIM measurement model enhances the BIM model in two waiyst, HIM allows
multiple registers to be assigned to a single dynamic compbii his way, component
measurements can be tracked with better granularity. $e¢tliM supports dynamic
measurements that can be reported to a resettable redistisrincreases flexibility
and allows a component to revert back to a trustworthy cordiipn if permitted by
its change policy.

Change typesWe distinguish two types of component changes. More spattific
An irreversible changeds one that requires the component to be restarted before its
integrity can be re-established. Such a change is one mdle iotegrity-critical part
of the component; that is, to the code or other data of the cowpt that has a potential
impact on the future ability of the component to implemestiittended functionality
correctly. An example of an irreversible change is a keroatling an untrusted device
driver as the driver may make a change to kernel memory thibperisist even after it
is unloaded.

A reversible changés one in which the component is permitted to re-establish
integrity without being completely reinitialized. Such lzange is one made to a non-
critical part of the component; that is, to code or other dditthe component that has
no direct or potential impact on the component’s future secuA component still
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Figure 6.5: Transition diagram for component integrityteta A component in the
non-critical state can be made intact by undoing dynamiogés, but the critical state
can only return to the intact state by re-initialization.

loses its integrity if a change is made to it. However, dejregndn the exact nature
of the change, we may permit the component to regain inte@aitd therefore trust)
by undoing the change and returning to its previous state.ekample, changes to
configuration parameters are often reversible — e.g. charie identity certificate
that a component uses. The integrity management systermeélll to note such a
change in order to fully report the state of the platform, the certificate may be
safely changed back without causing security implicatiédwsother example might be
loading a trusted kernel module that is known not to leavesiahy effects after being
unloaded.

The categorization of a change as reversible or irrever@lidomponent-dependent
and will be set by each component’s own change-type policy.ekample, a policy
stating that all changes are irreversible reduces to thie steeasurement model. A
component that permits reversible changes is referreddaasamic componeitdy-
namic” because its integrity state may change multiple$ime

Measurement reporting. Recording dynamic measurements requires two mea-
surement registers, static registerand adynamic registerrather than the single reg-
ister used in the static measurement model. Irreversida@bs are reported to the
static register in the same way as in the static measureneginthat is, thext end
operation is used to combine the new measurement with tiséirexiregister value to
obtain the new register value.

extend(R, M) = hash(R||M)

whereR is the value of the register ard is the measurement.
By contrast, reversible changes are reported to the dyneegister byreplacing
the previous value held in that register, usingities et operation.

reset(R, M) = M

We can see that attempting to reverse an irreversible chdogg not return the
static register to its initial state:

Ryinar = extend(extend(Rinitiat, M2), M) = hash(hash(Rinitiar||M2)||M1) # Rinitial

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



60 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

However, reversing a reversible champeesreturn the dynamic register to its initial
state:

Rfinal = T@SGt(T’@SSt(Rinim‘al, ]\/[2), ]\/[1) = reset(Mg, ]\/[1) = M1 = Rinitial

The exact nature of the reporting activity and the corredpanchange-type policy
is component-dependent. However, the logic that perfohissatctivity must be a part
of the initial measurements so that we can trust the compgdoeaport the changes to
the correct register.

Integrity states. Depending on the measurement values stored in its static and
dynamic registers, a dynamic component can be in one of tboa¢integrity states:
intact, non-critical, and critical. The component is in th&ct stateif and only if the
values in the static and dynamic registers are consisténtke expected measurement
values. The componentis in tm@n-critical stateif and only if the value in the static
register is consistent with the expected measurement talitbe value in the dynamic
register is not. In all other cases, the component is irctitecal state As shown in
Figurd6.5, the foregoing arrangement enables a dynamipeoent that has only been
subject to non-critical changes to be restored to the irstiate. A component that is
in the critical state cannot be restored to any other stakessrre-initiated with an
expected configuration (during which both registers aretjes

Security states. Depending on the integrity state, a component can be in three
security states: trustworthy, secure, and insecure. A oot istrustworthyif and
only if it is in intact state. A component secureif and only if it is in intact or non-
critical states. In all other cases, the component is deensedure

Example use case for dynamic register®digital Rights Management (DRM) ser-
vices control the distribution of media content onto conmmuplatforms. Itis possible
that a DRM service will not push video content to a computingessory if, for ex-
ample, an external recording device is plugged to it. In¢hise, software that detects
and installs the plug-and-play drivers for the recordingcdemust be part of the static
measurements. However, the state in which a recording elé&videtected in the sys-
tem can be reported dynamically. In fact, this can be refteictehe dynamic register
for a secure DRM player application. As long as the recordiegce is connected,
no content is downloaded. Once the user unplugs the deviealyinamic register is
reset and content can be pushed to the player without reguinie application to be
restarted.

Hierarchical Trust Dependency

We enhance the BIM dependency model by introducing a hieyasttrust dependen-
cies that we represent as a directed acyclic graph. In suchphgthe edges indicate
trust dependencies where the integrity of the componemeadtigin depends on the
integrity of the component at the destination. If the intiygof the destination com-
ponent is compromised, then the integrity of the origin comgnt is always compro-
mised as well. However, the reverse is not true. To illustthése more complex trust
relationships, consider the following use cases.

In Figure[6.4%, we see the simple flat hierarchy as previouslkcdbed in Sec-
tion[6.3. The components labeledg two, andthreeare virtual machines running
directly on the trusted platform. Componemetois the platform TCB that includes the
SRTM (in this case, the HIM service). Each VM depends onlytenlatform TCB
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Figure 6.6: Hierarchical integrity use cases.

underneath. If the integrity of the TCB (componeeto is compromised, then the
integrity of all of the VMs is compromised as well. HowevértVMs are independent
of one another and therefore do not have a trust dependergyan/example, if the
integrity of VM is compromised, the integrity of ViMand VMs; remains intact.

Figure[6.6(d) shows a more complex multi-level depende@oynponenbneis a
service that manages the life-cycle of componemtsthreg andfour. All components
are virtual machines. The latter VMs are independent of omatheer, as before, but
their integrity depends on that of the domain manager, wirdsgrity in turn depends
on the TCB.

In Figure[6.6(0), we see a nested dependency relationstimpGnentoneand
two are virtual machines, which themselves contain furthgugirmachines: compo-
nentthree which is a Java virtual machine, and comporferg which is a VMware
hypervisor. These nested virtual machines support guegbenents: componefaur,

a Java application, and componsix a VMware guest. Within componeanhe a tra-
ditional linear chain-of-trust applies: Java applicatitapends on Java virtual machine
depends on operating system. A similar chain can be fourtdmilhe VMware com-
ponent. However, these two chains of trust are independemi@another, and both
depend ultimately on the underlying platform TCB.

Figure[6.Y illustrates more complicated use cases. In E[§Uf(d), we see a mul-
tiple dependency relationship. Componéwe¢is a virtual machine that uses services
from component®ne two, andfour. These components are small virtual machines
that provide virtual networking, virtual storage, andwat TPM services, respectively.
Further, the integrity of the virtual TPM depends on the gnity of the virtual TPM
manager domain (componehtee).

Figure[6.7(0) shows a similar VM grouping example which wei to explore
further in future work. In this example, we use miniaturéwal TPM services to assist
and enhance the integrity measurement capabilities of énedwork. In this design we
bind a single virtual TPM to a component (application or VMyalelegate component
measurements to this virtual TPM. The virtual TPM then reptathe component CCRs
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Figure 6.7: More complicated use cases. Dashed lines danplieit dependency.

to provide more granular run-time measurements for the corpt it is attached to.
The measurements for the virtual TPM service itself is belld by its own CCRs. As
an example, the integrity of componéwb now depends on the integrity of component
one (its attached virtual TPM) and the run-time measuremerkisrtay this virtual
TPM (e.g., during authenticated \VAMbootstrap). We refer to this measurement set as
M(oné. The same holds for the application componére and its attached virtual
TPM service componeribur. The present HIM implementation does not yet support
virtual TPM attachment.

6.4.2 The HIM Architecture

The HIM service implements the same integrity, protectedagfe, and management
interfaces as the BIM service as presented in SeEfidn 6t3yitiu the following en-
hancements.

The HIM integrity interface provides aext end function that alters the value of
the static CCR in the same way as the BIM equivalent. To supporamic mea-
surements, the interface also provideseset function that is used to report to the
dynamic register and overwrite its value. In addition, tpport hierarchical integrity
dependency, thguot e function is modified. This function now returns the aggre-
gated integrity measurements of the component in ques&pecifically, the signed
guote now contains the TCB integrity measurements plus teasorements of the
component and all its ancestors hashed in a single value.

In the HIM protected storage interface, theal andunseal functions are en-
hanced to support component dependency and dynamic messue Theseal
function now binds the stored secret to the integrity of ladl trust chains that reach
the component in question from the TCB; that is, the subgadpil paths from that
component to the root TCB. Hence the integrity state of camepts not on a path be-
tween that component and the TCB is ignored. For exampléeimésted use case in
Figure[6.6(0), an integrity compromise in the VMware conteant will not affect the
ability of the Java application to unseal previously seatddrmation, as long as the
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Java compartment remains intact.

Lastly, the HIM management interface providesgi st er anddel et e func-
tions. Thedel et e function is the same as in the BIM. However, thegi st er
function now takes a dependency list as a parameter thaifisgeadditional ancestor
components the component depends on besides the one tistgnethe component.

6.5 Policy Verification for Security Services

In this section, we introduce example security serviceslthaerage the HIM frame-
work for policy verification and access control. Our examspleclude a credential
management service (Section 615.1), a virtual TPM sengeetfor{ 6.5.2), and a vir-
tual network service (Sectign 6.5.3).

6.5.1 Credential Management Service

Protected storage services provide secure access tossihareare sealed to the under-
lying TPM on behalf of their owners. It is expected that thesevices retain control
over these secrets and enforce the associated accesd pofities at all times. By
contrast, most storage services such as|[104] and the HIMde®@ne-time verifica-
tion, and are therefore susceptible to a time-of-checkitetdf-use vulnerability. This
occurs because these services release the stored sedretriegtiesting component
once they verify the necessary policies (e.g., HIM unseatassfully verifies the ag-
gregate integrity). Once the secret is revealed, thesacesrean no longer restrict
access to it if the component undergoes a malicious change.

To enable ongoing policy verification and enforcement, wsigleed and imple-
mented a credential management service (CMS) that usestdgrity management
framework to provide secure access to secrets while maingacontrol at all times.
Unlike the HIM unseal operation, CMS credentials are neegealed to requesting
services directly but are always held securely by the CM&skence, the CMS is a
reference monitor that mediates and provides access toeskdata through a well-
defined interface.

The CMS interface is comprised of management and servieefaces. Compo-
nents use the management interface to register comporezferdrals with the CMS.
To do so, ther egi st er function takes the credential as input and seals it to the
underlying TPM. The interface also providesliascar d function which deletes the
stored credential. The service interface provides acaefiset credentials through a
genericaccess function. We have designed this interface as an extenslbtgip
interface; that is, the exact nature of the interface depemndhe nature of the stored
credential and the type of functionality needed. For examipthe stored credentials
are cryptographic keys, we offer a plug-in service that jgres encryption/decryption
capabilities so that components can use the interface tygtiaecrypt data without
seeing the actual key. Regardless of the functionalityigexy, the CMS uses the HIM
to verify the aggregate integrity prior to each access teduzet.

6.5.2 Virtual TPM Service

A natural extension to the CMS functionality would be to pd®va miniature TPM in-
terface to the various platform components, as illustratédgure6.7(H). This enables
these components to have a standardized interface as iptflpdove their integrity
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and provides a strong identity for each component. Such proaph has already been
taken through TPM virtualization [13] which gives each VM BNI interface imple-
mented by a virtual TPM service. However, it is not yet clehatthe best mechanism
is for establishing a secure binding between a virtual TPMlisplatform TCB.

Our framework could be used to bridge the gap between viitBM services and
the platform TCB. For example, a central trusted CMS seremad be used as the
single secure repository for virtual TPM keys. Access tos¢éhkeys would require
verification of the complete HIM integrity chain, includingrification of the platform
TCB. For example, to sign a quote request, a virtual TPM waskithe CMS interface
to gain access to its signing key.

6.5.3 Virtual Network Service

Virtualization provides direct isolation of computing ocesces such as memory and
CPU between guest operating systems on a physical platfdowever, the network
remains a shared resource as all traffic from guests willtexadly end up on the same
physical medium. Various mechanisms can be used to prowtieonk isolation be-
tween network domains, as described’in/[19]. In generakygtion must be used for
isolation when network traffic is delivered over an untrdsthared physical medium.

Using our framework in combination with the CMS, one couldida a virtual
network (VNET) service which provides isolation througheacryption layer such as
IPSEC. In this setting, the VNET service would store its ergils (e.g., network en-
cryption key) in the CMS, in combination with the expectedRo@lues of the service
and any ancestor service it depends on (including any pgatemtwork configuration
information). Because the key is held by the CMS and not lledeta the vNET ser-
vice, any change in the integrity of the service or its ararestmponents would result
in the network link becoming unavailable for the VM conneldte this specific VNET.
As a result, the capability of a VM to communicate with its pe&thin a considered
domain would implicitly prove its trustworthiness, whiclould provide continuous
authentication as opposed to relying only on an initial I&watte as most network au-
thentication mechanisms do.

6.6 Implementation in Xen

In this section, we describe a prototype implementatiorhefihtegrity management
framework and the credential management service on the Xeraimachine moni-

tor [3d]. The implementation features the management aricseinterfaces of both.

Note that although we present our implementation with Xée, framework could

equally be implemented on an alternative virtualized orrokernel-based platform
(e.g., the L4/Fiascd [70] microkernel).

6.6.1 Infrastructure Overview

The various components of the integrity management frameai@ provided by one
or more virtual machines, running on top of the Xen virtualciiae monitor. The

use of virtualization isolates the trusted platform from ialmehaving guest operating
system, and all communication with the trusted platformspaghrough well-defined
interfaces. Our implementation is based on Xen versiom3@VMM for the 1A32
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Figure 6.8: lllustration of the prototype in a layered stack

platform, with the VMs running a paravirtualized versionLofiux 2.6.18. For inter-
domain communication, we employ the light-weight commatian library introduced
in [8].

Figure[6.8 illustrates our implementation on Xen. In thespre prototype, all
framework components and the CMS are implemented as l@sramd services run-
ning in the Xen privileged management domain Dom0. Howea&kye have defined
interfaces between each of the components, it should biglstfiGrward to move to-
wards a disaggregated approach as describédin [83]. Timedvark components are
arranged in a layered stack. At the lowest layer is the basicagement and secu-
rity interface (BMSI) that provides libraries for domaifelicycle management (libM),
basic TPM access (libT), and integrity management (libk)the core services layer
are the integrity manager services BIM and HIM that providsib and hierarchical
integrity management, respectively. Also in this layer i@ CMS and the domain
management service (DMS). At the highest layer are the Bgcarvices that use the
framework for various purposes. The platform TCB consi$the static components
up to and including the SRTM (the BMSI libraries and the imitggnanagers). How-
ever, for simplicity, we also include the CMS in the platfof@B. The measurements
of these components are reported to the underlying TPM. ppkcation TCB consists
of the platform TCB plus the security services that run ondbip. The measurements
of the latter are reported to the SRTM.

6.6.2 Component Design

In the present prototype, we have implemented the highldidjcbmponents depicted
in Figure[6.8, namely the BMSI libraries, BIM and HIM serig€MS, and DMS. In
this section, we present the details of these componeritgding both the BIM and
HIM; however, due to space constraints, we present an exansgl case that uses only
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the HIM.

BMSI Libraries

The Basic Management and Security Interface (BMSI) pravi@eeommon and ex-
tensible interface to the underlying hypervisor (i.e., Xand the TPM. The BMSI
provides libraries for domain life-cycle management (lipllasic TPM access (libT),
and integrity management (libl).

libM This library provides hypervisor-agnostic managementfioms to upper layers.
At its lowest level, the library manages allocatable resesrcalledProtection
Domains (PDs)A PD is an executable component that receives an allocafion
memory and CPU cycles, and is scheduled by the hypervisoXeDrplatforms,
a PD is equivalent to a Xen domain (virtual machine). In thistgtype, we
use libM to implement the Domain Management Service (DM3$)s Bervice
manages the life-cycle of PDs and uses the integrity masdgekeep track of
PD integrity. We refer the reader {0 [83] for further detaitsthe libM and DMS
implementation.

libT This library provides the minimal functionality to accebe tintegrity and pro-
tected storage interfaces of the TPM. Security services,(B8IM and HIM)
use this library to obtain a signed quotation of the TCB measents and
to seal/unseal data to/from the TPM. To do so, libT uses thil Tlhctions
TPM Quot e(), TPM Seal (), and TPM Unseal () as described by the
TPM specification[114].

libl This library stores and provides access to the integritysmesament and depen-
dency tables. Thget Measur enment () function returns a measurement list
that includes the integrity measurements of the componeahtita ancestors.
In the BIM case, a single value is returned. et Measur enent () func-
tion extends the value of the component register. fTéeet Measur enent ()
function overwrites the value of the dynamic register. akdelConponent ()
function adds an entry to the dependency table and setgiendencies as spec-
ified. It also adds an entry to the measurements table andd®tioe initial
measurements. Thael et eConponent () function checks that the specified
component has no successors and removes it from the table.

Component Interactions

The BIM and HIM services implement the interfaces presem&kction§ 6.3 arld 6.4,
respectively. Similarly, the CMS service implements theiifaces presented in Sec-
tion[6.5.1 and uses a cryptographic service as a plug-inléamkbencryption and de-
cryption. On a Xen platform, we use these services to marfagetegrity of VMs
and applications running on these VMs.

VM integrity management is incorporated into VM life-cyecteanagement. To as-
sist both, the DMS uses the BMSI library libM and the HIM seeziThe VM start-up
phase in Figure6l9 depicts the interaction among these @oemts. During this phase,
the DMS invokes libM, which prepares resources for the VMasuges the VM image
(comprising the kernel, an optional initial ramdisk and coamd-line parameters), and
stores the measurement in the CCR for that VM. This perforfasetion similar to a
secure bootloader, and it is the responsibility of the kelmmeasure any components
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Figure 6.9: Sequence diagram of interactions between #raework services for a
DRM application use case.

which it subsequently loads. The DMS also registers the nbwiith the HIM ser-
vice, and configures any dependencies between the new VMxastthg VMs. The
HIM uses libl to store this information in the measuremerd dependency tables.
Following the successful completion of the above stepsDii& starts the VM.

The HIM service additionally allows applications runnimg\iMs to be registered
with the framework. The application start-up phase in Feg@® depicts the case in
which the VM that was started in the previous phase loadsegidters a DRM service
with the HIM. In this case, the VM becomes an ancestor of theiseand provides its
initial measurements. As a result, the cumulative intggitthe service now includes
the VM’'s measurements as well as the platform TCB measurismen

The last phase in Figufe .9 depicts a use case in which the BRWice that was
started in the previous phase attempts to decrypt encrypéeii content using a key
that is stored on the TPM on behalf of this service. The DRMiserinvokes the CMS
service interface to request access to this key. The CMSithekes HIM unseal to re-
trieve the key from the TPM. HIM unseals the key if and onhyhiéunderlying policies
regarding the key'’s release are satisfied. In this case gheslunsealed from the TPM
and returned to the CMS if the integrity of the platform TCBnitact. On receiving the
key from the HIM, the CMS performs further verification. Itrapares the expected
CCR values of the DRM service and its ancestor VM (unseal@agalvith the key) to
the current CCR values. If the measurements match, the CMSitsscryptographic
service to decrypt the block, which is then returned to thé/DdRrvice. Note that any
subsequent access requests to the key will also follow dasin@rification cycle, with
the exception that HIM (hence TPM) seal is omitted becaus€tS caches the key
internally.
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6.7 Conclusions

In this paper, we have introduced a novel integrity managerfrtamework that im-
proves on the integrity measurement and policy verificatiapabilities of present
Trusted Computing solutions. In particular, our framewimlable to cope with the
proliferation of measured components and dependenciegbatthem as well as dy-
namic changes to platform components. In essence, thevirarkénplements a small,
software-based root of trust for measurement (SRTM) thatides a secure link to the
core root of trust for measurement (CRTM). We have implemeour framework on
the Xen virtual machine monitor and proposed several waysich security services
could take advantage of this architecture for policy veaificn and access control.

We anticipate integrity and trust management to becomeced|yauseful for appli-
cation and service level components. We will therefore iooigtto investigate further
potential uses for our framework by user level applicatidnghe short term, we plan
to implement CMS-aware services such as a virtual netwarkecebased ori [19] that
uses the CMS to store encryption keys. The virtual TPM serisalso particularly
interesting. In the long term, we plan to investigate vasiotays of exploiting our
framework to help enhance the security properties of Vit services (e.g., their
binding to the platform TCB). Conversely, we plan to useuatfTPM services to help
enhance the measurement capabilities of the HIM framewudkpaovide more granu-
lar run-time measurements compared to a single CCR.
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Chapter 7

Towards Automated
Provisioning of Secure
Virtualized Networks

S. Cabuk, C. Dalton (HPL), H. Ramasamy, M. Schunter (IBM)

7.1 Introduction

Virtualization allows the abstraction of the real hardwenafiguration of a computer
system. A computer uses a layer of software, called the alifiachine Monitor
(VMM), to provide the illusion of real hardware for multiplértual machines (VMs).
Inside each VM, the operating system (often calledghestOS) and applications run
on the VM’s own virtual resources such as virtual CPU, virtugtwork card, virtual
RAM, and virtual disks. A VMM can be hosted directly on the quter hardware
(e.g., Xen[[11] or VMware ESX) or within a host operating gyst(e.g., VMware
Player).

A challenge of virtualization is isolation between potatiyi distrusting virtual ma-
chines and their resources that reside on the same physiatructure. Machine vir-
tualization alone provides reasonable isolation of commgutesources such as mem-
ory and CPU between guest domains. However, the networkimsr@be a shared
resource as all traffic from guests eventually pass throusfeaed network resource
(e.g., a physical switch) and end up on the shared physicdiume Today's VMM
virtual networking implementations provide simple medkars to bridge all VM traf-
fic through the actual physical network card of the physicathine. This level of
isolation can be sufficient for individual and small enté&erpurposes. However, a
large-scale infrastructure (e.g., a virtualized dataegrhat hosts services belonging
to multiple customers require further guarantees on cust@eparation, e.g., to avoid
accidental or malicious data leakage.

Our focus in this paper is security-enhanced network Viidation, which (1) al-
lows groups of related VMs running on separate physical inashto be connected
together as though they were on their own separate netwbricfaand (2) enforces
Cross-group security requirements such as isolationgatittation, confidentiality, in-
tegrity, and information flow control. The goal is to groupated VMs (e.g., VMs
belonging to the same customer in a data center) distribateoss several physical
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machines intwirtual enclave networksso that each group of VMs has the same pro-
tection as if the VMs were hosted on a separate physical LAN 90lution for achiev-
ing this goal also takes advantage (whenever possible)eofattt that some VMs in

a group may be co-hosted on the same hardware; it is not ra@gdssinvolve the
physical network during information flow between two such ¥M

The concept of Trusted Virtual Domains or TVDs was put forthBussani et
al. [1€] to provide quantifiable security and operationahagement for business and
IT services, and to simplify overall containment and trustnamgement in large dis-
tributed systems. Informally speaking, TVDs can be thougt#s security-enhanced
variants of virtualized network zones, in which specifiedsiy policies can be auto-
matically enforced. We describe the first practical redilimaof TVDs using a secure
network virtualization framework that guarantees rekalsiolation and flow control
requirements between TVD boundaries. The requirementspeefied by TVD poli-
cies, which are enforced dynamically despite changing TV@&niership, policies,
and properties of the member VMs. The framework is based @ty and well-
established network virtualization technologies suchthsiBet encapsulation, VLAN
tagging, virtual private networks (VPNSs), and network asceontrol (NAC) for con-
figuration validation.

Our main contributions are (1) combining standard netwatkalization technolo-
gies torealize TVDs, and (2) orchestrating them through msagament framework that
is geared towards automation. In particular, our solutiomsaat automatically instan-
tiating and deploying the appropriate security mechansnasnetwork virtualization
technologies based on an input security model, which spsdifie required level of
isolation and permitted network flows.

Chapter Outline The remainder of this chapter is organized as follows. In-Sec
tion[7.2, we provide an overview of our security objectived describe the high-level
framework to achieve the objectives. We introduce the neting components re-
quired for our framework in Sectidn 7.3 and describe how ttay be orchestrated
to enforce TVD policies. In Sectidn 7.4, we present the TVDBusity model and the
components constituting the TVD infrastructure. In Sedifd, we cover the dynamic
aspects of TVD deployment including TVD establishment,udapion, and admission
control. In Sectio 716, we describe a Xen-based prototggaementation of our
secure virtual networking framework.

7.2 Design Overview

At a high level, our network virtualization framework congas virtual networking

(VNET) and TVD infrastructure. In essence, the VNET infrasture abstracts away
the underlying network fabric and realizes the mapping frdngsical to logical net-

work topologies. The TVD infrastructure configures the retndevices and instanti-
ates the appropriate set of mechanisms to realize TVD psliai conjunction with the

VNET infrastructure. Figure_7l1 illustrates one such pbgiio virtual mapping. Us-

ing this abstraction, the logical layout as observed by B Bwners (Figur¢ 7.1(b))

remains agnostic to the actual layout of the physical infaasure (Figur¢ 7.1()). In
this section, we provide an overview of the mechanisms thalbke this mapping while
enforcing TVD policies within and across customer domains.
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Figure 7.1: An example TVD-based virtual network mappirdgand B are virtual
switches fored andblue TVDs; G is a virtual gateway that controls inter-TVD com-
munication (not shown in (a) for clarity).
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7.2.1 High-level Objectives

This paper mainly considers virtual data centers that hadtiple customers with po-
tentially conflicting interests. In this setting, our seemetworking framework helps
meet the following functional and security objectives:

Virtual Networking The framework should support arbitrary logical networkdiop
gies that inter-connect virtualized and non-virtualizé&tiorms alike.

Customer Separation The framework should provide sufficient separation guaest
to customers such that data leakage between customer doisaimimatl.

Unified Policy Enforcement The framework should enforce domain policies within
and across customer domains in a seamless manner. Thepdidine integrity,
confidentiality, and isolation requirements for each damaind information flow
control requirements between any two domains.

Autonomous Management The framework should deploy, configure and manage the
networking and security mechanisms in an automated manner.

7.2.2 Overview of the VNET Infrastructure

Our VNET infrastructure inter-connects groups of relatedsvas though they were
on their own separate network fabric. As a result, pocketgirtfial LAN (VLAN)
segments are formed across the data center. The central \Al&Nent is a virtual
switch, which regulates and isolates the network trafficdfach segment. There is
a single virtual switch per VLAN segment. A VM appears on atipafar VLAN
segment if one of its virtual network interface cards (vNIBs‘plugged” into one of
the switch ports on the virtual switch forming that segment.

The virtual switch behaves like a normal physical switch aodrdinates traffic to
and from member VMs. Figufe 7.1[b) illustrates two virtuaitshes R and B that
coordinate the subnet communication fed andblue segments. The virtual switch
logic resides either on the host OS of the virtualized platfoor on a dedicated VM
as shown in Figurg 7.I{a). To satisfy security propertiesnewhen the traffic tra-
verses untrusted communication medium, additional VPNutesimay be employed.
Similarly, additional network admission control (NAC) mdds may be employed to
authenticate the VMs prior to VLAN admission.

7.2.3 Overview of the TVD Infrastructure

A TVD is represented by a set of distributed virtual procegslements (VPE) (e.g.,
VMs and virtual switches) and a communication medium irganecting the VPEs.
The TVD provides a policy and containment boundary aroundeéhVPEs. At a high
level, the TVD policy has three aspects: (1) membershipireqents for the TVD, (2)
interaction among VPEs of that TVD, and (3) interaction @& T/D with other TVDs

and the outside world. VPEs within each TVD can usually comicate freely and
securely with each other. At the same time, they are suftigiésolated from outside
VPEs including those belonging to other TVDs. From a netiaylperspective, iso-
lation loosely refers to the requirement that a dishone$ \fPone TVD cannot send

Lindirect communication channels such as covert and suldinthannels are outside the scope of this
paper.
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messages to a dishonest VPE in another TVD, unless theTiMBrpolicies explicitly
allow such data flow.

Each TVD has an associat@drastructurewhose purpose is to provide a unified
level of security to member VPES, while restricting the ratgion with VPEs outside
the TVD to pre-specified, well-defined means only. Unifiedusi#g within a domain
is obtained by defining and enforcimyembership and communication requirements
that the VPEs and networks have to satisfy before being &eliniv the TVD and for
retaining the membership. Unified security across domainbtained by defining and
enforcingflow requirementshat the VPEs have to satisfy to be able to interact with
VPEs in other TVDs. To do so, each TVD defines rules that regutabound and
out-bound network traffic and restrict communication witk butside world.

The central element in the TVD infrastructure is the TVD reasthich keeps track
of high-level TVD policies and secrets. TVD masters mamtontrol over member
VPEs using TVD proxies. There is a single TVD master per TVD arsingle TVD
proxy per physical platform. A VPE appears on a particulabDTifit complies with the
membership requirements enforced by the TVD proxy contiglhat domain on that
physical platform. VPEs communicate freely within a TVD.M@munication across
TVDs is controlled by entities configured by TVD proxies.

7.2.4 Overview of TVD-based Virtual Networking

VNET and TVD infrastructures play complementary roles inetiveg the aforemen-
tioned high-level objectives. In particular, the VNET ia$tructure provides the tools
and mechanisms to enable secure virtual networking in acgettier. The TVD infras-
tructure defines unified domain policies, and automaticadigfigures and manages
these mechanisms in conjunction with the policy. It alsovjgtes domain customers
the necessary tools to manage their TVDs. Any action by tistéoover is then seam-
lessly reflected on the underlying VNET infrastructure ireatomated manner.
This two-layer architecture has many advantages:

1. The policy (TVD) and enforcement (VNET) layers are clgagparated from
each other, which yields a modular framework. As a resultethpra of VNET
technologies can be deployed underneath the TVD infrastrein place of the
current offering.

2. The policy layer is not restricted to network-type pagionly. For example,
similar policies can be devised to configure and manage mésrha to share
virtual storage between VMs in a single TVD.

3. The policy layer provides a high-level abstraction of ithieastructure to cus-
tomers, which in turn yields simpler administrative todlattare agnostic to the
complexities of the underlying VNET technology.

4. Automated deployment, configuration and managementsibmer TVDs are
desirable in a virtual data center that can effectively oedoperational costs
by easing the management burden, and mitigate insidertthyeautomating
administrative tasks.
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Figure 7.2: An Example Physical to Virtual Mapping with twatdal LAN Segments.

7.3 Networking Infrastructure

In this section, we present the network virtualization eyt enables the creation of
arbitrary virtual topologies on top of the underlying ptoadinetwork. This layer also

provides the basic mechanisms to help enforce TVD admissidrflow policies at a

higher level.

7.3.1 Aims and Requirements
Functional Requirements

The main aim of the VNET infrastructure is to allow groups efiated VMs running
on separate physical machines to be connected togetheowghtlthey were on their
own separate network fabric. For example, a group of relsfdd may have to be
connected directly together on the same VLAN segment evaugth, in reality, they
may be at opposite ends of a WAN link separated by many phylsidd segments.
Further, multiple segmented virtual networks may have tedtablished on a single
physical network segment to achieve improved security @ntigs such as network
isolation. Third, the VNET infrastructure needs to int@ecate with existing non-
virtualized entities (e.qg., standard client machines eriternet) and allow our virtual
networks to connect to real networks.

Figure[7.2 illustrates an example physical to virtual magpiPhysical machine
A hosts two VMs. One of them (A2) is connected into VLAN segin&n Physical
machine B also hosts two VMs. One of them (B1) is also conueiate VLAN seg-
ment 1. VM Al and VM B1 appear as though they are connectedhegeia a single
LAN segment even though in reality the physical network @mtimg them consists
of multiple LAN segments interconnected via routers. VMsa2l D1 are also con-
nected together via VLAN segment 2. Traffic is isolated betnw&LAN segments so
machines C2 and D1 cannot see the traffic passing between d\Bhmeven though
they are sharing the underlying physical network infrastre.
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Attacker Model

Our research specifically focuses on virtual data centaitsaiim to separate customer
networks and protect network traffic even when the transoridines are untrusted.
We mainly focus on network separation and protection; h@newr policies and in-
frastructure are generic and can be applied to other rageints such as storage isola-
tion. A particular threat we consider here is the threat dfeitaus data center users that
can try to gain access to other customer networks for thegserpf stealing sensitive
information or rendering those systems unusable.  Addilitireats could include
malicious users tapping untrusted transmission lines vdag¢a travels across a WAN;
malicious users injecting traffic into unauthorized nettveegments; or in a more ex-
treme case, a compromised virtual network device leakindgah passing through the
switch or router. These risks clearly reduce the benefitsaafiime consolidation in a
virtual data center. The risks also limit the guaranteesittiieastructure owners would
put into service-level agreements when compared to theafgsieysical isolation of
the networks belonging to different customers.

Security Requirements

Our VNET infrastructure adheres to following security regments to address these
threats in a virtual data center:

1. The infrastructure must provide logical isolation of VNAsegments. A rogue
segment must not be able to gain control of devices that gemother VLANS
in the virtual data center.

2. The infrastructure must protect and separate the tragfieated by each VLAN
segment. VLANs must not be able to see, intercept or injecketa into traffic
originating from other VLANS.

3. Network connections can be established between VMs #lahf to the same
VLAN segment and between VMs that belong to different VLANsents (i.e.,
TVDs). The infrastructure must secure these connectioreneNer they are
established over untrusted physical medium.

4. The infrastructure must authenticate and sanity-chBMNET entities (virtual
or physical) including the management entities prior to adian to the particu-
lar VLAN segment.

7.3.2 Networking Infrastructure

One option for virtual networking is to virtualize at the 18vel. However, to also
support non-IP protocols and IP support services (such d2) ARt sit directly on top
of the Ethernet protocol, we have chosen to virtualize aEthernet level.

Architecture Overview

Our VNET infrastructure employs a mixture of physical andual networking en-
tities to inter-connect physical and virtual machines wéhpect to the logical topol-
ogy. Physical networking entities include standard plajsietworking devices such as
VLAN-enabled switches and routers. Virtual networkingites include virtual net-
work interface cards (VNICs), virtual switches, virtualters, and virtual gateways.
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Table 7.1: Virtual components of the VNET infrastructure.

VNET CoMPO-
NENT

FUNCTIONALITY

Virtual NIC

Connects a virtual machine to a virtual switch

Virtual Switch

Provides centralised switching functionality per subnet

Performs address mapping and translation using switclaing t

ble
Provides logical traffic isolation between VLAN segments

EtherlP Module

Tunnels Ethernet and 802.3 packets via IP datagrams
Expands a LAN over a WAN or MAN

VLAN Module Tags Layer 2 frames with the corresponding VLAN identifig
Provides traffic isolation on the physical switch
VPN Module Encapsulates traffic in IP packets
Provides confidentiality and integrity over insecure mediu
NAC Module Enables port-based access control and compliance che

prior to network admission

Virtual Router

Routes Layer 3 traffic between VMs on different VLAN se
ments

Virtual Gateway

Advertises routing information about the virtual netword- 1
hind it
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=

cking
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Converts packets to and from the VNET encapsulated forn

nat
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Figure 7.3: Components of the Secure Virtual Networkingdsfructure.

Table[7.3.P provides a list of all virtual networking de\dage employ in our networks
alongside standard physical devices (e.g., physical besic In essence, a central vir-
tual switch per virtual LAN (VLAN) segment uses a combinataf these devices and
modules to enable the virtualization of the underlying r@twand secure the com-
munication. We provide details on each virtual networkimyide in the following
sections.

Figure[ 7B illustrates how these components can be compoisea secure VNET
infrastructure that provides isolation between differ@hANs (i.e., TVDs), where
each TVD is represented by a different color (red (solidgegr(dashed), or blue (dou-
ble) line). Abstractly speaking, itis as if our secure VNEamework provides colored
networks (in which a different color means a different TVDjwsecurity guarantees
(such as confidentiality, integrity, and isolation) to hegtayers of the virtual infras-
tructure. VMs connect to the network using their vNICs tlglouhe corresponding
virtual switch for that VLAN; whereas a non-virtualized #igal host, such as Host-3
in Figure[Z.3, is directly connected to a VLAN-enabled phgbkwitch without em-
ploying a virtual switch. A VM can be connected to multiple &N segments using a
different vNIC for each VLAN segment; hence, the VM can be anber of multiple
TVDs simultaneously. For example, the lone VM in Host-2 ist pd two VLAN seg-
ments, each represented by a virtual switch with a diffecetdr; hence, the VM is a
member of both the blue and green TVDs.

Virtual Switching

Virtual switches enable network virtualization and coinede all communication
within and across VLAN segments. Each VM has a number of viNWW@sre each can
be associated with at most one VLAN segment. Each VLAN segiseepresented
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by a virtual switch or asSwitch which behaves like a normal physical switch for that
segment. A VM appears on a particular VLAN if one of its vNIGs‘plugged” into
one of the switch ports on the vSwitch. Ethernet broadcaffidrgenerated by a VM
connected to the vSwitch is passed to all VMs connected tovBaitch. Like a real
switch, the vSwitch also builds up a forwarding table basedloserved traffic so that
non-broadcast Ethernet traffic can be delivered pointeiotpo improve bandwidth
efficiency.

To enable network virtualization, our vSwitches encapsuta tag VM Ethernet
frames with VLAN identifiers using the EtherlP_[52] and IEEE281Q [49] modules,
respectively. Ethernet frames originating from the sounest are handled differently
depending on whether the source host is virtualized andhene¢ihe destination host
resides in the same LAN. For a virtualized domain (e.g., Hoist Figure[7.B), each
frame is tagged using a VLAN tagging module. If the destmatdf the Ethernet
frame is a VM on another host that is connected to the same \(cApable switch
(e.g., another physical domain in a data center), this tdigétes the VLAN segment
to which the VM belongs. If the destination is a host thatdesioutside the LAN
domain (e.g., Host-4), the VLAN tag forces the switch to gedhe connection to an
outgoing WAN line (indicated by the black (thick) line in tvAN-enabled physical
switch of Figurd_Z.B) that is connected to a router for furthacket routing. In this
case, the VM Ethernet frames are encapsulated in IP packatslitate the VLAN
segment membership. Lastly, if a non-virtualized physiezdt is directly connected
to the VLAN switch (e.g., Host-3), no tagging is required fioe outgoing connection
from the host’'s domain. In the absence of a trusted physieslark, each VLAN
segment can employ an optional VPN layer to provide autbatitin, integrity, and
confidentiality.

EtherlP Encapsulation

EtherlP is a standard protocol for tunneling Ethernet a2l Bpackets via IP data-
grams and can be employed to expand a LAN over a Wide or Mditapdrea Net-
work [52]. We employ EtherlP encapsulation as the standagdhe@mnism to insert
VLAN membership information into Ethernet/802.3 frames do so, each tunnel
endpoint uses a special network device provided by the tipgrsystem that encapsu-
lates outgoing Ethernet/802.3 packets in new IP packetsn¥eet VLAN membership
information (i.e., the VLAN identifier) into the EtherlP heer of each encapsulated
packet. The encapsulated packets are then transmitteé tthler side of the tunnel
where the embedded Ethernet/802.3 packets are extraadcbaismitted to the desti-
nation host that belongs to the same VLAN segment.

Address Mapping The vSwitch component maps the Ethernet address of the en-
capsulated Ethernet frame to an appropriate IP address Wiy, the encapsulated
Ethernet frame can be transmitted over the underlying physietwork to physical
machines hosting other VMs connected to the same LAN segthahivould have
seen that Ethernet traffic had the VMs actually been on a radl together. The IP
address chosen to route the encapsulated Ethernet framiethewinderlying physical
network depends upon whether the encapsulated Ethernat fsaan Ethernet broad-
cast frame and also whether the vSwitch has built up a tabtaeofocations of the
physical machines hosting other VMs on a particular LAN segtiased on observ-
ing traffic on that LAN.
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IP packets encapsulating broadcast Ethernet frames aga gimulticast IP ad-
dress and sent out over the physical network. Each VLAN segraes an IP multicast
address associated with it. All physical machines hostiMg\dn a particular VLAN
segment are members of the multicast group for that VLAN segnThis mechanism
ensures that all VMs on a particular VLAN segment receivebadladcast Ethernet
frames from other VMs on that segment. Encapsulated Ethé&araes that contain
a directed Ethernet address destination are either floadatl the VMs on a partic-
ular VLAN segment (using the IP multicast address as in tloadhcast case) or sent
to a specific physical machine IP address. This depends upether the vSwitch
component on the encapsulating VM has learned the locafittre@hysical machine
hosting the VM with the given Ethernet destination addressd on traffic observation
through the vSwitch.

Requirements Revisited EtherlP can be used over arbitrary Layer 3 networks. The
decision to encapsulate Ethernet frames from VMs withindPkets allow us to con-
nect different VMs to the same VLAN segment so long as the ighymachines host-
ing those VMs have some form of IP based connectivity betwkem, even a WAN
link. There are no restrictions on the topology of that pbgknhetwork.

To allow routing within virtual networks we use virtual reus that reside on
VMs with multiple vNICs. The interface cards are pluggedipbrts on the differ-
ent vSwitches that it is required to route between. Standauting software is then
configured and run on the routing VM to provide the desiredinguservices between
the connected VLAN segments.

To allow for communication with non-virtualized systems wevide a virtual
gateway that simply is another VM with two vNICs. One vNIC imigged into a
port on a vSwitch; the other one is bridged directly on to thggical network. The
gateway has two main roles: (1) It advertises routing infation about the virtual net-
work behind it so that hosts in the non-virtualized world tzzate the VMs that reside
on a virtual network, and (2) it converts packets to and froméncapsulated format
required of our virtual networks.

VLAN Tagging

VLAN tagging is a well-established VNET technology that yides isolation of
VLAN segments on physical network equipment|[49]. We empihAN tagging
as an alternative to Ethernet encapsulation for efficienop@ses. For example, in a
virtualized datacenter a VLAN-enabled switch may be usad yield increased per-
formance over EtherlP encapsulation.

Each VLAN segment employs its own VLAN tagging module to tegHthernet
frames. This module resides within the hypervisor or hostl@® facilitates the net-
working capabilities, captures packets originating froM$/ and tags those with the
ID of the VM’s VLAN before sending them onto the physical wir®n the receiv-
ing side, the module removes the VLAN tag and passes the fsaghtagged into the
destination VM(s). Packets are only tagged when they habe toansmitted over the
physical network. VMs are unaware of the VLAN tagging anddéezceive packets
without any VLAN information.

To handle VLAN tagged packets, the physical network equitmeeds to support
IEEE 802.1Q and be configured accordingly. As an examplemyi&ehine hosts a VM
that is part of VLAN 42, then the switch port that is used byt timachine needs to
be assigned to that specific VLAN 42. A physical machine cast haultiple VMs
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which can be on different VLANS, therefore a switch port migk assigned to mul-
tiple VLANs (which creates &LAN t r unk between the host and the switch port).
Whenever a host deploys a new VM or removes a VM, the switchrmpaht need to
be reconfigured. Ideally, this can be done in a dynamic anchsatied fashion, e.g.,
through network management protocols. Physical switchgspass packets between
machines within the same VLAN, which provides an additidealation mechanism
to our VLAN-capable vSwitch that is deployed on all of the tsos

Address Mapping VLAN tagging does notrequire any extra address mapping mech
anism. VMs discover address information of other VMs usiagdard discovery pro-
tocols as in a non-virtualized environment. However, thevit$h module that runs
on each physical machine learns Ethernet addresses attectiee vSwitch ports by
inspecting packets (in the same way as physical switcheartbpuilds up lookup ta-
bles (one table per vSwitch / VLAN) that store informatiorabthe location of VMs
based on their Ethernet addresses. The vSwitch uses thesddadecide if a packet has
to be passed to a local VM or onto the physical network to b&veleld to a remote
machine.

There is no explicit mapping of broadcast / multicast adekssas in the case of
EtherlP encapsulation. Instead, physical switches thaegathe underlying network
infrastructure ensure that broadcast and multicast traffier crosses VLAN bound-
aries. Broadcast and multicast packets that are taggedawibAN ID are passed to
all switch ports that are associated with that particulaAl, but no other ports. When
those packets enter the physical machine that runs our eiSwibdule, the packets are
only passed into VMs that are attached to vSwitch ports ttesaissigned to the VLAN
matching the ID in the packets.

Requirements Revisited VLAN tagging can be used over arbitrary Layer 3 net-
works. However, unlike EtherlP a solution based on pure VLiabging is limited
to a LAN environmentand cannot be deployed over WAN links AXLtagging highly
depends on support from the physical network equipmentigtmaanaging the underly-
ing infrastructure. For example, physical switches neeslfiport the VLAN tagging
standard that we use when tagging our packets in our vSwitiduta (IEEE 802.1Q)
and need to be configured to handle tagged packets in ordeowdp appropriate
isolation between VLANS.

A VLAN is alogical network segment and by default networKfitasuch as broad-
cast messages or ARP communication is limited to a single NLBMowever, it is
also possible to allow communication between (virtual) hiiaes of different VLANSs
throughl nt er - VLAN r out i ng. There are multiple well-known and standardized
solutions to allow this. For example, most physical swigcfecilitate fast Layer 3
routing between multiple VLANSs. This solution offers highrformance, but requires
that routing policies can be configured on the physical ntwdgvices — ideally in
an automated fashion. As an alternative, we can also depksifc VMs that have
multiple network interfaces in multiple VLANS and route jats between those — as
in the EtherlP encapsulation approach.

VLAN tagging inherently supports communciation with nointwalized systems.
This is because VLAN tagging is a widely used standard thdefgdoyed within in-
frastructures where physical machines do not run any (rmé&wartualization soft-
ware. There is no need for a virtual gateway as in the Ethea#ie.cinstead, physical
switches can be configured to remove VLAN tags from packeesntansmitting on
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a port where the connected endpoint is not VLAN-capable, add tags whenever
packets are received on that specific port. In that case #radgoints are completely
unaware of VLANS, and receive and transmit packets withayt\d_AN information.

Secure Networking

In addition to EtherlP and VLAN tagging modules, our vSweshemploy network
access modules for admission control and optional VPN nesdior packet tunneling.
Network access control or NAC is an IEEE 802.1X standard éot-pased access con-
trol [50]. NAC can be implemented by various network deviaddch in turn force a
host (supplicant) go through an authentication process firiusing services provided
by the device (e.g., being admitted to the network). All ratwtraffic originating
from the supplicant is blocked prior to admission exceptNI# traffic itself. NAC
requests are received by an access point (authenticatbfpamarded to an authenti-
cation server (AS) (e.g., a RADIUS server). The AS runs aahof authentication
protocol specified by the extensible authentication praltieAP). It returns the verdict
to the authenticator as a result of which access is grantdteteupplicant or denied.
The NAC module is incorporated into the vSwitch admissiarcpss during which the
requesting VM is authenticated prior to TVD admission. Theice of which authen-
tication method is dictated by the high-level TVD policies.

Encapsulation and tagging alone do not provide any guazarde the confiden-
tiality and integrity of the packets / frames that are traitisd on the wire. Without a
proper VPN layer, these schemes are only suitable for ratddontrolled networks
in which the underlying physical infrastructure is trustedy., a virtualized data cen-
ter. In cases no such guarantees can be given (e.g., over alWgdNwe employ an
implementation of IPSe€ [63] to tunnel VLAN communicatiorei confidential and an
integrity-preserving way. To do so, the VPN module empliysEncapsulating Secu-
rity Payload (ESP) of IPSec that encapsulates IP packetagpites block encryption
to provide confidentiality and integrity. This adds an aiddial layer of packet encap-
sulation on top of EtherlIP. The optional VPN module is inaogied into the vSwitch.

7.4 TVD Infrastructure

In this section, we present the trusted virtual domain (TWiastructure, the com-
position of its components to form TVDs and to enforce TVDigek, and describe
the management of this infrastructure. We first focus on ticsdbehavior of a secure
network virtualization framework that is already up andmimy. Later, in Section 715,
we focus on the more dynamic aspects of the framework, iiduelstablishment and
deployment of the secure virtual infrastructure.

7.4.1 Security Objectives and Policies

Security policies for a TVD can be grouped into two categoriatra-TVD policies
that enforce security within a TVD and inter-TVD policieatlenforce security across
TVDs.

Security within a TVD

Within a TVD, all VPEs can freely communicate with each othérile observing
TVD-specific integrity and confidentiality requirementsnside a data center, this
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trusted network may be achieved without additional prad@anechanisms. On poten-
tially insecure networks, secure intra-TVD communicatiequires an authenticated
and encrypted channel (e.g., using IPEec)

Given a sefl” of trusted virtual domains, one way of formalizing secursoauni-
cation requirements as a domain-protection funckor” — 2{¢%s} which describes
the subset of security objectives (confidentiality, iniiggorotection, and isolation) as-
signed to a particular TVD. In TVD context, integrity meahatta VPE cannot inject
“bad” messages and pretend they are from another VPE. Caltifitigy refers to the
requirement that two honest VPEs (in the same TVD or diffef&Ds) can commu-
nicate with each other without an eavesdropper learningdnéent of the communi-
catiofl. Isolation means that each TVD can enforce its securitycpatidependently
of other TVDs that share the same infrastructure in a datiecen that respecta TVD
must be shielded from policy violations in other TVDs.

Admission control and membership management are crugekss of TVDs that
help meet these security objectives. VPESs that seek TVD reeship may be required
to prove their eligibility either periodically or on reques-or example, prospective
members may be required to possess certain credentialesweehmtificates or to prove
that they satisfy certain properti€s [96] prior to admisdimthe TVD in a certain role.
The conditions may vary for different roles of VPEs. For exdenservers and work-
stations may have different TVD membership requiremenimil&ly, the security
requirements on internal machines are usually weaker thaméchine acting in a
gateway role. Overall, a TVD should be able to restrict itsmhership to machines
that satisfy a given set of conditions for each given rolem8d/PEs may be part of
more than one TVDs, in which case they would have to satigfyritembership require-
ments of all the TVDs they are part of. Note that to enable iplelTVD membership,
the individual TVD membership requirements must be conftiet.

One way of formalizing the membership requirements for &sef trusted virtual
domains is to define a functioR : 7" — R that identifies the set of unique rolés
for a given TVD. We then use a functio : R — 2, where(P, <) is a lattice of
security properties to identify the required security miges for each given role for
that TVD. A machinen with a setp,,, of security properties may be permitted to join
the TVDt inroler iff » € R(t) andVp € M (r) : 3p’ € p,, such thap’ > p. In other
words,m is permitted to joirt iff there is at least one property of that satisfies each
security requirement of.

Security across TVDs

Inter-TVD security objectives are independently enforbgdeach of the individual
TVDs involved. To facilitate such multilateral enforcenhegiobal security objectives
are decomposed into per-TVD security policies. The adgntd such a decentral-
ized enforcement approach is that each TVD is shielded fewurity failures in other
TVDs, hence enforce domain isolation. Security objectivey take different forms;
here, we focus on information flow control among the TVDs andtinTVD member-
ships.

An information flow control matrix is a simple way of formailig the system-wide
flow control objectives. Table"7.2 shows a sample matrix foe¢ TVDs: TV D,,,

2A network istrustedwith respect to a TVD security objective if it is trusted td@mce the given objective
transparently. For example, a server-internal Ethernebéi@n provide confidentiality without any need for
encryption.

3Covert communication channels are outside the scope opéier.
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Table 7.2: Example TVD Policy Specification for Three TVDs

from: to:
TVD Role | VD, TVDg TVD,
TV D, gate 1* 0* P,
TV D, internal 1*
TV Dg gate| 0O~ 1* 0
TVDg internal 1"
TV D, gate| P, Ps 1
TVD, internal 1"

83

Table 7.3: Components of the TVD infrastructure.

TVD COMPO- | FUNCTIONALITY

NENT

TVD Master A global policy and credential repository per TVD that pigiens
TVD proxies onto each physical host.

TVD Proxy A local TVD master delegate, policy enforcer, and credéntia
repository per physical host per TVD.

TVD Co- | Alocal TVD factory per physical host that spawns TVD proxies

ordinator on request by TVD masters.

TV Dg, andT'V D.,. Each matrix line represents a policy elements that spsdifiea
given role of a given domain, what other domains it may cohtecThel elements
along the matrix diagonal convey the fact that any connadscallowed while a0
disallows information flow.

While these two policies will later be enforced by allowing disallowing logi-
cal connections, gateway machines can also enforce fuaph@ication-level policies.
These policied refine the all-flow policyl by allowing some flows while disallowing
others. In order to allow flow from a machinkplaying RoleT'V D 4/ Role 4 to ma-
chine B playingTV Dg/Role g, both corresponding policies need to permit the flow.
E.g., if P,s = 0 in Table[7.2, therP,, and P, 3 should not be inadvertedly. Other-
wise, indirect information flow fromI"V' D, to T'V Dg would be unconstrained, which
would contradict with?, g and result in a policy conflict.

The TVD policy also includemulti-TVD membership policwhere a TVD spec-
ifies whether a VPE in a certain role can hold another role énsdame TVD or other
roles of other TVDs. This is formalized by multi-membershipction M’ : R — 2%
that assigns the subset of roles of other domains that cassened by a given VPE.
At the time of TVD policy specification, it is important to ame that there is no conflict
between the various policy forms, e.g., if the informati@mwficontrol policy specifies
that there should be no information flow betweéeW D, and7'V Dg, then the multi-
TVD membership restrictions cannot allow any VM to simuéiansly be a member of
TV D, andTV Dj.

7.4.2 TVD Components

A TVD infrastructure consists of a single TVD master and 1iplat TVD proxies that
act as a delegate for that TVD on each physical host. We als@uscal TVD co-
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ordinator per physical platform to spawn all TVDs for thaagbdrm during TVD pro-
visioning. Tablé_7.4]1 lists each component and its rol@@TVD infrastructure.

TVD master

The TVD masterplays a central role in the management and auto-deploynfieato
TVD. We refer to the TVD master as a single logical entity facke TVD, although its
implementation may be distributed. The TVD master is trdistethe TVD infrastruc-
ture and the VPEs that are members of the TVD. Known techsifased on Trusted
Computing can be used to validate the integrity of the TVD teraby verifying its
software configuration. The TVD master can be hosted on aigdiysiachine or a
virtual machine. In the case of a VM implementation, the PEdh#ecture proposed
by Jansen et al_[55] can be used to obtain policy enforceamehtompliance proofs
for the purpose of assessing the TVD master’s trustworisine

The TVD policy is defined at the TVD master by the domain adstiator (e.g.,
the administrator of a data center hosting multiple TVD<sagron a policy with each
customer). The TVD master has the following responsibiti

1. distributing the TVD policy and other TVD credentials¢bias VPN key) to the
TVD proxies and informing them of any updates,

2. determining the suitability of a platform to host a TVD pyo(described be-
low) and periodically assessing the platform’s continugthsility to host VPES
belonging to the TVD.

3. maintaining an up-to-date view of the TVD membership Wwhicludes a list of
TVD proxies and the VPEs hosted on their respective platform

TVD proxy

On every host that may potentially host a VM belonging to tMDTthere is a local
delegate of the TVD master, called theD proxy The TVD proxy is the local enforcer
of the TVD policies on a given physical platform. At the timigts creation, the TVD
proxy receives the TVD policy from the TVD master. Upon an afgdto the TVD
policy (by a domain administrator), renewal of TVD credalsj or refresh of TVD
VPN keys at the TVD master, the master conveys the update oD proxies.

The TVD proxies on a given platform are independent. AltHodyD proxies
are trusted, TVD proxies on the same platform should be serffly isolated from
each other. For example, a TVD proxy should not be able tosacpevate TVD
information (such as policies, certificates, and VPN keyddihging to another TVD
proxy. For improved isolation, each TVD proxy on the platiomay be hosted in
a separat@nfrastructureVM, which is different from a VM hosting regular services,
calledproductionVM. On a platform with the Trusted Platform Module or TPM[],15
isolation can further be improved by TPM virtualization [18ssigning a separate
virtual TPM to each infrastructure VM, and using the virtd@®M as the basis for
storing private TVD information.

A TVD proxy must only be able to interact with VMs hosted on tilatform be-
longing to the same TVD. As we describe below, that requirgneenforced by a
local TVD co-ordinator. The responsibilities of the TVD pyoare:

Configuration of the Local TVD vSwitch The TVD proxy configures the local TVD
vSwitch on a given host based on TVD policy. For example,éf VD policy
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specifies that information confidentiality is an objectitteen the TVD proxy
enables all traffic through the vSwitch to pass through thé&l\fRodule and
provides the VPN key to the module.

Caching of the TVD Information The TVD proxy maintains private TVD informa-
tion such as policies, certificates, and VPN keys.

Status Reports to the TVD Master Upon request or periodically, the TVD proxy
provides a platform status report to the TVD master. The ntejpaludes in-
formation such as the number of VMs belonging to the TVD ararthnique
addressable identifiers and the current vSwitch configamafThe status report
also serves as dham alive” message to the TVD master, and helps the TVD
master to keep an updated list of TVD proxies that are coeaectit.

Enforcement of Admission Requirements for VMs into the TVD A VM’s virtual
NIC is attached to a vSwitch only after the TVD proxies of thétsh’s and
the machine’s domain approve this attachment. Note thdewié TVD proxy
of the switch prevents admission of non-compliant machitiesTVD proxy of
the machine prevents outflow into untrusted peer domains.

Continuous Enforcement of TVD Policy The TVD proxy is responsible for contin-
uous enforcement of TVD policy despite updates to the pddicg changing
configuration of the platform and member VMs. Upon receivémgupdate to
the TVD policy from the TVD master, the TVD proxy may re-config the
vSwitch, and re-assess member VMs’ membership to refleatgbated policy.
Even without any policy update, the TVD proxy may be requlygdVVD policy
to periodically do such re-configuration and re-assessment

Local Common TVD Coordinator (LCTC)

The Local Common TVD Coordinator or LCTC is present on evdagfprm (hence,
the wordlocal in the name) on which a TVD element has to be hosted. The LCTC
itself does not belong to any single TVD (hence, the wosthmornin the name). The
LCTC is part of the minimal TCBon every TVD-enabled platform.

The LCTC is the entity that a TVD master or a system admirtistreontacts to
create a new TVD proxy on the platform. For this purpose, t8d C must be made
publicly addressable and knowledgeable about the idestdf the entities that may
potentially request the creation.

The LCTC has two main responsibilities, namely (1) creatibnew TVD proxies
on the local platform, (2) restricting access of TVD proxisy to VMs belonging
to their respective TVDs. The LCTC maintains a list of VMs reutly hosted on
the platform, a list of TVD proxies currently hosted on thatfiirm, and a mapping
between the VMs and the TVDs they belong to.

7.4.3 Establishment of the TVD Infrastructure

Preparing a Platform to Host a given TVD

The initial step for establishing a TVD is to create the TVDstea (step 0 in Figuie 7.5)
and initialize the master with the TVD requirements (as falired above) and the

40n a Xen-based platform, the minimal TCB consists of the LCX&h Dom0, the Xen hypervisor, and
the underlying hardware.
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policy. The output of the step is a TVD object that contairsTWD’s unique identifier,
i.e., the TVD master’s URL and public key.

Once the TVD master has been initialized, the TVD is readyb&ing populated
with member entities, such as platforms and VPEs. A VPE bes@admitted to a TVD
after the successful completion of a multi-step protocte{s 1 and 2 in Figule4.5):

1. The LCTC on a physical platform create$\@D proxyfor the given domain and
initializes it with the URL and public key of the TVD master.

2. The TVD proxy sets up a secure, authenticated channelthé&iTVVD master
using standard techniques. This includes a validation drehe physical plat-
form satisfies the admission requirements of this specifibTV

3. The TVD proxy indicates the security and functional calités of the physical
machine. Using the capability model, the TVD master deteesiwhich addi-
tional mechanisms must be provided at the level of the Vimtdieastructure. For
example, if a TVD requirements specification includes igofaand the physi-
cal infrastructure does not have that capability, then igh€¢LAN tagging or
VPN) modules must be instantiated within the DomO of phyisitachines host-
ing VMs that are part of the TVD.

4. The TVD master then replies to the TVD proxy with the TVD wéy policy
(such as flow control policies between VMs belonging to défe TVDs hosted
on the same physical machine) and additional mechanisrstist be provided
at the virtualization level. The TVD proxy also obtains th€DO credentials
needed for network security.

5. The TVD proxy then instantiates and configures the reduikéD-specific mod-
ules (e.g., vSwitch, VLAN tagging module, encapsulatiordoie, VPN module,
policy engine, etc.) according to the TVD policy. After thstep, the physical
machine is ready to host a VM belonging to the TVD.

Adding a VPE to a Requested Domain

Once the platform is ready to host VPEs that are members oea divD, a VPE can
join the TVD by being connected to the corresponding vSwatsiiollows:

1. A VPE requests to join a given domain (identified by mastBiland public
key) playing a given role.

2. The VPE runs a credential validation protocol with the Tpdxy of the domain
that it intends to join. The required credentials usuallyetel on the role to play.

3. The TVD proxy admits the machine to the domain and conrieutish the re-
guested resources such as the domain-internal network.
Connecting a VPE to a Requested Domain

Once a VPE has been assigned to a domain, it may request tiomtecmetworks of
other domains:

1. A VPE requests to connect a given virtual network adajpté¢ne network of a
second domain (identified by master URL and public key).

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



CHAPTER 7. SECURE VIRTUALIZED NETWORKING 87

2. The VPE runs a credential validation protocol with the Tpidxy of the domain
of the vSwitch.

3. The TVD proxy of the domain is asked whether connectiohiotarget TVD is
permitted.

4. The virtual network of the VPE is connected to the vSwitch.

7.5 Auto-deployment of Trusted Virtual Domains

Figure[Z.4 shows the steps involved in automatic deployroksécure virtual infras-
tructures as TVD configurations. Figurel7.5 shows the stegsvied in the establish-
ment and management of a single TVD.

First, the virtual infrastructure topology must be decosgmbinto constituent
TVDs, along with associated security requirements anctpotiodel. Second, eapa-
bility modelof the physical infrastructure must be developed. Capgbiliodeling is
essentially the step of taking stock of existing mechanigrascan be directly used to
satisfy the TVD security requirements. In this paper, wesber the case where both
steps are done manually in an offline manner; future extassidll focus on automat-
ing them and on dynamically changing the capability modakell on actual changes
to the capabilities.

7.5.1 Capability Modeling of the Physical Infrastructure

Capability modeling of the physical infrastructure corsglboth functional and secu-
rity capabilities. The functional capabilities of a hostyntiee modeled using a function
C : H — {VLAN, Ethernet, I P}, to describe whether a host has VLAN, Ethernet,
or IP support. Modeling of security capabilities includes torthogonal aspects: the
set of security properties and the assurance that thesentiespare actually provided.
Table[Z.2 lists some examples of security properties anteTAB gives examples of
the types of evidence that can be used to support securipepsoclaims.

7.5.2 Instantiation of the Right Networking Modules

The TVD proxy uses the instructions given to it by the TVD neasb determine the
right protection mechanisms to instantiate on the locafqian for the TVD network
traffic, and accordingly configures the local TVD vSwitch.

Suppose that isolation of TVD traffic is a requirement. TREPAN tagging alone
would suffice provided the TVD spans only the LAN and the pbgkswitches on the
LAN are VLAN-enabled (i.e., it must support IEEE 802.1Q andstrbe appropriately
configured); in that case, a VLAN tagging module would be me&and connected
to the vSwitch. If the TVD spans beyond a LAN, then VLAN taggimust be used
in conjunction with EtherlP encapsulation. In this case, WLAN tagged packet is
encapsulated in a new IP packet and tunneled to the othersltgre the original
VLAN tagged packet is extracted and transmitted on the VLAN/LAN-enabled
switches are not available, then EtherlP alone would sufficesolation.

By itself, EtherlP does not provide integrity or confidelityaof the packets.
Hence, when those properties are required, EtherlP isbéaitanly on routed and
trusted networks, e.g., EtherlP would be suitable for gdfttween two vSwitches
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hosted on different physical platforms that are not coretétd the same VLAN switch
in a datacenter or corporate environment.

If integrity or confidentiality are required properties ahé underlying network is
not trusted, then IPsec is used in conjunction with Etherl® dLAN. In that case,
the TVD proxy will create the VPN module, initialize it witthé VPN key obtained
from the master, and connect it to the vSwitch. Since IPsicaperates on IP packets
and not Ethernet or VLAN ones, double encapsulation is redteBéherlP is used to
first encapsulate the Ethernet or VLAN packets, followed Bgec encapsulation and
encryption (using the VPN key).

7.5.3 Inter-TVD Management

Separation of flow control and transport. Transport paraiselol on today’s connec-
tion between autonomous systems based on BGP. Flow costbalsed on firewalls.
Flow control part figures out whether a packet can get outemther TVD and what
protection mechanism is needed (e.g., encryption). Aftev lontrol, border gateway
takes care of routing the packet to the border gateway at ethet Contact master
for obtaining capability of the other side gateway. Masterster communication for
generating shared key for encryption for inter-TVD traffic.

One firewall for each other TVD, or new rules for another newDIoh the same
firewall?

Inter-TVD management deals with tirgerchange fabridor communication be-
tween TVDs, enforcement of inter-TVD flow control policiexternal zones (IP versus
Ethernet), approval of admission requests by TVD-extegntiies (such as a new VM)
to join the TVD, and linking such entities with the appropeid VD master.

As shown in Figur€ 712, inter-TVD communication can be btpathssified into
three types: (1krontrolled connections, represented by policy entries in the matrix,
(2) openor unrestricted connections, represented efements in the matrix, and (3)
closedconnections, represented @ylements in the matrix.

Controlled connections restrict the flow between TVDs basedpecified poli-
cies. The policies are enforced at TVD boundaries (at botB3)\by appropriately
configured firewalls. The TVD master may push pre-checkefigrations (derived
from TVD policies) into the firewalls during the establishmef the TVD topology.
If available, a management console at the TVD master may &é tosmanually set
up and/or alter the configurations of the firewalls. A TVD fiedhhas multiple vir-
tual network interface cards, one card for the internal VLt the firewall protects
and one additional card for each TVD that the members of theepted TVD want to
communicate with.

Open connection between two TVDs means that any two machirether TVD
can communicate freely. In such a case, the firewalls at bdgibsiwould have virtual
network cards for the peer domain and simply serve as bridgegeen the domains.
For example, different zones in a given enterprise may faffarént TVDs, but may
communicate freely. As another example, two TVDs may haferént member-
ship requirements, but may have an open connection betwedneiements. Open
connection between two domains may be implemented usingnlémited number of
virtual routers. In a physical machine that is hosting two &bMelonging to different
TVDs with an open connection, the corresponding vSwitchayg be directly con-
nected. Communication between two TVDs, while open, mayubgst to some con-
straints and monitoring. For example, a TVD master may ptethmi creation of only
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Figure 7.4: Steps in Auto-Deployment of TVDs.

a few virtual routers on certain high-assurance physicahimes for information flow
between the TVD and another TVD with which the former has aanamnnection.

A closed connection between two TVDs can be seen as a spesilaf a con-
trolled connection in which the firewall does not have vittugtwork card for the peer
TVD. In addition to the firewall filtering rules, the absendetee card will prevent any
communication with the peer TVD.

Special VMs (e.g., gateways) may have membership in two aeropen TVDs
simultaneously. Consider a VM that is first a member of T¥DThe VM has one
virtual NIC that is connected to the vSwitch of TV&2 Now, suppose that the VM
needs to be a member of both Tuband TVD 5 simultaneously. For this purpose,
the VM needs to have two virtual NICs, one connected to theitcBvof TVD « and
the other connected to that of TVE Any VM request to create a new virtual NIC has
to be approved by the TVD proxy, which grants the approval @iVD « is an open
TVD and TVD «’s policies allow such a dual membership. Initially, the newual
NIC is connected to the default network, and the VM sends a Ineeship request for
TVD £ to the local TVD proxy (if present) or a remote TVD master. ND (5's
policies allow for dual membership with TVD and the VM satisfies other admission
requirements for TVDY, then proxy for TVDg will connect the new virtual NIC to the
vSwitch of TVD . At this point, the VM is connected to the VLANSs of both TVDs.

7.5.4 Intra-TVD Management

Intra-TVD management is concerned with TVD membershiplidiag mutual au-
thentication), communication within a TVD, and the netwfatric (i.e., internal topol-
ogy) of a TVD. Prior to membership negotiation, mutual auatieation requires both
the TVD infrastructure (TVD proxy or the master in the absenta proxy) and the
client (i.e., the prospective member VM) to authenticaelftto each other. For TVD
authentication, we employ TVD certificates that are issued distributed for each
TVD. For client authentication, we use the IEEE 802.1X staddor network access
control (NAC). The latter employs a port-based autheriticegcheme and a third-party
authenticator (e.g., a RADIUS server) to authenticate the M this setting, the TVD
proxy acts as thauthenticatorthat forwards the request to tla@ithentication server
and interprets the result. We describe client authentinati detail in Sectiong_7.5
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andZ.6.

Intra-TVD policiesspecify the membership requirements for each TVD, i.e., the
conditions under which a VM is allowed to join the TVD. At a f#tigal machine host-
ing the VM, the requirements are enforced by the machine’® Pvoxy in collabo-
ration with networking elements (such as vSwitches) basethe policies given to
the TVD proxy by the TVD master. We describe TVD admissiontoarin detail in
Sectior Z.b.

A VLAN can be part of at most one TVD. For completeness, eaciNLthat
is not explicitly part of some TVD is assumed to be a member duamyTVD,
TV Da. Although a VLAN that is part off'V DA may employ its own protection
mechanisms, the TVD itself does not enforce any flow contadicg and has open
or unrestricted connections with other TVDs. Thus, in thierimation flow control
matrix representation, the entries for policiés,, and P,A, would all bel for any
TV D,.

A VM that is connected to a particular VLAN segment autonelticinherits the
segment’s TVD membership. The VM gets connected to the VLAdhzent only after
the TVD proxy on the VM’s physical machine has checked whethe VM satisfies
the TVD membership requirements. Once it has become a methleeVM can ex-
change information freely with all other VMs in the same VLANgment and TVD
(intra-TVD communication is typically open or unrestridie As mentioned before, a
VM can be connected to more than one VLAN (and hence, be a meshb®ore than
one TVD) through a separate vNIC for each VLAN.

A VM can become a TVD member either in an active or in a passigaibn. In
the passive membership modalVM can be (passively) assigned a TVD membership
at the time of its creation by specifying in the VM’s start-egnfiguration files which
VLAN(s) the VM should be connected to. Alternatively, in thetive membership
mode] a VM can actively request TVD membership at a later stageutin the cor-
responding TVD proxy interface or by directly contacting thVvD master if a TVD
proxy is not present on the local platform. When a VM is crdaitecan use its default
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network connection to communicate with the outside worédtipularly the local TVD
proxy (if present) or a remote TVD master to request TVD mensiup. In either case,
the IP address of the TVD authority must be made availablead/tV.

A closed TVDis a special TVD that has closed connections with all otheD$V
For example, in a multi-level secure (MLS) military infragtture, a top secret military
domain would be a good candidate for a closed TVD. A closed T&/8hut off from
the outside world, and a VM that does not belong to the TVD i¢ phthat outside
world. Hence, the active membership model is not applicilelosed TVDs. The
TVD master for closed domains maintains a list of pre-appdoplatforms and will
create TVD proxies only on those platforms. Only the systeimiaistrator or the
TVD administrator can modify the list directly at the TVD ntas

Open TVDs are those that are not closed. Both active andveassmbership is
possible in open TVDs. If the TVD master is directly contadbg the VM, the master
checks whether a TVD proxy is already present on the VM'Spttat. If so, the master
instructs the proxy to initiate the admission protocol tog ¥M. If the TVD proxy is
not present, then the TVD master initiates the protocol WithLCTC on the platform
to create a TVD proxy.

TVD membership requirements may be checked and enforcedna-éime or on
a continual basis. Membership can be a one-time operatiahiich the requirements
are checked once and for all, and thereafter, the VM hold$#i2membership for the
duration of its life-cycle. Alternatively, membership tégements can be re-evaluated
in an online fashion. The TVD proxy may regularly check wiegth VM satisfies the
requirements. A session-based scheme may be employed ¢h whYM is allowed
open communication with other TVD members only until thetreheck (i.e., end of
the session).

Policy updates at the TVD master or updates to a platform gorgtion may result
in a platform becoming ineligible to any longer host memb®&B¢. In that case, the
TVD master contacts the LCTC and requests it to destroy the pkoxy. If the TVD
is a closed TVD, prior to the actual destruction of the TVDxpranembers VMs are
either migrated to another platform with a TVD proxy or deg#d. If the TVD is a
open TVD, the VMs connected to the vSwitch are detached afwdmaected to the
default network connection. The LCTC sends an acknowledgtoehe TVD master
after the destruction of the TVD proxy. The TVD master mapaékey the TVD VPN
key and distribute the new VPN key to the TVD proxies as a girecurity measure.

When a platform goes offline (e.g., due to maintenance orarétpartition), the
TVD proxy gets disconnected from the TVD master. In such gates disconnected
TVD proxy still continues to act as the local TVD authority fine VMs belonging
to the TVD. However, the TVD VPEs on the platform are discarted from the rest
of the TVD. The absence of a threshold number of status refram the TVD proxy
causes the TVD master to update its list of TVD proxies. Tafee, when the platform
comes online again, the LCTC on the platform contacts the Mé3ter indicating that
the disconnected platform is online again and contains TVEEY that wish to re-
connect to the rest of the TVD. That is followed by a preparasgh similar to the one
that happens prior to the creation of the TVD proxy (Sedfichd). It is necessary
to re-assess the suitability of the platform for still hogtthe TVD proxy through the
prepare phase, because the TVD policy and the platformmsiagehave changed in the
duration when the platform was offline. After the successtuhpletion of the prepare
phase, the TVD proxy re-establishes the secure, auth&adicammunication channel
with the TVD master. The TVD proxy obtains the updated TVDigoand other cre-
dentials from the TVD master through the channel, and rdigores the networking
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Table 7.4: Examples of Security Properties used in Capabllodeling.

Property Description
TVD Isolation Flow control policies in place for a TVD.

Network The actual topology of a virtual network in a physical maehin
Network Policy Security policies for the network, such as firewall rules &ulation
rules stating which subnets can be connected.

Storage Policy Policies for storage security, such as whether the diskerarg/pted and

what VMs have permission to mount a particular disk.

Virtual Machines | The life-cycle protection mechanisms of the individual VMsg., pre-
conditions for execution of a VM.

Hypervisor Binary integrity of the hypervisor.

Users The roles and associated users of a machine, e.g., who cameaske
role of administrator of the TVD master.

components according to TVD policy.

7.6 Implementation in Xen

In this section, we describe a Xen-based [11] prototype émgntation of our secure
virtual networking framework. Figurie_2.6 shows the implertagion of two TVDs,
TV D, andTV Dg. The policy engine, also shown in the figure, implements tile p
cies corresponding to the TVDs specified in the informatiowftontrol matrix of Fig-
ure[Z.2, i.e., open connection within each TVD and closedeotion betweed'V D,,
andTV Dg.

7.6.1 Implementation Details

Our implementation is based on Xen-unstable 3.0.4, a VMMtierlA32 platform,
with the VMs running the Linux 2.6.18 operating system. Oetworking extensions
are implemented as kernel modules in Dom0, which also aalsizex domain for the
physical NIC(s) of each physical host. A driver domain iscspein the sense that it
has access to portions of the host’s physical hardware,asualphysical NIC.

The virtual network interface organization of Xen splitsi&Nriver into two parts:
a front-end driver and a back-end driver. A front-end drigex special NIC driver that
resides within the kernel of the guest OS. It is responsibteaflocating a network
device within the guest kernel (ethO in Dom1 and Dom2 of héstsxd B, shown in
Figure[7.6). The guest kernel layers its IP stack on top dfdksice as if it had a real
Ethernet device driver to talk to. The back-end portion &f tietwork driver resides
within the kernel of a separate driver domain (DomO in ourlanpentation) and creates
a network device within the driver domain for every frondetevice in a guest domain
that gets created. Figure .6 shows two of these back-endedevif1.0 and vif2.0, in
each of the two hosts A and B. These back-end devices comddpdhe ethO devices
in Dom1 and Dom2, respectively, in each host.

Conceptually, the pair of front-end and back-end deviceésbes as follows. Pack-
ets sent out by the network stack running on top of the frowtsgetwork device in the
guest domain appear as packets received by the back-endrketevice in the driver
domain. Similarly, packets sent out by the back-end netvdenkice by the driver do-
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Table 7.5: Assurance for Past, Present, and Future Stadsru€apability Modeling.

Past State Description
Trust A user believes that an entity has certain security progeerti
Mutable Log The entity provides log-file evidence (e.g., audits) thdidates that the

platform provides certain properties.

Immutable Logs The entity has immutable logging systems (e.g., a TPM-qict€]) for
providing evidence. Since the log cannot modified by thetiitself,
the resulting assurance is stronger than when mutable tegssad.

Present State Description

Evaluations Evaluation of a given state, e.g., Common Criteria evabumast[25].
Introspection Introspection of a system by executing security tests, @mis scanner.
Future State Description

Policies By providing policies and evidence of their enforcementystem can

justify claims about its future behavior. e.g., DRM pol&i@nd VM life-
cycle protection policy.

Audit By guaranteeing regular audits, organizations can claandértain poli-
cies will be enforced in the future.

main appear to the network stack running within a guest domspackets received by
the front-end network device. In its standard configuratien is configured to simply
bridge the driver domain back-end devices onto the realipalyilIC. By this mech-
anism, packets generated by a guest domain find their waytbatohysical network
and packets on the physical network can be received by the domain.

The Xen configuration file is used to specify the particulawit&h and the partic-
ular port in the vSwitch to which a Xen back-end device iscitéal. We use additional
scripts to specify whether a particular vSwitch should usear both of VLAN tagging
and encapsulation mechanisms for isolating separateaVinetworks.

The vSwitches fofl'V D, andT'V Dg are each implemented in a distributed fash-
ion (i.e., spread across hosts A and B) by a kernel module m@avhich maintains a
table mapping virtual network devices to ports on a paréicubwitch. Essentially, the
kernel module implements EtherlP processing for packetsmg out of and destined
for the VMs. Each virtual switch (and hence VLAN segment) hasumber identi-
fier associated with it. The Ethernet packets sent by a VM apguced by the kernel
module implementing part of the vSwitch as they are recearethe corresponding
back-end device in Dom0. The packets are encapsulated HtfireglP with the net-
work identifier field set to match the identifier of the vSwittlat the VM is supposed
to be plugged into. The EtherlP packet is given either a wastior unicast IP address
and simply fed into the DomO IP stack for routing onto the pteisnetwork. The
kernel module also receives EtherlP packets destined éophlysical host. The mod-
ule un-encapsulates the Ethernet frames contained in ttapsulated EtherlP packets
and transmits the raw frame over the appropriate virtualbodt interface so that it is
received by the intended guest vNIC.

In addition to the kernel module for EtherlP processing, @edhalso implemented
a kernel module for VLAN tagging in DomO of each virtualizeolsh Ethernet pack-
ets sent by a VM are grabbed at the same point in the DomO nlestack as in the
case of EtherlP processing. However, instead of wrappiagEtinernet packets in
an IP packet, the VLAN tagging module re-transmits the peckamodified into a
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Figure 7.6: Prototype Implementation of TVDs.

pre-configured Linux VLAN device (eth@.and ethQ3 of hosts A and B, shown in
Figure[Z.6) matching the VLAN that the VM's VNIC is supposedde connected to.
The VLAN devic8 (provided by the standard Linux kernel VLAN support) applie
the right VLAN tag to the packet before sending it out onto phgsical wire through
the physical NIC. The VLAN tagging module also interceptsANL packets arriving
on the physical wire destined for a VM. The module uses thedstad Linux VLAN
Ethernet packet handler provided by the 8021q.ko kerneluteodith a slight modifi-
cation: the handler removes the VLAN tags and, based on thertaps packets to the
appropriate vSwitchd( or (3) which, in turn, maps them to the corresponding back-end
device (vif1.0 or vif2.0) in Dom0. The packets eventuallyig at the corresponding
front-end device (ethO in Dom1 or Dom2) as plain Ethernekpts

7.6.2 Implementation Issues

Below are some implementation issues we had to tackle iizieglthe VLAN and
encapsulation approaches.

(1) Some Ethernet cards offer VLAN tag filtering and tag reaitifload capa-
bilities. Such capabilities are useful when running justrgle kernel on a physical
platform, in which case there is no need to maintain the tagsnfking propagation
decisions. However, for our virtual networking extensidhs hardware device should
not strip the tags from packets on reception over the phlysgite; instead, the ker-
nel modules we have implemented should decide to which VMpttkets should be
forwarded. For this purpose, we modified the Linux kernelkg3and forcedeth.ko
network drivers so as to disable VLAN offloading.

(2) For efficiency reasons, the Xen front-end and back-eiveédimplementations
avoid computing checksums between them for TCP/IP and UD@dtkets. We mod-

5An alternative approach, which we will implement in the fetuis to directly tag the packet and send
the tagged packet straight out of the physical NIC witholytimg on the standard Linux VLAN devices.
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ified the Xen code to also handle our EtherlP-encapsulatguatiRets in a similar
manner.

(3) The EtherlIP encapsulation approach relies on mappiirtLealEthernet broad-
cast domain to a IP multicast domain. While this works in a L&fironment, we en-
countered problems when creating VLAN segments that spaN\8#parated physical
machines. We resolved this issue by building uni-dire@lomulticast tunnels between
successive LAN segments.

7.7 Discussion

In this paper, we introduced a secure virtual networking eh@ehd a framework for
efficient and security-enhanced network virtualizatiomekey drivers of our frame-
work design were the security and management objectivestaflized data centers,
which are meant to co-host IT infrastructures belonging tdtiple departments of an
organization or even multiple organizations.

Our framework utilizes a combination of existing netwoikitechnologies (such
as Ethernet encapsulation, VLAN tagging, VPN, and NAC) aeclisty policy en-
forcement to concretely realize the abstraction of Trusfemial Domains, which can
be thought of as security-enhanced variants of virtualiesavork zones. Policies are
specified and enforced at the intra-TVD level (e.g., mentbpreequirements) and
inter-TVD level (e.g., information flow control).

Observing that manual configuration of virtual networksssaily error-prone, our
design is oriented towards automation. To orchestrate YHe donfiguration and de-
ployment process, we introduced management entitiesdc8W® masters. Based on
the capability models of the physical infrastructure tha given as input to them,
the TVD masters coordinate the set-up and population of TW&sg a well-defined
protocol.

We described a Xen-based prototype that implements a sabsettr secure net-
work virtualization framework design. The performance of virtual networking ex-
tensions is comparable to the standard Xen (bridge) corafiigur.
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Chapter 8

Public Key Infrastructure

P. Lipp, M. Pirker (IAIK), G. Ramunno, D. Vernizzi (POL)

8.1 Introduction

This chapter outlines a basic design for integration of fBdi€omputing (TC) features
into a Public-Key Infrastructure (PKI). The adoption of $ted Computing technolo-
gies demands an enhancement of existing infrastructuregehsas an adaption of
procedures within PKIs. One can identify multiple areas relreew development for
Trusted Computing is needed:

e First, the design of a trusted platform agent (TPA). Its tadlo support initial-
ising, activating and deactivating the TPM security chaider user control. It
supports the most important mechanisms and services fatiene(or request
creation) of keys and credentials related to Trusted Comguit is capable of
communicating with network PKI services.

e Further, a so called “Privacy CA", an entity offering PKI wpBons (certificate
issuance, validation, ...) just like traditional certitiom authority services, but
specialising in Trusted Computing specific tasks. Thisudek the handling of
the TPM Attestation Identity Key credential creation cyaled managing asso-
ciated request/response messages, keys and credentsds.offering services
for determination of current status and possible re-evimnaf credentials.

e As a communication protocol between local services (TPA)@mgtwork service
(privacy CA) the XML Key Management Protocol [129] is empdaly It offers
functionality to transport traditional PKI operations aedough flexibility for
new Trusted Computing specific operations.

e Advanced services are out of scope of this document, onlic lsasvices are
covered here. The implementation experience of the basiices will lead
to a refinement of the services design. Additional services @g., the inte-
gration of Subject Key Attestation Evidence (SKAE) extenssupport, Direct
Anonymous Attestation (DAA) as a replacement concept fepittivacy CA, and
automated policy checking plus validation support. Furttbece the XKMS im-
plementation reaches a stable state, an alternative coroatiom protocol will
be researched.

96
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8.2 Basic Trusted Computing PKI

A public key infrastructure is a framework enabling autheatton, confidentiality and
integrity services using public key cryptography. It hdlpsusers of a (public) network
to, e.g., authenticate the identity of communication pengrand thus establish levels
of trust and/or secure communication channels.

The Trusted Computing concept introduces new types of ggaredentials and
procedures. Some fit established structures, some requatt adoptions and some
represent new concepts.

Associated with the credentials is a life cycle of introdigcihem to the infrastruc-
ture, exchange of information between nodes in the netwoekvalidation/evaluation
of their information value and finally withdrawal from use.

The new components of a basic Trusting Computing PKI areudised in the fol-
lowing sections.

8.2.1 EK Certificate

Every Trusted Platform Module (TPM) is (should be) acconipaby a corresponding
TPM Endorsement certificate. This certificate contains titdip part of the Endorse-
ment Key (EK) pair, which can be viewed as a TPM identity. Thiegte part, called
the private Endorsement Key, is stored permanently insidd®M and can not be re-
trieved once inserted. The certificate is (typically) sigibg the TPM manufacturer and
represents an assertion that the specific TPM conforms gtheiquired specifications
and the private Endorsement Key is kept safe by a TPM.

Extraction

As per [116] specification a distinct location of non-vdetRAM on the TPM chip
is reserved for the TPM EK certificate. Further, the TPM comdsato extract non-
volatile memory content from the TPM are standardised. TAn®bvious function of
the TPA is to extract the EK certificate. Unfortunately, tsttate the only manufac-
turer to include a TPM EK certificate on chip in every shipp@&MTris Infineon.

Creation

If a TPM is shipped without a manufacturer issued certificatéate” construction of
an EK certificate may be applicable in selected scenarigs, @& limited deployment
in a department wide setup. Tools for creation of an EK cedié, utilising the real
public Endorsement Key of a TPM, are already available frquet C partner IAIK.
Integration of this functionality into a TPA is aimed for.

Who signs the TPM EK certificate and thus vouches for its irteds of crucial
importance. In alimited deployment scenario a centraks#idy can issue homegrown
EK certificates as well as offer services for their validatio
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In the case of TPM vendor Infineon the necessary certificatedbr validation is
freely available for download from the manufacturers hoaggp In the case of a self
made certificate, the signing authority certificate must bd@mavailable and accessible
to a validation entity later.

Note that a proof of possession of an EK private key can onlgidree with a full
AlK cycle (see section 8.2.3). This is an intentional linfitlee TPM design.

Note also that a TPM EK certificate is the only proof that theegsponding public
Endorsement Key actually belongs to a specific type of TPMy @mreertificate signed
by a manufacturer (or equivalentimportant entity) is prtbat the referenced TPM is a
hardware TPM. Self created certificates may contain an EKigpkéy which actually
belongs to a TPM software emulator (ellgt,t p: //t pm enul at or . ber | i os.
de/)

Validation

Validation of an TPM EK certificate may be accomplished in tiplg steps:

e Alocal user can read the public EK key from the local TPM anahpare it to the
one contained in the sample TPM EK certificate. Upon match,cam assume
the certificate belongs to the TPM in the local machine.

e If the issuer certificate chain is locally available and tiested Platform Agent
contains the necessary cryptographic support, a cryppbgraalidation of the
signatures of the certificate chain is possible.

e Athin TPA with minimal footprint may offload certificate véidation to a remote
service with more resources. In this design the usage of Xkd\¥8ggested (see

sectior 8.414).

Note that the “how” is not as important as the security imgtiiens of remote
verification. The EK uniquely identifies the TPM, thus, eveperation showing
the EK to third parties must ensure that the third party camrbgted. Also,
security of the communication link with the remote servies ko be considered.

e Full validation also requires a check with a PKI of the mawctiieer of the spe-
cific TPM model (or series), if there are any known conditieffecting the
security of the TPM. This infrastructure is out of scope fdaaic infrastructure.

Revocation checking is not part of the Basic PKI.

8.2.2 Platform Certificate

The platform manufacturer vouches for the parts of a platf@ith a Platform Endorse-
ment (PE) Credential. It represents an assertion that #nfgpplatform incorporates
a properly certified TPM and the necessary infrastructuceming to TCG specifi-
cations. There is a requirement for a “root of trust” (CRTM)oe a starting point for
building a “chain of trust” and related security measuretsane implemented to check
the integrity of the platform.
So far no PE certificate is known to have been regularly shipgéh a platform.

However, atool to create PE certificates is available frorarj partner IAIK. As the
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PE certificate is primarily part of the AIK cycle (see seci®g.3) to be implemented
for the basic PKI, the creation of a fake PE certificate widitiom” values is aimed
for as proof of concept.

8.2.3 Attestation Identity

As the Endorsement Key uniquely identifies a TPM and henceeifsppiece of sur-
rounding hardware, the privacy of the user(s) is at risk & BK is used directly for
transactions. As a consequence, the TCG introduced Altastdentity Keys (AIKS)
and associated AlK certificates (standard X509 Public Keyiftzmtes that include ex-
tensions defined by TCG), which cannot be backtracked dijreca specific platform.
The only entity that possibly knows more details is a trusked party that issues the
AIK certificates, the so called Privacy CA.

AIK certificate creation cycle

In order to create an AIK certificate the following steps aeen:

e The Trusted Platform Agent (TPA, see secfion 8.3) running omachine con-
taining a TPM, calls th€ollateldentityRequest function of the Trusted Software
Stack (TSS) layer.

e This creates an Attestation Identity RSA key pair and a fiestion request in-
tended for the Privacy CA.

e The request is transported to the Privacy CA, using propérdpkrational pro-
tocols.

e The Privacy CA validates the request content (and includ€aiid PE certifi-
cates). On success it issues an AlK certificate, encrypttdtie public EK key
of the TPM and thus only readable by the indented recipient.

e The Privacy CA result is communicated back to the TPA.

e The TPA calls théActivateldentity function of the Trusted Software Stack, thus
unwrapping the AIK certificate.

e The TPA stores the AIK certificate locally.

Summarising, an activated AIK identity comprises a) an tiiitg” TPM keypair and
b) an associated certificate proving that the keypair beddmg “valid” TPM, vouched
for by a Privacy CA entity.

Privacy CA

The role of the Privacy CA (PCA) is of being a trusted thirdtpahat works as an
anonymiser. For privacy reasons the unique TPM Endorsekenshould only be
shown on a “need to know basis”. In the concept of the AIK cyslee previous
section) the Privacy CA issues AlK certificates for a “dedVAIK key. This ensures
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better anonymity of the EK key holder, but still containsqifrof the underlying Trusted
Computing supported hardware.

Operation of a Privacy CA is guided by a published policy. Hogld clearly de-
scribe how the relationship EK certificate versus issued Adiificates is managed.
The implementation options for a Privacy CA cover a spectinom “remember every-
thing” to “know enough for the specific operation, forget gitking after completion
of operation”. Thus, the usage of a specific PCA may be usagesio dependent.

Implementation of a Privacy CA covers functionality for

e A network front end for receiving/sending requests/respsnThe design in this
document uses the XML Key Management Standard (XKMS).

e A unitimplementing the AIK cycle.

e Local storage. The PCA handles multiple types of certifgaltareceives Trusted
Computing specific certificates (EK, etc.), it issues AlKtifmates and needs
foreign certificates for validation (e.g., EK manufacturertificate chain). The
storage must accommodate multiple types.

e A validation unit, capable of determining the status ofifieetes.

In the easiest scenario the validation concerns self isseefficates, thus trans-
forming a validation operation to a simple signature checlookup in local
storage. Further, the validation unit should be preloadigtd nvanufacturer cer-
tificate chains (e.g., those already available from Infingidpossible, too.

The more complex case of actively contacting externaliestibr missing pieces
required for validation is out of scope for a basic PKI.

8.3 Trusted Platform Agent

A PKI requires both server side components, such as cetéfaaathorities, as well as
client side applications that provide access to PKI sesvite the context of Trusted
Computing such a client application is referred to asTttusted Platform Ager{TPA).
For wide user acceptance it is crucial that the TPA makesraktéd Computing re-
lated functionality available in a consistent and useesffdly way. Ideally, the TPA
is designed and implemented in a modular way that providesaay integration of
additional advanced services later on. Furthermore, imgesf user friendliness the
TPA is expected to provide an abstraction of the underlyygiesn concepts that is
understandable and manageable for an average user: fautitiese a simple API is
provided as well as console commands running on top of it. T largely relies
on the services provided by the TSS stack. The overall acthite design of the TPA
and the individual system layers is presented in FigureBatk grey boxes represent
components that will be possibly developed for the Advartei€t

The initial basic core functionalities provided by TPA fail the following cate-
gories:

e TPM and platform management. This category includes ojpassuch as
TakeOwnership, enabling and disabling the TPM and reading TPM status in-
formation.
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Figure 8.1: Trusted Platform Agent (TPA) and underlyingelesy

e TC credentials management. This category includes opesatieeded to man-
age the life cycle of TC credentials (EK, PE, and AIK certifecg) by interacting
with TC-enabled authorities. The TPA and the latter commatei through net-
work protocols, XKMS will be used for the first prototype (tepd extensions
will be developed as needed)

— EK certificate: extraction, creation, validation
— Platform certificate: creation, validation
— AIK certificate: creation, validation, reissue, revocatio
e Light support for standard X.509 credentials. A simplifieghgort to request a
standard X.509 certificate is provided: it is possible to aggncertificate with
standard profiles using the TC-enabled PKI. This suppors @ include the

interaction with standard PKI authorities; however thesinperability of the
issued certificates with existing standard PKIs is guasghte

e Local storage for TC-related and standard keys and cetéca

e Integrity measurement and reporting. This category inefutie following TPM
operations: extending PCRs, reading PCRs, activatingitten(i.e., AIK cer-
tificates) and TPM quote operation.

e API to access all functionalities provided by TPA.

In addition, the TPA can also act as an integration point fuuraber of other services in
the context of Trusted Computing. The main benefit of thigapph for the user is that
all Trusted Computing related tasks can be done from a spuwjig, the TPA. Adding
additional services is facilitated by the modular naturéhef TPA. These additional
services might include (but are not limited to):

e Management of the DAA communications among the differefgs@Trusted
Platform, Issuer and Verifier)

— Standard formats for the exchanged DAA data and messagassifug
DAA as a standalone protocol or integrated within other @cots

— A network protocol for using the DAA as a standalone appiaaprotocol
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Support for another TC-PKI operational protocol likertificate Management
Messages over CMEMC) [51] in addition to XKMS.

Support for the Subject Key Attestation Evidence (SKAE)xasion for X.509
credentials.

A front end for key backup and key migration.

A user and policy management framework.

8.4 XKMS mapping

A public key infrastructure integrates multiple actorsieuts, certification authorities
and specialised services. Over the years multiple prasogete developed in the area
of PKI and credential management. For Trusted Computing iteicessary to carry
traditional PKI services as well as TC specific attributegrees and data blobs.

XML Key Management Services (XKMS) [129]) is chosen for atfivasic Trusted
Computing enabled PKI setup, which is in line with the corsadions of the TCG in
[117)] (chap. 6.5.2/p.43) and their recommendation:

“XKMS provides a way to express certificate managementimmat XML, while
providing a wrapper over legacy CA services designed foDX &ertificates. As such,
XKMS provides the most attractive solution for credentianiagement for existing
CAs in the PKI industry”

XKMS supports four standard registration service funaioRegister, Recover,
Reissue and Revoke. These offer a wide range of parametéthacover the whole
life cycle support of credentials.

Further, two key information service functions, Locate &atidate, provide search
and status query functionality about credentials deplayédide PKI.

Considering the PKI components outlined in seclion 8.2[aBdif the following
sections a mapping of PKI operations to XKMS specific recgiastd responses is
established and interaction with Trusted Computing uségyeidsed.

8.4.1 Message Structure

XKMS is an XML based protocol for common PKI operations. Teeised edition 2.0
of XKMS [129] reached recommendation status in June 200%rdeer to reduce du-
plicate descriptions in the following sections, the commd#AL structures of a typical
XKMS request and response message are discussed.

Request

The following block outlines the structure of a typical XKM&quest:

<?xml version="1.0" encoding=UTF-8"7?>

<...Request xmlns="http: //www.w3.0rg/2002/03/xkms#"
xmlins:ds= http: //www.w3.0rg/2000/09/xmldsig#"
xmlns:xenc=http: //www.w3.0rg/2001/04/xmlenc#"
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[d="..."

ServiceZ http: //opentc.iaik.tugraz.at/xkms/..>"
... payload...

<Authentication>

</Authentication>
</...Request

The XML tag name of an XKMS request message always enéequest . Exam-
ple tag names areocat eRequest, Val i dat eRequest , etc. The XKMS XML
schema includes the schemata of the XML digital signatuaadstrd [[130] as well
as the XML encryption standard [131]. A good solution is teigs the default XML
namespace to XKMS and assign easy recognisable prefixégfordlusions, as shown
above.

Every XKMS message must carry a uniqueidentifier generated by the originator
of the message. Typically this is a random string of at minim82 characters (to
provide sufficient entropy against attacks).

The Ser vi ce attribute contains the URI of the network service endpolidr a
basic PKI infrastructure the HTTP protocol is sufficient@nsport medium. Thus, a
XKMS request is mapped to a HTTP POST operation:

POST /xkms/... HTTP/1.0
Content-Type: text/xml
Host: opentc.iaik.tugraz. at
Connection: Close
Cache-Control: no-cache
Content-Length:

<?xml version="1.0" encoding=UTF-8"?>
<...Request ..... >

The path component ‘xkns/ . . . " is used to distinguish categories of

requests. An obvious mapping would be, e.g., '/ ai k” for all AIK specific
requests and.”. . / ek” for EK related operations. Implementation experiencexis e
pected to define useful groupings.

An optional Aut hent i cati on component is employed for operations which
are restricted to specific clients or need proof of knowledfya shared secret. The
XKMS standard contains a description of an algorithm to e’ cryptographic
key from a secret string (e.g., password). One can then usekély to generate
a XML digital signature inside théut hent i cati on message component which
references th&eyBi ndi ng type payload of the request. If the validation of the
Aut henti cati on element fails at server side, the response message contains
“Resul t Maj or =Sender "with “Resul t M nor =NoAut henti cati on”.

Response

The following block outlines the structure of a typical XKM&sponse:

<?xml version="1.0" encoding=UTF-8"?>
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<...Result xmlnszhttp: //www.w3.0rg/2002/03/xkms#"
xmins:ds2 http: //www.w3.0rg/2000/09/xmldsig#"
xmlns:xencZ http: //www.w3.0rg/2001/04/xmlenc#"
ld="..."
Requestld=..."
ResultMajor= http: //www.w3.0rg/2002/03/xkms#Success”
ResultMinorZ http: //www.w3.0rg/2002/03/xkms#..."
ServiceZ http: //opentc.iaik .tugraz.at/xkms/..>"
<Signature xmlns="http: //www.w3.0rg/2000/09/xmldsig#"

...global message signature of XKMS responder...

</Signature>
... payload...

</...Result>

The XML tag name of an XKMS response message always er@ssal t . Example
tag names arkeocat eResul t, Val i dat eResul t, etc. Note that there also exists
a basicResul t response message. This one is emitted by the server whemhetca
properly parse an invalid request and thus cannot deterttné@ore specific type of a
request.

In comparison to the XKMS request message the result messaggns additional
components:

e Request | dis a copy of thd d of the corresponding request message. It en-
ables a client with multiple XKMS messages in transit to rhaimjuest-response
pairs.

e Resul t Maj or specifies the overall outcome of the request. In case of psace
ing of the request without failure Buccess result is expected. In the case of
an errorResul t Maj or contains an indication who is assumed to be the cause
of the errorSender orRecei ver.

e An optionalResul t M nor specifies additional details of the result status of a
request, if the value ifRResul t Maj or can not alone represent all interesting
information.

A response by an XKMS service is expected to be always sigihbis XML digital
signature encloses the whole XKMS message. In order forlibet ¢o verify the sig-
nature, the public key of the XKMS service must be known orctleat side. Typically
the public key is shipped to the client in form of a X509 typetifieate.

The result received from an XKMS request submitted using PPDST typically
looks like:

HTTP/1.1 200 OK
Date: .....

Content-Type: text/xml; charset=UTF8
Content-Length:
Connection: close

<?xml version="1.0" encoding=UTF-8"?>
<...Result .....
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8.4.2 RegisterRequest

A XKMS RegisterRequest is used to build a binding of inforimat typically to a
public key(pair). The registration request message cositaprototype of the requested
binding.

In the context of Trusted Computing a RegisterRequest megnme the following
functions:

Creation of an EK certificate

The TCG infrastructure concept requires the public endoest key of a TPM accom-
panied by a certificate. To integrate TPMs (or TPM emulatai)out a certificate, a
function to create one from a public key is desired.

Structure of a request, including a RSA public key:

<RegisterRequest ...>
<PrototypeKeyBinding Id="..... ">
<Keylnfo ...>
<KeyValue>
<RSAKeyValue>
<Modulus> ... </Modulus>
<Exponent>...</Exponent>
</RSAKeyValue>
</KeyValue>
</KeylInfo>
</PrototypeKeyBinding>
<Authentication>
... Signature referencing PrototypeKeyBinding...
</Authentication>
</RegisterRequest

Creation of an AIK identity

The exchange between a client system TPM/TSS and a Privadp Create an AIK
certificate is almost fully standardised in the TCG spedifices. Basically, it com-
prises a transfer of an encrypted binary blob (namely aryafrAytes) to the Privacy
CA, resulting in 2 binary blobs as an answer. Unfortunatedyfeatures of the XKMS
protocol do not allow for an obvious mapping. To preventyearbdification of XKMS
we decide to transfer the blob information in this case inGhaqueCl i ent Dat a
tag. As the name suggests the content of this tag should lipiepia the server, how-
ever the gain of experience of getting a running prototygeefahas priority. In a later
implementation of an advanced PKI the use of, e.g., the XKM&sadgeExtension
feature for a cleaner solution may be considered.

Structure of the request:

<RegisterRequest ...>
<PrototypeKeyBinding Id="..... ">
<Keylnfo ...>
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<KeyValue>
<RSAKeyValue>
<Modulus> ... </Modulus>
<Exponent>...</Exponent>
</RSAKeyValue>
</KeyValue>
</KeylInfo >
</PrototypeKeyBinding>
<Authentication>
... Signature referencing PrototypeKeyBinding...
</Authentication>
</RegisterRequest

The bl ob element -containing the binary blob as returned by the
CollateldentityRequest function of the TSS.
Structure of the response:

<RegisterResult ...>
<Signature>...</Signature>
<KeyBinding>
<KeylInfo ...>
<X509Data>
<X509Certificate>...</X509Certificate>
</X509Data>
</Keylnfo >
<Status StatusValuezhttp://www.w3.0rg/2002/03/xkms#Valid>
</KeyBinding>
</RegisterResult

With bl obl containing the synCaAttestation and blob2 the
asynmCaCont ent s answer of the Privacy CA, to be passed to fwivateldentity
function of the client TSS.

For a discussion of othéiut hent i cat i on possibilities, see also sectibn 814.5.

8.4.3 LocateRequest

A XKMS LocateRequest provides a discovery function. It tess the passed query
keybinding and matches request information with local andymote data. The answer
of a Locate service makes no assertions to any validatioerieri However, a result of
a Locate service may be forwarded to a validation serviceif possible, additional
trust verification is done locally.

The following services are useful in a Trusted Computingexin

Query for an AIK certificate

AIK certificates do not contain a subject distinguished nathe certificate owner,
but only al abel , chosen freely at AIK certificate creation time by the cliasér. To
retrieve a specific AIK certificate a locate request for a Bgeabel name is desired.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



CHAPTER 8. PUBLIC KEY INFRASTRUCTURE 107

An obvious mapping to XKMS would be to use tX809Subj ect Nane in the
Keyl nf o portion, however, as some XKMS libraries may check this fafittly for
X509 name rules compatibility (and the AIK label specifioatis less restrictive) this
is avoided and th&ey Nane field used instead.

Thus, a query for a specific AIK certificate looks like:

<LocateRequest ...>
<RespondWith>http: //www.w3.0rg/2002/03/xkms#X509CertRespondWith>
<QueryKeyBinding>
<KeylInfo ...>
<KeyName>labelOfAikCertificate <KeyName>
</KeylInfo >
</QueryKeyBinding>
</LocateRequest

An answer is of the form:

<LocateResult
ResultMajor= http: //www.w3.0rg/2002/03/xkms#Success" .>
<Signature>...</Signature>
<UnverifiedKeyBinding >
<Keylnfo ...>
<X509Data>
<X509Certificate>...</X509Certificate>
</X509Data>
</KeylInfo>
</UnverifiedKeyBinding >
</LocateResult>

Note that depending on the policy of the Privacy CA the AlKdhimay not be unique
and in thex509Dat a component multiple certificates may be returned.

8.4.4 ValidateRequest

The operations of an XKMS ValidateRequest are similar to ealt®Request (see pre-
vious section), however, the returned status of a bindiegatuated from well defined
validation criteria. A validation service returns onlyanfation which has been vali-
dated by the service. Its validation policy is expected tpbilicly available.

In order to validate a specific certificate, it is sent to thwise:

<ValidateRequest ...>
<RespondWith>
http: //www.w3.0rg/2002/03/xkms#X509Chain
</RespondWith>
<QueryKeyBinding>
<Keylnfo ...>
<X509Data>
<X509Certificate>...</X509Certificate>
</X509Data>
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</KeylInfo >
</QueryKeyBinding>
</ValidateRequest

The expected result upon positive validation isX809Chai n, a certificate chain
build from the supplied certificate to a trusted root.

<ValidateResult
ResultMajorz http: //www.w3.0rg/2002/03/xkms#Success" . >
<Signature>...</Signature>
<KeyBinding>
<KeylInfo xmlns="http: //www.w3.0rg/2000/09/xmldsig#"
<X509Data>
<X509Certificate>...</X509Certificate>
<X509Certificate>...</X509Certificate>
<X509Certificate>...</X509Certificate>
</X509Data>
</KeylInfo >
<Status StatusValuezhttp://www.w3.0rg/2002/03/xkms#Valic"
<ValidReason>
http: //ww.w3.0rg/2002/03/xkms#lssuerTrust
</ValidReason>
<ValidReason>
http: //www.w3.0rg/2002/03/xkms#Signature
</ValidReason>
<ValidReason>
http: //ww.w3.0rg/2002/03/xkms#Validitylnterval
</ValidReason>
</Status>
</KeyBinding>
</ValidateResult>

The corresponding result message contains the certifibaie es an array of certifi-
cates and &t at us component describing more detailed evaluation results.

In Trusted Computing it is of interest to check the statuskaiid AIK certificates.
For a basic PKI the XKMS validation message exchange is time $ar both cases.

Note that a PE certificate is an attribute certificate whe}d€elS is designed for
X509 certificates. An attribute certificate may be includethehow in raw form as
array of bytes, but the feasibility of this concept still hade determined.

Note that it is a policy decision of the service whether thevise only validates
its own issued certificates or also uses external resoutegs, validation of an EK
certificate may be done locally at the server if the certificdtain is known, however
proper validation should also include a revocation chedk wimanufacturer PKI, if
available.

8.4.5 RevokeRequest

An XKMS RevokeRequest manifests the desire to invalidatesipusly issued bind-
ing. The payload consists of what to revoke, a certificate; et
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<?xml version="1.0" encoding=UTF-8"?>
<RevokeRequest ...>
<RevokeKeyBinding ld="...">
<KeylInfo ...>
<X509Data>
<X509Certificate>...</X509Certificate>
</X509Data>
</KeylInfo>
<Status
StatusValuezhttp: //www.w3.0rg/2002/03/xkms#Indeterminat/e"
</RevokeKeyBinding>
<Authentication>
... Signature referencing RevokeKeyBinding...
</Authentication>
</RevokeReques*

It is expected that this function is always restricted to @cHr client population, thus
always requires aAut hent i cat i on element.
The response consists of a simBleccess (or not):

<?xml version="1.0" encoding=UTF-8"?>

<RevokeResult ...
ResultMajor=http: //www.w3.0rg/2002/03/xkms#Success"
<Signature ...>

</Signature>
</RevokeResult

The XKMS options ofAut hent i cati on and/orRevocat i onCode require re-
examination under Trusted Computing. Both represent amasse to the service that
one is a valid entity, allowed to withdraw/revoke inforneatifrom the PKI.

In the case of use of Revocat i onCode during the RegisterRequest (see sec-
tion[8.4.2) a code is specified and only if a RevokeRequegil®gthe identical code
again the revocation is accepted.

TheAut hent i cat i on signature can be generated from a shared secret — a pass-
word. Usage of a (TPM) private key itself to generate®am hent i cat i on XKMS
signature (effectively a proof of possession signaturepisalways feasible in a trusted
computing context. The private endorsement key is not alviElfor generic crypto-
graphic operations and the private key corresponding to l&ncartificate is also not
designed to be used for arbitrary signing operations.

8.4.6 ReissueRequest

XKMS ReissueRequests are similar to RegisterRequestséstion 8.42), the goal
being to issue the same item again. The obvious applicagitm fiorward an expired
certificate and obtain a fresh one of same content, but wittmavalidity period (the
old one getting revoked).

Issues ofaut hent i cat i on are similar to those described in section 8.4.5.
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Reissuing Trusted Computing related credentials is outops for a basic PKI.
This point may be revisited when more experiences with figate life expectancy,
usage scenarios and validity periods are available.

8.4.7 RecoverRequest

The XKMS RecoverRequest serves to recover a private keyciassd with a previ-
ously binding. This is only possible if the private key wasyously escrowed at the
server or server generated. In the context of a basic Tr@beaputing infrastructure
there is no application for this type of request, as this wonValidate the concept of
TPM bound keys, thus can be ignored.

8.5 Open Issues

Design and implementation of a basic trusted PKI for Openighllghts multiple
issues to be considered. Among them are

e Certificates and issuing authorities require clear andngispolicies. This in-
cludes human readable text as well as associated Objedifielen(OIDs) for
automated processing. Only standardisation of these emgteroperability and
spreading of a Trusted Computing PKI.

e The basic PKI outlined in this document assumes XKMS as pramgprotocol
and no specific schema extensions for Trusted Computing eMernveven a ba-
sic scenario suggests that new URI string definitions forllkggge, UseKeyWith
etc. would be useful to clearly distinguish TC specific ofieres from common
PKI operations.

e The public documents of the TCG currently only discuss sgcaredentials
in X509 certificate format. Some documents however hint atptbssibility of
future XML based credentials. The inclusion of XML credaigidirectly in
XKMS is a tempting outlook, however the resulting schemaesions and ef-
fects on alternative protocols and designs have to be dprefinsidered.

e Attime of this writing the only TPM manufacturer shipping Ekrtificates with
its TPM chips is Infineon. There are no known public platfoertificates. There
is no known public AIK cycle test. A first basic PKI implemetitan is hopefully
a stimulus for accelerated development, but this highdighéat this area is still
under major development. Future design adoptions are tgprcted.

e The software platform designated to implement this firstgfesn is Linux with
its Trusted Software Stack (TSS) called TrouSérSt(p: / /t r ousers. sf.
net ). At the time of writing this document this is the only freelyailable fully
implemented TSS for the Linux platform. Therefore all expents and proto-
typing is using the TrouSerS specific implementation of thi€ gycle. Being
heavily tied to low level C structures, level of compatityilof the TrouSerS im-
plementation with other TSS implementations is unknown.
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e We have developed prototype implementations of key TCG BKimonents. We
solved the cryptographic challenges of interacting withRMT To our knowl-
edge we are the first to actually demonstrate a working pdblidrivacyCA
cycle, using TCG style certificates and a dedicated clientes network setup.
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Chapter 9

An Efficient Implementation of
Trusted Channels based on
OpenSSL

F. Armknecht, Y. Gasmi, A. Sadeghi, P. Stewin, M. Unger (RUB)Ramunno, D.
Vernizzi (Polito)

9.1 Motivation

Most of the security sensitive applications on the Inte(aed., online banking, eCom-
merce and eGovernment) typically deploy secure channelsasi TLS[[27] or IPSec
[63] to provide secure access to and communication with tineesponding services.
These security protocols protect data during transmisaiwh allow to authenticate
the endpoints. However, they do not provide any protectiomf(maliciously) mod-
ified software running on an endpoint. More precisely, Bgttip a secure channel is
currently not linked to the integrity of an endpoint. Howewveost attacks concern
compromising the endpoints by injecting malicious codbeathan compromising the
secure channel.

This leads to the central problem of today’s secure champ&bpols: using a secure
channel to communicate with an unknown peer opens doorsfaearange of attacks.

Considering a corporate computing at home scenario thewolly could happen:
an employee wants to access from home a corporate’s docunarggement server
to work on a confidential document. For this purpose he seta-secure channel to
the company'’s network and downloads the document. The @mobbnsists in the fact
that the employee opened an email attachment containingxéeutable of a Trojan
the day before, which installed itself on the system at tleis/\moment. Now, the
attacker that sent the Trojan can access the employee’suternrgnd the document he
just downloaded is compromised at the moment it was traresféo the employee’s
system.

Hence, for the secure provision of digital services overltiternet endpoint in-
tegrity is vital. To avert such attack scenarios, inform@atn the communication end-
points integrity or configuration has to be provided in a seand reliable manner,
to enable the peers to judge each other’s “trustworthinkaséd on the information
received.
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Reporting integrity information of a remote platform is oofethe main goals of
Trusted Computing (TC) as proposed by the Trusted Comp@iogp (TCG, [114]).
The basic idea is to securely capture configuration infoilonaif the core components
of the platform (firmware and software). This informatiorsisred in a cost-effective,
tamper-resistant Trusted Platform Module (TPM). The TPNuim is mounted on the
main board of the computing platform and acts as trust anclh@an sign gathered
configuration information and report it to a requesting yparthis process is called
attestation by the TCG. Additionally data can be stored bound to a spegiéittorm
configuration. The TCG calls this mechanisinding/sealing data.

In this paper we focus on the combination of TCG TC functidgres and the TLS
protocol to form a Trusted Channel. However, our solution aso be applied with
IPSec[[63]. Currently, we are considering an implementadibTrusted Channels for
this protocol as well.

The central feature of the Trusted Channel is the capaldipyrovide reliable ev-
idence concerning the trustworthiness of a communicatanpr. Furthermore, by
means of a specific system architecture we are able to ertfogcecurity of data not
only during transmission but also on the involved endpoiftthas to be pointed out
that the linkage of configuration information to the TLS chalis crucial to prevene-
lay attackswhere the configuration of a third platform, deemed trustimgris relayed
by an attacker, acting as Man-in-the-Middle (MitM).

Linking endpoint configuration information to secure chelsrhas been already
investigated in the literature [48, 108./98) 79] 56, (22, &4fen also combined with
the TLS protocol because it is the most common protocol usguldctice. The TCG
also works on this issue in a specific working group [111.] 123pwever, none of
the solutions so far addresses the problem fully. Some ddpipeoaches only provide
an insecure linkage between the secure channel and igt@gfotmation, thus MitM
attacks seem still possible. Others in turn, have problemeerning their performance
in a server environment or required costly acquisitionsdj,, specific cryptographic
hardware (see Related Work [n]10]).

In a recent approach[L0] a protocol and a generic systenitectlre for establish-
ing and maintaining Trusted Channels, using TC functidiesliand the TLS protocol,
was proposed that overcomes most of the shortcomings figehiin the afore refer-
enced work. However, the solution [n]10] has some deficesttiat our solution aims
to tackle: first, some features do not conform to the TLS djpation [27], e.g., send-
ing attestation data within the key exchange messageschuding integrity data in
session key computation. Changing central message fownatsmputations of the
TLS protocol would result in a time-consuming and costlyspecification process as
well as an extensive evaluation of security implicationd Backward compatibility.
Second,[[10] supports only RSA key transport, howedéfie-Hellman(DH) can pro-
vide perfect forward secrecy of session keys and is alsolgadnultitude of servers.
Third, fundamental functional requirements, like e.ggkveard compatibility — to al-
low communication with systems that do not support intggéporting — or costs of
certification processes are not considered. Certificatypa.g., VeriSign is costly. This
means re-certification should take place very seldom, vetseire [10] re-certification
would be necessary every time the system is updated, whittfeisase in practice
since systems are updated regularly to overcome secuntylgms or to incorporate
new functionalities.

Main Contribution: To overcome the described shortcomings we present a new ap-
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proach that bases on[10] but, strictly conforms to the dirids of the TLS speci-
fication and respects central functional requirementsdisn detail in Sectiof 9.2.2.
Additionally, we focus on a proof of concept implementatafithe new handshake
protocol to enable the deployment of our approach.

Thus, our main contribution is that our concept (1) fully adés to the TLS specifica-
tion and uses existing message extension formats to cowveigaration information.
To further facilitate a widespread deployment we (2) desijaur concept to incor-
porate functional requirements like, e.g., the possibibitupdate systems without the
need for re-certification, backward compatibility, higarformance system design as
well as incurring no additional costs for the users by reéggithe use of expensive
cryptographic hardware or extensive software adaptatidpart from that (3) support
for all relevant kinds of key exchange methods is providedthiermore, we (4) pro-
vide stronger forward secrecy of session keys regarding 87 key exchange method,
because keys are held protected by hardware, renderinglikeliosure very difficult.
Finally, we (5) present a proof of concept implementationwf Trusted Channel pro-
tocol.

Outline: In Sectior 9.P and Sectidn 9.3, we specify properties anid besns related
to Trusted Channels, followed by our adapted TLS handshakegpl in Section 9]4.
Subsequently, we provide a detailed description of the figadions to the handshake
messages in Sectidn 9.5. In the Sectibn$ 9.6[and 9.7, we éisstribe the logical
architecture and then the implementation of our approaictallly, in Sectiong 918 and
9.9, we evaluate the whole concept with regard to the sgereiated as well as the
functional requirements enlisted in Section]9.2, conalligea short Summary.

9.2 Requirement Analysis

In this Section we define the properties of our Trusted Chlacorecept and derive the
requirements necessary to provide those properties.

Adversary Model: The attacker may be a malicious third party, a user or everadh
ministrator of a platform, either eavesdropping the comication between two plat-
forms or controlling one of the peers directly involved iretbommunication. The
adversary is capable to manipulate the software runningmatéorm, further he can
eavesdrop, replace, replay, relay or manipulate datafaaed. But, we do not con-
sider sophisticated invasive or non-invasive hardwasekst on involved platforms.

9.2.1 Security Requirements
We adopt the security requirements presented ih [10] fouat€d Channel:

(SR1) Secure channel propertiestntegrity and confidentiality of data, freshness to
prevent replay attacks, and authenticity both during trassion as well as within
the endpoints have to be provided.

(SR2) Authentic linkage of configuration/integrity inform ation and secure chan-
nel: Authentic configuration/integrity information must be Imolto the trusted
channel (i.e., during the establishment and while the ®di§thannel is in place,
e.g., the system state changes) to prevent relay attacks.
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(SR3) Privacy: Creation and maintenance of the channel should adhere teake
information paradigm, i.e., disclosure of a platform’s figuration/integrity infor-
mation not beyond what is necessary for proper integritiglagibn. Furthermore,
platform configuration information has to be protected agfadisclosure to a third

party.

9.2.2 Functional Requirements

Looking at the wide area of application of TLS on, e.g., sesvdesktop-PCs, laptops
and infrastructure devices like gateways, all with différeinctional needs concern-
ing the setup of Trusted Channels, our solution has to adbeseme core functional
requirements:

(FR1) Fast deployment support:The alterations to existing software and hardware
environments should be minimal and additional conceptsdiiced should make
use of and have to adhere to existing specifications. Iniaddill relevant key
exchange techniques have to be supported.

(FR2) Minimal costs: The whole approach must not incur additional costs for users
like, e.g., for expensive hardware, software or certifarati

(FR3) Minimal overhead during handshake: The overhead induced to the hand-
shake by setting-up a Trusted Channel has to be minimal cadpa setting-up
a common secure channel.

(FR4) Flexible configuration/integrity reporting: It has to be possible to apply dif-
ferent approaches for integrity reporting to support a itude of differing sys-
tems and use-case designs.

(FR5) Backward compatibility: Systems supporting the Trusted Channel approach
have to be able to establish conventional secure channglstapeers that do not
provide the means to set-up Trusted Channels.

9.3 Basic Definitions

The underlying system architecture considers client -ese@, S) communication
where each involved endpoint may require configuratioaedrity information of the
other endpoint to be able to judge its trustworthiness.

The evaluation of configuration information is done accogdio the locally ap-
plied security policy If the other endpoint’s configuration information confario
the security policy, this endpoint is considered to be twosthy. This security policy
consists of a set of requirements and guidelines that hawve tolfilled by the platform
configuration of the counterpart, e.g., that an appropdptrating system and access
control mechanism are in place, etc.

The configuration of a platform is represented by a comlomatif credentials
vouching for security relevantroperties of the platform’s components (hardware
and/or software). Deriving thogeoperties can be done in different wayis [96,147) 37].
The TCG proposes to compute SHAT[34] hash values over cadisvése/firmware)
for that purpose. The mechanism of deriving these hash vatuealledmeasure-
ment. These hash values are designatedigsal fingerprints, since they are used
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to unambiguously identify components.

To be able to derive the trustworthiness of a platform we hagempare the digital
fingerprints reported by a counterpartitef erence values. In our approachre fer-
ence values represent digital fingerprints provided and signed by atedi$hird Party
(e.g., the distributor or manufacturer of a component)edatively, whole certificates
can be used to vouch for certain properties of the respectivgoonents.

The communication endpoints of our implementation opebatged orcompart-
ments A compartment consists of one or a group of software commtsrtbat is log-
ically isolated from other software components. Isolatio@ans that a compartment
can only access data of another compartment using specifiedaces provided by a
controlling instance.

The set of all security critical software and hardware congus of a platform
responsible for preserving its trustworthiness is callegsted Computing Bagé CB).
Thus, it is crucial to keep the TCB isolated and as small asiplesto avoid known
problems and vulnerabilities arising along with code carjby.

The central component of the TCB is formed by the TPM, whictuisently im-
plemented as a dedicated hardware chip. It offers amonystoécryptographic hash
function(SHA-1), acryptographic engin€dRSA) for encryption/decryption and sign-
ing, a hardware-basd&kiandom Number Generat@RNG), hardware protectedono-
tonic countersas well as some amount pfotected storaget provides a set of registers
in protected storage calld®latform Configuration Registe(PCR) that can be used to
store hash values. The value of a PCR can only be modified ir@defined Weﬂ
Protected storage is also used to store certain securigjtiverkeys, e.g.Attestation
Identity KeyH (AIKs) or the Storage Root Keifi (SRK).

To improve security of the common TLS protocol, we move afiséy relevant
operations like, e.g., encryption, signing and the haigdiihcredentials to the TCB,
whose code is protected against a wide range of attacks é®i§9.6) running in
separate memory space and only accessible via interfatesprbtocol implementa-
tion remains in user space, because there is no need totdtotec

9.4 Adapted TLS Handshake

In this Section we describe the high-level adaptations weduce to the TLS hand-
shake protocol. We focus on the Diffie-Hellman Ephemeral Epley exchange
method in a mutual attestation scenario, but our designa@tppll common TLS key
exchange type§[27]. Structures we added or altered aretddpn bold text in Figure
[B1. A detailed description of attestation structuresvegin Sectiof 915.

Negotiating Security Parameters:To set up a Trusted Channélstarts the necessary
TLS software and sends@lientHello message t& that answers with a correspond-
ing ServerHello message. Using those hello messages the two parties invioltiee
communication negotiate the attributes of the Trusted @bktiney want to establish.

1 PCR;41 « Hash(PCR;|z), with old register value?CR;, new register valu’CR; 1, and input
z (e.g., a SHA-1 hash value). This process is caietndinga PCR.

2These are specific signing keys defined in the TCG specifizatibat can be used to authenticate a
user and/or his system. They are kept securely inside the @RdVican only be used for signing stored
measurement values or certifying other non-migratable K&%4].

3This key is kept inside the TPM as root for the whole key hiegr{112].
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Figure 9.1: Adapted TLS DHE-RSA Handshake

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



118 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

In contrast to the common TLS design the nonces sent in the ielssages are taken
from a RNG seeded by the TPM at boot-tlineFurthermore, each side includes an
Attestation Extensiofd Ext), that is used to specify details concerning the configura-
tion/integrity information that will be exchanged.

Configuration and Key Exchange: Each peer provides evidence related to its con-
figuration and integrity. For this purpose we use additidghalplementalData mes-
sages as defined in Internet Engineering Task Force (IETE4RB0 (cf. Sectioh 915,
[108]). Thus,SupplementalData messages are composed to tranéftestation Data
(aD) representing configuration/integrity informatiof) is signed using a secret key
(SKi4n) for authentication and integrity protection of configimatinformation. Fol-
lowing the SupplementalData message, each side provides a certificatettcors)

including the respective public key{;,,,) used to verify this signature.
SubsequentlyD Hvalues (DHpupiic, DHsecrer) @are computed on both side@HpSublic
is signed using?Kf;gn to provide authentication evidencg then sendsDHfuth and
a signature §ig; ;) to C within the ServerKeyExzchange message.C computes its
own values and send@HﬁMC to S using theClientKeyExchange message. The
following Certificate Verify message is used to prove the possessioﬁqugn, and

to authenticateDHpﬁblic, by signing a digest over all previously exchanged handshak

messageg(ev) usingSK.S,,, [27].

Session Key Computation: Following Certificate Verify, the TLS master secret
(ms) is computed on both sides usingnce$y,,, noncesp,,, a string indicating
that this is ams, and the result of the findDiffie-Hellmancomputation as input to a
pseudo random function (PRF). Subsequently, the Session Ké¢K) is derived
from the ms on both peers[[27, p.24]. At last, the handshake is finalizedhle
ChangeCipherSpec protocol and finalFinished messages. Thed@nished messages
are already encrypted usifg K, thus, a failure in key exchange would be noticed.

9.4.1 State Changes

Since state changes might happen on both peers while theed@irGannel is in place,
we provide the possibility to exchange updated integrifprimation in a short re-
handshake. This re-handshake is triggered when a statgeheug., the execution of
another software in the same compartment, occurs on anyasidef the correspond-
ing state monitoring option was selected Atyzt (cf. Sectior@ﬁx In case the
parties agreed on state change notification during thelritindshake, the following
procedure takes place: If a state change happens on onerpiatcess to thfeK
can be blocked and/or access to data belonging to the sasgiestricted depending
on the security policy of the application. Both sides aréfigot using Hello Request,
ClientHello andServerHello, respectively. The updated integrity information for val-
idating the new configuration is securely transmitted tccthwenterpart encrypted using
SeK and included in a data structure call®thte Change Extensi¢aCExt) (cf. Sec-
tion[2.5.2). Subsequently, a TLS resume message flow taies [7]. After the short

“We use the TPM as source for random values, because its RNfBsilered as true random generator
in contrast to the pseudo-random generator implementegémSSL. The advantage of this feature becomes
obvious with respect to the recently discovered securitgkmess in the OpenSSL RNG in Debian Linux
systems[[112].

5Changes inside the compartments can be detected usinge¢geityn Measurement Architecture (IMA,
[103]) proposed and implemented by IBM.
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TLS resume handshake the new session &k’ is computed and the communica-
tion can continue, or the channel is torn-down because thénements of the security
policy of the peer are not fulfilled any longer.

9.5 Detailed Description of Attestation Data Structures

In this section we introduce credentials and extensions ®fAandshake messages we
use to set up a Trusted Channel, followed by an example afulsage.

9.5.1 Key Exchange Types and Certificate Elements

In a common TLS handshake certificates are used to authentloa peers. There

are different certificate types used for different key exdemethods. Depending on
the type of certificate chosen or key exchange method sugghoste add extensions

to the certificates. The certificate extensions and crealeniie define are necessary
to bind the TLS channel to the endpoints whose configuraiaeported, and to be

capable of proving that a certain TCB is in place. These nedemtials are held in an

environment protected by TC mechanisms. Therefore, werathe®assumption that

these additional security measures justify stronger #g@ssumptions concerning the
storage and usage of those credentials. In the followinggraphs we explain their

creation, storage and interdependency.

SKAE Key (Ksxar)and SKAE: Thenon-migmtableﬁ asymmetric key paiKsxap
(PKskar, SKskag) is created after an AIKK 47k ) has been certified and installed.
Its private partSKsxar is sealed to a specific TCB using the SRK(,r.4.) and
never leaves the TPM unencrypted. We make use oftigect Key Attestation Ev-
idence(SKAFE) as proposed by the TCG[110]. In contrast to the intendegqae,
we use theSKAF as standalone element within our handshake, but we alsedere
the possibility to include it in a X.509 certificate. T AE basically consists of a
TPM_CERTI FY_I NFQ2 structure representing the TCB configuration that has to be
in place during key release (including a digesi# s 4 g [118, p.96]) and a signature
over this structureSigsxar) by a K41k . Additionally, links to reference values can
be provided. TheSKAE can vouch thatsx 4z was created by arusted Platform
that conforms to the TCG specificatidn [114] and that a ceff&B configuration has
to be in place during release because of sealing.

Secure Encryption Key (K.,..) and Secure Signature Key ,,): We introduce
the asymmetric key pairSecure Encryption KeX ... (PKene, SKene) and Secure
Signature KeyKign (PKsign, SKsign), that are considered long-lived and usable for
client compartments that wish to establish a Trusted CHdareeremote party. They
are created inside the TCB and sealed usig,.qe-

Depending on the key exchange method supported and thetespeertificate PK .,

and/or PK;,, are included in the commofLS certificate(certrcrs) as encryption
or signature key (cf. Figufe 9.2). Thus, either the publit p& K., or K, are put
into the public key field of the X.509 certificate. In case ofAiR&d DH_RSA key

6The private part of an asymmetric key pair labelledn — migratable never leaves the TPM unen-
crypted [114]
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ey Exchange RSA DH_RSA DHE_RSA
Certificate Element

Certificate Type Encryption Certificate Encryption Certificate Signature Certificate

Key Type Encryption Key DH Public Values Signature Key

Certificate Extension Type | ~ Signature Key Extension | Signature Key Extension

Figure 9.2: Handshake Types and X.509 Certificates

exchangesK,q, is included as Signature Key Extension to the TLS certificdte
X.509 format, including the use of extensions, is specifigd8]. The signature key is
needed in these handshakes to provide the binding betwtsgrity information and
the endpoints. This is not feasible using the encryptionikeiilose handshake types,
and using a single key for encryption and signing is considénsecure.

Ken and/or K4, must be used for client and server authentication duringrtte
channel setup to guarantee the binding of the secure chemitie integrity state of
the endpoints. Therefore, the usual TLS authenticatioarsehwill be used for server
authentication and itgert3 -, ¢ will likely be signed by a CA like e.g. VeriSign. In
contrast, the TLS client authentication mechanism, oplifor a standard TLS chan-
nel, must be used to guarantee the binding throughS,; 5 even if the actual and
reliable authentication af might not be needed. Therefore, in this case S, ; can
be self-signed.

SKene and SKyg4, are loaded and decrypted during the start of the platformkai
inside the TCB. Subsequently, we neEdx g to authenticatef(encﬂ and K;gn,

By signing PK.,,. and PK g, usingSKgsxar We provide twofold evidence: that the
TCB identified by theSKAE was in place during the signatﬁrand it is a statement
from that TCB aboutk.,. and K, like: “I certify that K.,., K4, are correctly
treated, i.e., when decrypted, the keys are kept secret sglitiylf the verifier of the
SKAE trusts the TCB attested by it, then the verifier can also thesTCB'’s statement
about the correct treatment &f.,,. and K;,,. Therefore, th&@PM_Sign() function is
applied to signK.,.'s and K;4,’s public parts withSKgxar at boot timBJ. The
resulting signaturéigpsex is held in the TCB memory space.

9.5.2 Extensions used in the TLS handshake

The extensions to the TLS protocol that will be introducethiafollowing paragraphs
are necessary to trigger and negotiate the exchange of oceatiign information as well
as for the transport of the additional configuration/iniggtata. Extensions tothe TLS
handshake protocol can be small data chunks added to theHesisage§ [27] or com-
pletely new handshake messages. These extensions am@txfdreseen by the TLS

“In case DH_RSA key exchange was chosen, the DH parametérdedan the certificate are signed.

81t would also be possible to usksx 45 instead Oof Kgign, Kene for signing/encrypting during the
handshake. But then the involvement of the TPM every timeuat€d Channel is set up would be necessary.
This would result in a significant performance loss, espigcia connection with server systems. Using
K 415 directly for this purpose is not allowed by the TCG specifaat

9The TCB must checkligest at creatioranddigest at releasef the stored key data objecfs [118, p.89]
before signing them wittb K s 4 i to be sure that they were not compromised by a former TCB.

10This has to be done at every system boot because otherwi§eCBeipdate mechanism presented in
Sectior 3.6.2 could be compromised. Thus this signatureldsih volatile memory.
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nonceSD®— concat (nonce®,nonce®)
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)
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Figure 9.3: Supplemental Data Message Creation and Ei@uat

specification to deal with advancements and changes in caneation infrastructures.
There already exist several extensions to the TLS proteagl, for sending client cer-
tificate URLs or explicit server name indicatian [95]. Theslzaconcept for extending
TLS with an additional handshake message is described iMlB8Tavailable from the
Internet Engineering Task Force (IETF) Networking GroufgJL This RFC defines
the additionalSupplementalData handshake message envisioned to carry additional
generic data, whose format must be specified by the applictiat uses it, and whose
delivery must be negotiated via Hello message extensions.

Hello message extensionsAttestation Extension or State Change Extension
(AExt, SCExt) are transmitted within th&lientHello and ServerHello messages.
The first one is used in the initial handshake to negotiatelvbide ¢ and/orS) has
to attest to its state, the type of attestation and stateitororg supported or if privacy
of configuration information is desirediCFEzt, in turn, is used to inform the peer of
a state change on the counterpart and to transport configudita in a re-handshake

(cf. Section 9.411).

Supplemental Data Message Creation and Evaluatian The SupplementalData
message includes theK AE, PKskxag, certarx, Sigpsek, @ concatenation of the
nonces sent in the TLS Hello messages pngpertics (see Sectiof 913), depending
on what kind of attestation and key exchange was chosenhdiuanbre, a Signature
Sig.p on aD is appended. This signature is needed to bindutiestructure to the re-
spective secure channel endpoint. In Fiduré 9.3 we showdiois composed, while
the properties field is considered as black box, since its values vary depgrah the
attestation concept chosen.
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In our proof of concept prototype theoperties data consists of measurements repre-
senting the images of the client compartments using the TuSt&d Channel extracted
from aConfiguration Data StructuréC'DS) and corresponding signed f erence va-
lues (see Sectioh 913). Th&DS itself holds a list of measurements of the binary
images of all client compartments running on top of the TCB.

Determination of endpoint trustworthiness: The trustworthiness of the peer's TCB

is determined by evaluatin§jigsx r (cf. Section9.5]1) and the TCB measurementin-
cluded inSKAFE usingre ference values provided by trusted third parties. To verify
the validity of K., Sigpsex is checked. Then the linkage between secure channel
endpoint and:D is verified by inspectingig,p. Freshness aiD is guaranteed com-
paring nonceSD to the nonces sent the hello messages. Finally, the trustiness

of compartments running on top of the TCB is determined inxt sgep by evaluat-

ing CDS using either additionate ference values provided by the peer within the
properties data field or by trusted third parties.

Also other concepts of attestation are supported. If, ¢hg., TCG attestation mech-
anism should be used, a digestafnceSD, PK.,. and PK4, is given as external
data to theTPM_Quote() function of the TPM[[114]. This is done to provide freshness
of TCG attestation datauDr¢c¢) and to replac&igpsepx. SKAE is not needed here
because the AIK is used to sign the relevant values insid&Phé.

Since TLS handshake messages are usually sent in clearinexgse privacy
of attestation information is desired by one of the commatdn partners, no
SupplementalData messages are sent within the first handshake. Subsequestiy;
ond handshake is performed directly after the first one tha&mnge attestation informa-
tion encrypted using the session key negotiated in the pussiandshake [105].

9.6 Generic System Architecture

Our generic system architecture is based on security frame&nas proposed, e.g.,
in [97], [102], and consists of aApplication Trusted ServiceVirtualizationas well
asTC-enabled Hardware Layee kept our approach generic, thus it is possible to
implement/integrate the components in different systelss @an common operating
systems like, e.g., Linux or Windows. But, if these monatit®Ss are applied, some
constraints have to be considered when looking at the sgafisuch implementations,
because in general they are not capable to ensure stromgiasobf processes and
corresponding data.

TC-enabled Hardware Layer: The hardware layer has to offer TC extensions that
are conforming to the relevant TCG specifications (e.g 4L IThis essentially means
that it comprises a TPM chip and a compatible BIOS.

Virtualization Layer : The virtualization layer offers and mediates access tarakn
hardware components like, e.g., CPU and MMU. These taskdegmerformed by
many kinds of virtualization techniques, namely hyperkdsonicrokernel approaches
or a common OS running a virtualization application, e.dMware [125].

Trusted Service Layer. This layer consists of security servicés|[10] and provides
interfaces to the Application Layer. It also mediates anahitoos access to virtualized
hardware resources. Subsequently, we briefly describe #ie components of the
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TCB in our approach:

e Trust Managel T'M) provides functionalities used for establishing Trustédc
nels. To be able to provide this functionality/ bundles multiple calls to the
TPM into a simple API for calling instances. Thus, it offeusittionality to gen-
erate keys, bind/unbind, seal/unseal, certify these keys oeport the current
measurement values of the TCB stored inside the TPM. Thelssd in the ini-
tial handshake are computed and held byilié. They never leave the TCB.

e Compartment ManagefCM) is responsible for starting and stopping compart-
ments. It measures the compartment code when starting iassigns a locally
unique ID to this compartment. This ID as well as the measargsare reported
to thelntegrity Managern(see below).

e Integrity Manager(/M) stores the compartmentjgsoperties. In our approach
this means appending the measurements reportedbytogether with a unique
ID to CDS (cf. Sectiof9.b).IM keeps theCDS secure by storing it inside the
TCB’s memory space and provides it to other TCB components.

e Policy Manager(PM) stores platform and application policies and provideathe
to other components of the TCB when neé%?ed

e Storage Manage(SM) handles persistent data storing for the different compart
ments.

Application Layer: In this layer the applications run in isolated compartraefithis
can be either applications running directly on top of theariyxing TCB or whole OSs.

9.6.1 Trusted Initialization

To be able to attest a platform’s configuration, its hard- softiware components are
measured reliably and those measurements are storedlgedur@ngoing measure-
ment process is effected originating from t@ere Root of Trust for MeasuremBnt
that initiates the measurement process up to and exclud@ngpplication Layer. Ev-
ery component that has to be loaded during the boot processasured before passing
control over to it.

Consequently, &hain of Trust(CoT) is established and the TCB is measured re-
liably. These measurements are stored inside the TPM anelsent thestatic config-
urationin our approach, because it must be only modifiable with aesyesnt reboot.
After the boot process platform monitoring is conducted®y . Thus, CM extends
the CoT when a client compartment is loaded that runs on tdpeoTCB. CDS that
reflects the platform configuration is maintained/dy. The configuration of compart-
ments that run above the TCB representstjigamic configuratiobecause we allow
state changes to happen.

In our approach the CoT is initially built-up until the TCB lisaded and run-
ning. To be able to provide support for Trusted Channels a Rd&gded using
TPM_GetRandom() at boot-time, provides random. After the system has boaofed-
and the TCB is in placel’M unsealsX.,. and K4, and signs their public parts with
SKskag. TM now holdsKey., Kgign, PKskar andSigespx . Thus, the system is

11This component is not implemented yet, for the prototype pytied fixed policies.
12Thjs is a small piece of code initiating the measurementgs®at the very beginning of the boot process.
Usually, this code is located within the BIOS.
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initialized and ready to set up a Trusted Channel.

9.6.2 TCB Update Management

We want to be able to change the TCB configuration without esting a new TLS
certificate every time this is done. This is an importantésBacause on the one hand
re-certification of the TLS endpoint and its keys is expesasind on the other hand we
want the keys to be securely bound to a specific platform cordigpn to be able to
prove that they have not been compromised.

Using non-migratable keys during the handshake would bsdfest way to protect
keys from being compromised but resealing such keys toerdift TCB is not possible
[119]. Therefore, we present a procedure that allows theutgpof the TCB without
compromising the TLS keys and thus preserves the validiti@®fT LS certificate.

The problem here is that a system in an updated state (arekitfpas to be able to
judge its former state, because otherwiSe,. and K;,, may have been compromised
and a new certificate is needed. To achieve this, we keep aeseungelog. The
changelog holds names and hash values of components that have bealhethsir
removed. Additionally it contains a link to a certificate byrasted third party (e.g.,
manufacturer) that vouches for these values.

The update process starts with unsealithg,,, andSK.,.. Then the newackage
is downloaded from a trustworthy entity together witht,,;,44:. cOntaining the hash
value of the component after installation. Thény/ computes the foreseen config-
uration of the platform after the installation using the thagslue comprised in the
certificate replacing the values of the removed componetitérC DS and it updates
changelog accordingly. SubsequentlyK.;,, andSK.,. are sealed to this state. In a
last step the newackage is installed. After this process the platform has to be réddo
to let the changes take effect.

After the platform is initialized again, a nelisx 4 r and relatedK A E have to be
created. From then on the nessx 4 is used to signPK.,. and PK,;,, creating

Si9BSEK -

9.7 A Trusted Channel Implementation with OpenSSL

As basis for the implementation of the Trusted Channel wesehioe Xen Hypervisor
[128]. The components £M, SM, IM, and CM— mentioned in Sectioh 9.6 have
been developed within the OpenTC]86] 68] and EMSCB [36]qmis. We used these
services and extended them where needed.

9.7.1 Implementation Architecture

In order to confine the size of the Trusted Computing Base (T@®B designed the
Trusted Channel split into two groups of components.

One group (thel'LS backend), minimal and part of the TCB, performs the secu-
rity critical operations: encryption/ decryption, MAC calation/verification and the

13This could be package structures as used by several Lintribdigons, e.g., rpm or deb.
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management of the TLS session are performed’dy, while the storage of sensitive
data like keys and certificates is done $i/ F.

The actual protocol implementation (tH&.S frontend), instead, runs in the same
compartment as the application and is not needed to be drustes its size is not
important. Applications already using the TLS implemeiotaive chose to enhance
(OpenSSL) must be slightly modified to be able to set up a &l6hannel instead of
the standard TLS secure channel.

But, our architecture is also capable to support the prowisi Trusted Channels
as a service, running in a separate compartment and imptecthas proxy. If so, the
application directly bound to the adapted TLS protocol is $ervice providing the
Trusted Channel to other applications.

We identified at least two types of interaction between a t@di€hannel service
and a generic application: explicit or implicit invocatiolm the first case the applica-
tion explicitly requests the service (i.e. the proxy) fottieg) up a Trusted Channel. A
convenient implementation could use the SO otocol as a carrier of the neces-
sary calls. In case of implicit interaction, the applicatis unaware of the setup of the
Trusted Channel. A communication policy, set within the T@Bforces transparently
the redirection of the application’s communications to Thested Channel service. A
convenientimplementation could rely on a transparentyidee the one implemented
by SQUID [108].

With both explicit and implicit invocation, a scheme usingair of proxies on
both sides can be set up, thus implementing a tunnel viaddushannel to carry the
end-to-end communication. With the explicit invocatidrisialso possible so set up a
scheme with a proxy only on the client-side, directly corimegvia Trusted Channel
to the server.

9.7.2 Enhancements to OpenSSL

OpenSSL[8F7] is a multi-platform and widespread softwaodiivimplementing cryp-
tographic operations, SSI__[63] and TLS [27] protocols, tmecsling/decoding of
X.509 [48] certificates and of other PKI-related formatliRKCS [60] standards.
It consists of two shared librarieki(bssl andl i bcr ypt 0) implementing all the
features and a command line toolpenssl ) wrapping them. The libraries can also
be directly used by generic applications.

OpenSSL also offers the possibility to delegate the exeoutf (a subset of) cryp-
tographic operations to a separate module called engiris.i§ h shared library, with
a well-known interface, which can be dynamically loadedwat-time and used by
OpenSSL’s core libraries: more than one engine can be usamtcat An engine can
be implemented in software or the library can be just theedrfior a hardware crypto-
graphic device.

We built the Trusted Channel around three different enhaecgs to OpenSSL,
represented in the right-hand part of the Fiduré 9.4 andritestin the following.

TLS protocol extensions The stable version of OpenSSL (0.9.8x) does not imple-
ment any extension while the development version (0.9.8%) imcludes hard-coded

14The trusted initialization described in Sectlon 916.1 @lired using the TrustedGRUBGRUB) boot
loader [4]

1550CKS is a well-known protocol for the communication wittoxies [73]. The proxy is then the
application directly using the adapted TLS and running agse
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Figure 9.4: OpenSSL enhancements and Proof of Conceptypeto

support for the extensions defined in[[95]@&entHello and ServerHello messages.
We implemented a mechanism to easily add generic and apphiedefined extensions
to these messages, usable to trigger the delivefy.pplementalData handshake mes-
sage([105], also newly implemented because not natively@tgd. These are the only
direct enhancements to OpenSSL, implemented as patdhiss| 's code, which ex-
pose an API for registering new Hello extensions or dataStarplementalData via
callback functions.

Trusted Channel management library. This is a completely new module realizing
the Hello extensionsi Ext and SCEzt (on top of the enhanceldi bssl ) and the
logic of the Trusted Channel's specific operations. It alaodies the parsing and
the validation of the credentials received during the hhaks (PK 4k, PKign and
PK.,.) and it manages the validation of the attestation datadieandSig,p) carried
through theSupplementalData message. Finally it provides the application with an
interface to set up the Trusted Channel.

TLS backend via split engine To implement our concept of delegating the secu-
rity critical operations, we implemented an OpenSSL engpli into two parts. The
shared library implementing the engine interface runs & dpplication (or proxy)
memory space together with the Trusted Channel manageibearyl andl i bssl :
they all form theTLS frontend. The latter requests the execution of critical opera-
tions over a communication channel at theS backend, which actually provides the
functions needed by the TLS protocol and runs in a differemygartment as part of
the TCB.

9.7.3 Proof of Concept (PoC) Prototype

Figure[9.4 shows a PoC prototype of our OpenSSL-based Tr@tannel implemen-
tation built upon Xen.

The TLS backend runs in DomainBf — the Xen privileged domain — and uses
TrouSerS — an open source TCG Software Stack (TSS) [117] €desa the TPM
capabilities. It can be decomposed in: (1) server-side shéendpoint for the com-

16Because the root account in Domain0 has full access to @liress and services, protection against a
malicious administrator is not possible in our PoC.
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munication with theT'LS frontend via TCP-based protocol, (2) the Trusted Platform
Agent (TPAE in charge of dealing with the life-cycle management of afidentials
and implementing a minimal Storage Manager and (3) a soéwerdule partially im-
plementing a Trust Manaﬁrwhich performs all cryptographic operations during the
handshake and the TLS session.

9.8 Security Considerations

In this section we carry out a short reevaluation of the dgctequirements adopted
from [10] and presented in Sectibn 9J2.1 with regard to ow approach.

(SR1) Secure channel propertiesTLS provides secure channel properties during
transmission. On the endpoints the TCB offers those prigseriConfidential-
ity and integrity are provided by trusted initializatiosplation of the TCB and
platform monitoring. The conceptis even able to providegetion against a ma-
licious administrator, because the measurements of theCB@Bot be faked, and
if the TCB is properly configured (expressed by its measurgg)git should not
be possible to tamper with the TCB while running. The TCB a#a@s care of
authenticity and freshness by securely storing noncesessis keys. As a result
of platform monitoring, every manipulation of a compartrnsmoticed and ac-
cess to sensitive data can be barred if necessary to ensusedtrity properties.
Furthermore, SM provides storage that can preserve sebarmel properties in
case that data is stored persistently.

(SR2) Authentic linkage of configuration information and secure channel: Au-
thenticity of communication is guaranteed by providifegt s that is used to
authenticate the endpoints (cf. Secfion 9.4). The secnkadie of configuration
information to the endpoints is verified by evaluating $¥%€AF, Sigpsgx and
SigaD .

We assume a secure as well as specification conformantamesitk ; orqq. (Stor-

age Root Key) andl] K. We further assume that a TCB whose configuration has
been evaluated by the counterpart is able to reliably tearsinfiguration infor-
mation related to the client compartments and takes cafeafdcure storage and
application of the keys used within the handshake. A pdgsilfor the retrieval

of CA keys for verification of signatures is also anticipated

After a successful evaluation of the credentials transtkrthese statements can
be made: All keys are bound to the same TCB. This TCB is spddifjemea-
surement values incorporated§i A E. Thus, theproperties and thechangelog
sent originate from this TCB becau$é;,, and SK.,. are sealed to this TCB
and signed bYW Ksx A k.

SeK, Kggn, and K., are kept inside the TCB during the whole session. Due to
the isolation property of the TCB those keys cannot be disgldo compartments
or to other platforms. This is the reason why we claim to piewbetter forward
secrecy for session keys in case of using RSA as key exchaatimd Relay
attacks as well as attacks to obtain any keys establishan@riisted Channel are

17TPA has been developed within the OpenTC [86] project
18ywe chose to use the OpenSSL libraiybcr ypt o
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not feasible assumed that no hardware attacks are applied.

(SR3) Privacy: With regard to configuration data transmitted, we providessp
bility to send it encrypted to protect potentially sensittlata (see Sectidn 9.5.2).
Only the configuration of TCB and the TLS client compartmestseported to
the peer, keeping the information disclosed to the othdfgsta as minimal as
possible. Furthermore, every communication partner caasasthe trustworthi-
ness of its counterpart and thus, make a judgment on whethértreat personal
information according to its security policy.

9.9 Functional Considerations

To meet the functional requirements (cf. Secfion 9.2.2pfdihg measures have been
taken:

(FR1) Fastdeployment support:To make a fast and widespread deployment of our
approach possible, we decided to adapt TLS as a commonlypustztol to sup-
port the exchange of endpoint configuration informationrtii@rmore, we took
an existing TLS implementation (OpenSSL) and adapted itutoneeds. Thus,
the effort that had to be put into the implementation of oysrapch was moder-
ate and will presumably be even smaller for other existin@ Thaplementations,
since we had to add features like, e.g, extension suppat,nibrmally should
already be integrated. Additionally, we only applied methms and concepts
already defined in existing specifications. Thus, it is na@essary to go through a
time-consuming specification process. Finally, our newcepnis able to support
all common key exchange methods of TLS.

(FR2) Minimal costs: For the implementation of our
concept we used commercial off-the-shelf hardware.
Thus, no expensive cryptographic hardware is necessanly Qpen Source
Software was used for the realization of the software pahne fesulting code is
available without charge and incurs no additional licensgt for the user. In
contrast to[[10], we also decoupled TLS certificate keys fifixed platform
configuration by introducing a TCB update mechanism (cf. tisr@.6.2) that
enables updates of the TCB without losing track of the stédtegplatform went
through.

(FR3) Minimal overhead during handshake: To be able to ensure fast response
times, we do not rely on the direct usage of the TPM. This winddce too much
overhead since the TPM is currently connected to a LPC-Batdiids only limited
bandwidth and its processing power is also very restrictduis, we decided to
involve the TPM only for system initialization. From thenalhfunctionalities are
provided by Trusted Services. Thus, even in a server envieon fast response
times are ensured. The overhead induced by transferriagtation information
is minimal, since the amount of data transferred is compaigitsmall. We tested
this in a testbed and the results showed that there is ndfisigmi performance
overhead induced by inserting and transferring the extessi

(FR4) Flexible configuration reporting: By incorporating the possibility to transfer
whatever integrity/ configuration information (e.g., $86]) one may want to pro-
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vide, using a black boxroperties field, we ensure interoperability and safeguard
forward compatibility of our concept. We showed that, etige TCG approach
to use therPM_Quote() [119, p.160] for attestation is also supported (cf. Section
©.9).

(FR5) Backward compatibility: To be sure that also peers only supporting common
TLS secure channels can communicate with systems that usencept, we only
used or defined extensions to the different specificatiortss& extensions are
ignored if they are not supported. Furthermore, we kept thel@implementation
separated from the application layer offering a transpgaweage of the Trusted
Channel. Thus, applications do not have to be adapted to osskef our concept.

9.10 Summary

In this paper we presented a security architecture as welhaglaptation of the TLS
handshake to provide a Trusted Channel that combines theityefeatures of a se-
cure channel with the ability to determine the trustworgisis of the communication
endpoints.

After a detailed description of our design and its impleraéioh, we showed that
our approach is able to meet the strict requirements seeibéginning. By meeting
these requirements we are able to provide a means to fightaofytiireats to today’s
and tomorrow’s distributed applications with a concept thaeployable in the short-
term.

In a next step we plan to hand in a RFC for our extensions toBR& lconsensus
process and we work on adapting IPSec to be used as Trusted& paotocol. A for-
mal security analysis of the presented TLS handshake igsiuioj future work as well
as the adaptation of other protocols, e.g., SSH, to fit thdsieta Trusted Channel.
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Chapter 10

Towards Dependability and
Attack Resistance

Bernhard Jansen, HariGovind V. Ramasamy, Matthias Schamé Axel Tanner
(IBM)

10.1 Introduction to Dependable Virtualization

In this chapter, we explore opportunities for dependafditd security made available
by virtualization, and provide detailed information on hwistualization affects sys-
tem reliability. We make four contributions: (1) a surveydependability and security
enhancements enabled by virtualization, (2) a prototypeatstrating the effective-
ness of hypervisor-based intrusion detection, (3) rdligbinodels and analysis of the
effects of virtualization, and (4) an architecture for datkility-enhanced Xen VMM
that leverages a subset of the enhancements.

We describe ways of leveraging virtualization for deperilitgland security en-
hancements, such as response to load-induced failurefiattation of patches in an
availability-preserving manner, enforcement of failesaEhavior, proactive software
rejuvenation, and intrusion detection and protection. A&cdbe in detail a Xen-based
implementation of a subset of these enhancements, pariguhtrusion detection and
protection. The intrusion detector, called X-Spy, uses\dlpged Xen VM to monitor
and analyze the complete state of other VMs co-located oseathme physical platform.
X-Spy is close enough to the target monitored to have a higheggeof visibility into the
innards of the target (like host-based intrusion detecdidremes). At the same time,
thanks to the isolation provided by the VMM, X-Spy is far egbdrom the target to
be unaffected even if the target becomes compromised (Bkeark-based intrusion
detection schemes). A key challenge in implementing X-Spg thesemantic gap
i.e., the proper interpretation of process informatiorngegd from the VMs monitored
in a completely different VM.

We provide detailed information on how virtualization affean important depend-
ability attribute, namely reliability. The VMM is increasjly seen as a convenient
layer for implementing many services such as networkingseudirity [41] that were
traditionally provided by the operating system. We show whgh designs should be
viewed with more caution. We use combinatorial modelingrtalgze multiple design
choices when a single physical server is used to host meiltiptual servers and to
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quantify the reliability impact of virtualization. In ligtof the prevailing trend to shift
services out of the guest OS into the virtualization layer,slow that this shift, if not
done carefully, could adversely affect system reliahility

We describe a reliability-enhanced Xen VMM architectusdleziR-Xen that com-
bines replication, intrusion detection, and rejuvenatiarmally, the Xen VMM con-
sists of a relatively small hypervisor core and a full-fledigeivileged VM calleddomO
that runs a guest OS (Linux). Regular VMs running on the Xen\Wkre calleduser
domainsor DomUs Because of its size and complexity, DomO is the weak point in
the reliability of the Xen VMM. R-Xen focuses on improving B@ reliability (and
thereby improving the Xen VMM reliability) through threeldl replication. The three
DomO replicas each contain X-Spy implementations to miytuabnitor each other
and thus detect the presence of faults and/or intrusioreeiother two. If two replicas
report to the hypervisor that the third is corrupted, thedryfsor terminates and reju-
venates the corrupt replica. If the replica terminated kagpo be th@rimary replica
that provides device virtualization for user domains, tbae of the two backups be-
comes the new primary.

The remainder of the chapter is organized as follows. Seffid describes re-
lated work in the area of virtualization-based dependgbéind virtualization-based
intrusion detection. In Sectidn_10.2, we describe at a higkt several dependabil-
ity and security enhancements (including intrusion d@ecand protection) that are
made possible by virtualization. Section 10.3 describedpy; our Xen-based proto-
type implementation of intrusion detection and protecti®ectio 104 analysis the
reliability impact of virtualization and highlights the portance of VMM reliability
to the overall reliability of a virtualized physical node.olivated by the conclusions
of our reliability analysis and leveraging our X-Spy implentation, Sectiof 10.5 de-
scribes an architecture for a more reliable Xen VMM.

10.2 Using Virtualization for Dependability and Secu-
rity

Commodity operating systems provide a level of dependgliind security that is
much lower than what is desired. This situation has not cednguch in the past
decade. Hence, the focus has shifted to designing dependall secure systems
around the OS problems. Thanks to the flexible manner in wiidhstate can be
manipulated, virtualization can enable such designs. iitiquéar, VM state, much like
files, can be read, copied, modified, saved, migrated, anaree[41]. In this section,
we give several examples of dependability and security medraents made possible
by virtualization.

Coping with Load-Induced Failures: Deploying services on VMs instead of
physical machines enables a higher and more flexible reséi¢o load-induced fail-
ures without requiring additional hardware. Under loadditions, the VMs can be
seamlessly migrated (using live migration[23]) to a lightbaded or a more pow-
erful physical machine. VM creation is simple and cheap, mlilee copying a file.
In response to high-load conditions, it is much easier toadyically provision addi-
tional VMs on under-utilized physical machines than to jsmn additional physical
machines. This flexibility usually compensates for the tddal resources (mainly
memory) needed by the hypervisor.
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Patch Application for High-Availability Services: Typically, patch application
involves a system restart, and thus negatively affectdceawvailability. Consider a
service running inside a VM. Virtualization provides a wdy@moving faults and vul-
nerabilities at run-time without affecting system availiéyo For this purpose, a copy
of the VM is instantiated, and the patch (be it OS-level ovieerlevel) is applied on
the copy rather than on the original VM. Then, the copy isarst for the patch to
take effect, after which the original VM is gracefully shuveh and future service re-
guests are directed to the copy VM. To ensure that there anadesirable side effects
due to the patch application, the copy VM may be placed unpecial watch for a
sufficiently long time while its post-patch behavior is lpmbserved before the origi-
nal VM is shut down. If the service running inside the VM istefal, then additional
techniques based on a combination of VM checkpointing (§Z}). and VM live mi-
gration [23] may be used to retain network connections obtiginal VM and to bring
the copy up-to-date with the last correct checkpoint.

Enforcing Fail-Safe Behavior and Virtual Patches: The average time between
the point in time when a vulnerability is made public and achas available is still
measured in months. In 2005, Microsoft took an average tim&4.5 days for issuing
critical patches for Windows security problems reportetheocompany[126]. Devel-
oping patches for a software component is a time-consuniocegss because of the
need to ensure that the patch does not introduce new flaw$eat #fe dependencies
between the component involved and other components iry8tera. In many cases,
a service administrator simply does not have the luxury spsading a service imme-
diately after a critical flaw (in the OS running the servicdtar service itself) becomes
publicized until the patch becomes available.

Virtualization can be used to prolong the availability oétkervice as much as
possible while at the same time ensuring that the servicalisdfe. We leverage the
observation that publicizing a flaw is usually accompanieddtails of possible attacks
exploiting the flaw and/or symptoms of an exploited flaw. Depéng an external
monitor to identify attack signatures or symptoms of an eitptl flaw may be done
independently of patch development. The monitor may alsdeveloped much faster
than the patch itself, because the monitor may not be sutgeitte same stringent
testing and validation requirements.

Consider a service running inside a VM rather than direathaghysical machine.
Then, a VM-external monitor, running in parallel to the VMycbe used to watch for
these attack signatures or detect the symptoms of exptwitaf the flaw. If attack
signatures are known, the VM-external monitor can be usétbitk the attack, e.g. by
filtering the incoming network stream, to terminate intéi@cwith the attack source,
or to protect targeted structures inside the VM, e.g. theegysall table. If only symp-
toms of exploitation are known, detection of a compromiselmmused to immediately
halt the VM. The monitor could be implemented at the VMM legein a privileged
VM (such as Dom0 in Xeri[11]). Ifitis important to revert thergice to its last correct
state when a patch becomes available, then the above teettaq be augmented with
a checkpointing mechanism that periodically checkpoimtsstate of the service with
respect to the VM (e.g/.]7]).

Proactive Software Rejuvenation:Rebooting a machine is an easy way of rejuve-
nating software. The downside of machine reboot is thatéhédce is unavailable dur-
ing the reboot process. The VMM is a convenient layer foodticing hooks to proac-
tively rejuvenate the guest OS and services running insidd & a performance- and
availability-preserving way [93]. Periodically, the VMMan be made to instantiate a
reincarnation VMfrom a clean VM image. The booting of the reincarnation VM is
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done while the original VM continues regular operation réiy maintaining service
availability. One can view this technique as a generaliratif the proactive recovery
technique for fault-tolerant replication proposed by Re&nd Kapitza [93].

As mentioned above in the context of patch application,i@ples based on VM
checkpointing and live migration may be used to seamlesshsfer network connec-
tions and the service state of the original VM to the reinadiom VM. It is possible to
adjust the performance impact of the rejuvenation proeedarthe original VM’s per-
formance. To lower the impact, the VMM can restrict the amaimesources devoted
to the booting of a reincarnation VM and compensate for th&iction in resources by
allowing more time for the reboot to complete.

One can view the above type of rejuvenation asmemory-scrubbingechnique
for reclaiming leaked memory and recovering from memorgsrof the original VM.
More importantly, such a periodic rejuvenation offers a wagroactively recover from
errors without requiring failure detection mechanismsifhitare often unreliable) to
trigger the recovery.

Intrusion Detection and ResponseBased on the location of the intrusion detec-
tion sensors, intrusion detection system (IDS) implem@nia are broadly classified
into host-based IDS (HIDS) and network-based IDS (NIDS).[46 NIDS monitors
network traffic from and to the target, and analyzes the idd&l packets for signs
of intrusion. Because of its isolation from the target morgtl, a NIDS decreases
its susceptibility to attacks and is largely unaffected bgoanpromised target. How-
ever, as network traffic becomes increasingly encryptedaartie NIDS has no direct
knowledge of the effects or properties of the attack targhtsusefulness of NIDS is
decreased. The fact that not all intrusions may manifest #ffects in the form of
malicious traffic also lowers the utility of NIDS. The sensaf a HIDS are placed
on the target machine itself, giving them a high degree dbiity into the internals
of the target, enabling closer monitoring and analysis eftdrget than NIDS does.
However, the location of HIDS on the same “trust compartrhasithe target is also a
disadvantage: after an intrusion into the target, the HIR no longer be trusted.

Virtualization provides a way of removing the disadvantageHIDS and NIDS,
while retaining their advantages. In our approach, the@srare placed in a special
privileged VM (called thesecure service VMr SSVM) used for monitoring other VMs
hosting regular production services (calf@dduction VMsor PVMs). The placement
of the sensors on the same physical machine but in a difféfigihdllows monitoring
and analysis of the complete state of other VMs via the VMMJ ahthe same time,
keeps the sensor out of reach of a potentially compromise@wd/in a secure vantage
position.

The twin characteristics of proximity to the target and asimin from the target
also make the SSVM a convenient location for implementitiggion response mech-
anisms. The secure vantage point of the SSVM allows one téemmgnt otherwise
difficult responses, e.g., even a simple response like dglvat a compromised sys-
tem’ may not be effectively triggered from inside the commpiged system. On the
other hand, it is easy and effective to suspend the opesatiba compromised PVM
from the SSVM. In addition, the SSVM can instruct the VMM tmpision a healthy
replacement PVM or block suspicious system calls that magntially tamper with
the integrity of the kernel.

For effective rejuvenation of a compromised PVM by re-psauiing a new PVM,
it is not sufficient to merely boot the new PVM from a clean staThe new PVM
might still possess all the vulnerabilities of the comprsed one. Hence, it is impor-
tant to perform a forensic analysis of the compromised P\&tse to remove as many
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vulnerabilities as possible. Such an analysis is facddaty the virtualized environ-
ment hosting the SSVM. The SSVM can obtain not only modifiesfdf a suspended
PVM, but also its complete run-time state from the memory puneated at the time
of suspension. The memory dump can be examined using theteah@ques as the
one used to observe the state of a running PVM from the SSVMh®@ipurpose of
intrusion detection.

10.3 Xen-based Implementation of Intrusion Detection
and Protection

In this section, we describe the prototype implementatiba subset of the security
enhancements mentioned above, namely, intrusion deteatid protection for VMs.

Later, in Sectiof 1015, we leverage the implementation fidoieing fail-safe behavior
and for triggering software rejuvenation in our constroctdf R-Xen.

10.3.1 Intrusion Detection and Protection for Xen Virtual Ma-
chines

We have implemented an intrusion detection and protectmméwork calledX-Spy
The core idea is to use a secure service VM (SSVM) that mandoe or more pro-
duction VMs (PVM). The SSVM performs the following functien

Lie Detection The SSVM accesses the memory of the PVM and compares acitual cr
ical system data (processes, mounts, etc.) against daametitby executing
normal Unix commands inside the PVM. If the comparison \selicrepancies,
then that is indicative of a compromised PVM. In contrastddier hypervisor-
based intrusion detection work, X-Spy’s detection mecérasiare more com-
prehensive and include lie detection at the level of praegssetwork connec-
tions, modules, and file system mounts.

Protection We have added a system call inspector to Xen that allows thétarng
of the system calls within the PVM for the purpose of protegtielevant foren-
sic information (like log files) and the integrity of the kefr(kernel structures,
modules, and memory).

X-Spy uses the Xen[11] VMM developed by Cambridge Univgraitd guest VMs
running the Linux 2.6 operating system. Nevertheless, tineepts such as system call
analysis and lie detection can be applied to other operatistgms such as Microsoft
Windows. All X-Spy components are implemented either inXle& hypervisor or in
the SSVM. While their implementation logic depends on thegg®S, X-Spy does not
require any modification to the guest OS of the PVM.

Limitations

To overcome the semantic gap, we assume some knowledgeldring structures of
the guest operating system (specifically, Linux kernel 8d6jhat X-Spy components
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can be appropriately coded. If the guest operating systempgsaded to a newer ver-
sion in which kernel structures are different, then the X-8pmponents need to be
re-coded appropriately. That fact may be an impediment tongercializing X-Spy,
as it implies an ongoing commitment to develop and patch X<®pnponents to keep
pace with upgrades to the guest operating system.

For detecting hidden processes, X-Spy requires that thedsdér of the PVM’s
guest OS keep a list of processes that need to be schedulestandard place within
a known memory structure. If an attacker is able to replaeestheduler with her own
one having a different list of processes, the detection@gar would be subverted.
That is why it is important to protect the integrity of the kel code (for example,
using mechanisms that we describe in Sediion 10.3.4).

The SSVM needs read access to the memory of the PVMs for tip@peiof mon-
itoring them. In addition, it must be possible to do an SSHrldg the PVM from the
SSVM and execute normal Unix commands. These requirementsoatrary to the
isolation guarantees of the hypervisor. The SSVM itseliddecome a high-value at-
tack target, and accordingly, needs stronger protectienei@l measures can be taken
to strongly reduce the potential of the SSVM getting compseh. For example, as the
SSVM is a special-purpose VM (in contrast to PVMSs), it can bedlened, its function-
ality reduced solely to that of monitoring the PVMs, and itsess restricted through a
specific administrative interface.

10.3.2 Architecture of X-Spy

The architecture of the X-Spy intrusion detection framewisrshown in Figuré 10]1.
Our architecture consists of a PVYM and a SSVM running on tah®kame hardware
and Xen hypervisor. In our implementation, both the SSVM #redPVM run Linux
kernel 2.6. The SSVM obtains the run-time state of the PVMulgh the Xen hyper-
visor, which is at a lower level of abstraction than both ti#/& and the PVM. The
SSVM has access to the raw devices of the PVMs (memory, ditlyank); however,
the difficulty lies in the SSVM properly interpreting the daiecause of a semantic
gap [21]. For example, the physical memory of the host systéhbe made available
in chunks apseudo-physicahemory to the VMs. In addition, the (possibly different)
operating systems of the VMs use a virtual address spacepasf the physical mem-
ory, leading to the problem of properly interpreting raw nogyocations in a different
context.

10.3.3 Intrusion Detection by means of a Lie-Detector

The basic idea of the Lie-Detector is to compare the insiddrautsider views of the
system to identify objects (processes, files etc.) thatargide themselves from the
operating systeni[12]. Such behavior is typicalrobtkits which are then used to
hide other (typically malicious) software, but is also stimes characteristic of DRM
functionality (e.g. the XCP content protection technolbgysony BMG in 2005). The
Lie-Detector (FiguréI0l1) consists of three major funudilities:

1. PVM Information Collection: The Lie-Detector collectsormation about the
PVM by two different means: theativeinterface and thé&ontDoor interface.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



136 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

SSVM . PVM
User Space Event Handling
( Lie - Detector W
L Normalizer )
S 1@ |3
@
=3 |90
21815
ssh ]
Kernel 1T TCP/IP TCP/IP
. 3
MTI
Xen
Hardware

Figure 10.1: Architecture of the X-Spy Lie-Detector compnts.

2. PVM Information Normalization: The PVM information celited via the native
interface is normalized to a format equivalent to that of otands executed
through the frontDoor interface.

3. Analyze-and-Compare: The normalized information frtva@ hative andront-
Door interfaces is then compared to identify differences thatiadicative of
maliciously hidden system resources and to minimize fatsgtipes. Any find-
ings will be reported through tHevent Handlingcomponent.

We describe the above functionalities in detail below.

Memory Translation Interface (MTI)  One of the main components of X-Spy is
a Memory Translation Interface (MTI) that allows the SSVMI faccess to a PVM’s
pseudo-physical and virtual memory in a convenient fashidre MTI has two parts:

1. An extension to the Xen hypervisor, which performs adslitesnslation and
traversal of the page tables.

2. A Linux kernel device driver that runs in the SSVM kernedigamovides two in-
terfaces, namely,dev/ nem domXand/ dev/ kmem donX. These interfaces
are functionally equivalent to thedev/ memand the/ dev/ knemdevice files,
respectively, and allow the root user in the SSVM kernel ss¢e the PVM's
physical memory and kernel memory contents, respectively.

One challenge to overcome when implementing the MTI wasttieSSVM cannot
access a PVM’s foreign memory as it corresponds to a diffeventext. Therefore,
the MTI has to emulate the memory management unit by trangléhe address to
the right format and re-mapping it from the PVM memory spane&odhe memory
space of the Lie-Detector process running in the SSVM. Fisrgrpose, we have
developed two user-space libraries that the MTI usesGihest Domain Memory Ac-
cess Libraryor GDMAL and theProcess Memory Translatar PMT. The GDMAL

provides read-write access to the PVM’s memory. Within tMVIB memory, the

PMT allows access to the virtual address space of PVM presess addition, the
PMT provides some helper functions to facilitate the usehef/tdev/ nem domX
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and/ dev/ kmem donX interfaces. The PMT performs the process address transla-
tion by extracting the memory management information ferpghocess from the OS-
specific task (process) description data structure. Whemytiest OS is Linux, as in
our case, the PMT extracts then st r uct data structure from theask st r uct

data structure.

Thenative interfacas used to collect PVM information “from the outside” thrdug
the raw access made available by the Xen hypervisor, e.g.césaing the PVM’s
memory via the MTI, and to collect host-specific data via sgacser-space libraries
that we have developed, namely the process list library JPihle network connection
and routing library (NCRL), and the module list library (M)LL

The second interface, called tirentDoor interface is used to obtain PVM infor-
mation by doing an SSH login to the PVM and executing normakldommands.
The Lie-Detector normalizes the information collectechirboth interfaces, and then
compares them. If the comparison yields discrepanciesarirtformation collected
from those two sources, this is strongly indicative of amusion. Obviously, it is not
possible to obtain information through the frontDoor ifdee and the native interface
at exactly the same time. This timing difference may leadateef positives, and we
explain below how to overcome this problem. We implement jgarison methods for
processes, network connections, kernel modules, filersysteunts and files.

The MTI provides access to the PVM's raw kernel virtual meynout lacks any
semantic context. To fix this shortcoming, we manually @datmemory offset file
for each Iibrarﬂ. Based on these files, the libraries such as PLL, NCRL, and MLL
implement the logic to extract all data values of interestrfrthe raw kernel virtual
memory. Each offset file stores the offset values of the sfaach data item of interest
from the beginning of the containing structure.

Process List The PLL acts on information provided by the MTI to generatégpati
similar to that of theps command. This is done by accessing and then traversing the
doubly-linked circular task list via the MTI.

Our comparison is based on the multitude of informationastable from this
task_struct data structure, such as PID, state, parent, open files teegipri-
orities, locks, and memory management information. Howevet all fields in the
data structure are used. For example, the running time obeeps as seen by the
native interface query and the frontDoor interface queeylaund to slightly differ,
owing to the difference in the time of query.

This comparison will detect processes in the PVM that algtitey to hide their
presence or change their appearance (e.g. the owner) frerregumade from within
the PVM. This will identify rootkit-like behavior, as noniding processes can be iden-
tified by more conventional (non-hypervisor-based) magndatection tools.

Note that simply comparing the process information fromrthgve and frontDoor
interfaces results in false positives because of frequeanges to the process table.
We fix this by executing a native access (outsider view) leeéord after the frontDoor
query (insider view). If a given process disappeared in deosd query but is again
visible in the third, we consider it to be an intrusion. If dek not reappear, we assume
that the process merely terminated.

Network Connections and Routing We obtain information about IPv4 connections,
Unix socket connections, and IPv4 routing through the eatind frontDoor inter-

1with some effort, it is possible to generate the offset filematically at kernel compilation time.
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faces. For the native interface queries, we have develdpe®CRL library, which
uses the MT]I to collect information equivalent to that obtal from three commands:
‘netstat -an -inet’forlPv4 connections,iet stat -an -uni x’ for Unix
Socket connections, andet st at - r n’ for IPv4 routing. This information can then
be used to discover hidden network connections.

Similar to the timing problem in the Lie-Detector comparisaf process informa-
tion, we face a timing problem in the comparison of networkrgection information
because of network connections that were terminated dedtar the time interval be-
tween the native interface query and the frontDoor interfgwery. The solution here
is again to reduce false positives by using three qLEeries

Module List To obtain information about the PVM’s kernel modules we hdee
veloped another user-space library called the MLL for atitey information from
the native interface query. The frontDoor interface quesgsuthd snmod command,
which outputs the contents 6for oc/ modul es displaying the kernel modules cur-
rently loaded. In addition to the native interface and flar interface queries, the
MLL also queries a third Xen interface for detecting hiddeénux loadable kernel
modules (LKMs). LKMs are a way to link object code withoutdntuption to the
Linux kernel while it is running. Such LKMs are automatigalegistered at loading
time, but it is possible for an LKM to un-register itself afteading. In such a case,
the LKM can hide even from a native interface query (as theeadqg rootkit indeed
does; see Sectidn 10.8.5). To address this issue, we sbtblzsshadow module list
in the hypervisor. The hypervisor traps thei t _nodul e system call and analyzes
the ELF header section of the object file to get the module ramilestores the name
in the shadow module list. The hypervisor also trapsdbeet e _nodul e system
call to remove entries from the shadow module list. As theehnyjsor address space
cannot be accessed by the PVM, the shadow module list caenaltdred by an in-
truder. The Xen interface query shows the contents of thdashanodule list and is
taken as reference for comparison with the results of theeaterface and frontDoor
interface queries. If the results from the native interfacd/or the frontDoor interface
gueries do not list an entry from the shadow module list, wectade that the module
in question is hidden.

Mounts The frontDoor interface uses tluat / pr oc/ nmount s command, which
provides a list of all mounted file systems in the PVM. An olw@lternative would
have been to use the output of theunt command; however that alternative is
less useful and secure because the command merely outgutsotitents of the
/ et c/ nt ab file, and it is easy to mount a file system without an entry shgwip in
the/ et ¢/ nt ab file by using thevount - n command.

The mount list library (MoLB) operates on the PVM information about mounted
file systems collected via the native interface query. Thdisg symbol for obtaining
the information is theé ask_struct structure of the idle task (however, the entry
for any task would be adequate), from where the MoLL gaings&to the/f st
circular list. The list provides complete information abaill file systems currently
mounted.

2Note that the frontDoor query is made through an SSH cormrectivhich will show up only in the
frontDoor query but in neither of the interface queries.
3The MoLL should not be confused with MLL, the module list kiny.
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The mountinformation gathered from the native interfaceryis used as the refer-
ence against which the information from the frontDoor iféee is compared. If there
are mounted file systems that appear in the former but notenattter, we take this
as an indication of a hidden malicious process because nmdoniation is relatively
static, and hence false positives are not a big concern.

File system In the case of the file system, bridging the semantic gap ieigtim-
plies the use of raw access to the physical disk and the detedéfic to rebuild the
file system structures of the guest operating system of thd PMhe context of the
SSVM. Accessing file systems mounted by another operatisigsyis feasible even
for disparate operating systems, e.g. Microsoft Windowd lainux, as for example
shown in[57]. Xen can use a Linux file system existing on tha/Rem0 level to boot
and launch guest domains. This same file system can then betadoread-only by
the SSVM. We then retrieve the file information via the froatldand compare it with
the information of the file system mounted by the SSVM.

For efficiency and simplified forensic recording, we use adeesad-only file sys-
tem and add the CoWNF&py-on-writefile system[[67.94]. This allows us to store
the changes for multiple runs for later forensic analysis protects the original state
of the system from any (potentially malicious) changessTloimbined file system was
then used as an NFS mountable file system for booting the PVM.

10.3.4 Protection of System Integrity and Forensic Inform&on by
means of System Call Inspection

We now outline how X-Spy’s System Call Inspection comporngnsed to protect the
system against intrusions.

Protection of Forensic Information

In case of a successful intrusion it is highly desirable totget as much forensic in-
formation as possible. A smart intruder would want to hiddérates of the intrusion,
e.g., by altering Iog-fil&such as thevt np/ ut np and the/ var /| og/ nessages

files. While these files cannot be modified by normal users)di@rs with root access

“Note that the above protection scheme for log files can ehsilgxtended to protect other important
files, such as Xen VM configuration files, through additiondés in the rule set.
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can. One way to address this issue would be to use a hardestedhsie.g., SELinux).
However, this protects only if the superuser is not alloveechiange the SELinux rules
in a running System.

In a virtualized environment as considered here, we havedbksibility to protect
important files by intercepting the system call sequencéénRVM through the Xen
hypervisor. For this purpose, we added a module to the Xerrrigor, theSystem
Call Inspector(SCI), which can inspect IIsystem calls occurring in the PVM and
either block or accept calls depending on a setutés These rules are stored and
edited in the SSVM (and therefore out of reach of any activityhe PVM), and can be
loaded into the SCI (in binary form) via the Policy Instaltett Tool (PIT).

X-Spy implements a functionality for checking and fine-tumisystem calls by
instrumenting the system call handling chain.iAm 0x80 instruction is intercepted
by an interrupt handler located in the Xen context where kfiagainst the previously
introduced rule set are done. Only after passing the checltgeicall redirected to
the PVM Kernel, where the normal system call handler is imghlotherwise, the call
returns without any action being taken. In certain casessyistem call is allowed after
some fine-tuning, e.g., a modification of the parametersaidie call conforms to the
rule set specified. The amount of performance overhead dsmemnthe type of checks
and fine-tuning being done for a particular system call.

As the interception of the system call happens in the Xenesdnthe problem of
semantic gap has to be overcome to determine which systésraclially merit addi-
tional checks. For our aim of protecting forensic inforroatisystem calls performing
file operations are essential. We protect forensic infoimnaby preventing calls that
rename, link, unlink, or delete log files. Furthermore, weitiaccess to log files by
permitting only the append operation on them. To ensureahailicious process
cannot bypass the checking, we normalized the paths.

If the SCI finds that an application in the PVM tries to inidet system call that
is not allowed according to the rule set, it will block or miydit and send a corre-
sponding event through avent handling kernel modu{EHKM) in the SSVM to the
high-level event handling component with information atibie violated rule and the
corresponding process in the PVM.

Protection of Binaries against User-Space Rootkits

The mechanism used for protecting forensic information aan be used to protect
binaries from being altered by an intruder. Many user-spactkits try to altemps or
net st at to hide their presence or to install a back door by modifyhlmgapenssh
binary. While earlier tools, such as Tripwire, cdetectthe alteration of a binary or
a library, our event-driven approach to check system calts their arguments can
actuallypreventtheir alteration.

In addition, it is possible to restrict read/write accesarn@xecutable, but still allow
its execution. Based on the corresponding rule set, the laede have implemented
in the Xen hypervisor checks whether a system call is tryinghtange, delete, link,
or rename a binary, and if so, the call is denied. As execuifom binary normally
happens through thexecve system call without actually opening the binary file, it
is even possible to add a rule that forbids the opening oatehinaries completely
without disallowing their execution.

5Note that Xen implements a “fast trap” mechanism to enhamcéopnance. If Xen calls are to be
monitored as well, then this mechanism need to be disabled.
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Kernel Sealing

X-Spy also implementgernel sealinga well-known method to protect a system or
prevent intrusions. The kernel memory can be accessedlgitgcreading or, more
dangerously, by writing to thédev/ nemor / dev/ knemdevice files. The rule set
of the X-Spy event-driven module in the Xen hypervisor wadatpd to restrict access
to those files, so that only read requests are allowed and vegfuests return an error
result without performing the write operation.

Accessing the kernel memory by loading a kernel module otinvgridirectly to
/dev/(k)mem is potentially dangerous because it allowsamder to establish its own
interface to the kernel; thereafter, the intruder can gaddce malicious code in the
kernel and have full access to the file system and other kertezhals. X-Spy uses
a technique called/hite-listingby which all kernel modules allowed to be loaded are
explicitly specified along with their respective SHA-1 hagllues. If the module to
be loaded at run-time is not specified in the white-list ort ihas an incorrect hash
value, X-Spy prevents the module from being loaded by préverihe system call
from reaching the PVM kernel space. Note that our X-Spy inm@etation does not
offer protection against buffer overflows on systems calls.

Pre-Checking of Binaries

An effective way of protecting a PVM from user-space roatlar other malicious
software is to check the hash of every binary, prior to itxexen, against a white-list
of pre-calculated hashes and to allow its execution onlydfé is a match. Computing
the hash of the binary has to be done out of the reach of a paltetituder in the PVM
and should also not require modification of the PVM’s OS. Teehtkese conditions,
X-Spy computes the hash of the binary in the SSVM. To enalih sucomputation,
it is necessary that the SSVM has all partitions of the PVM nted; furthermore, the
binary should not be on a RAM disk, on network file system, oaarencrypted file
system that the SSVM cannot access. An alternative would e the computation
in the hypervisor, which would require overcoming the seticagap problem.

For computing the hash of the binary in the SSVM, we use a fgaencalled
memory scanningvhich involves loading the completd ext and. dat a sections
of an ELF binary into memory by setting the program counteh&onext page, asking
the PVM kernel to load the page, and then hashing it while lragthe page fault.

If the hash cannot be verified the hypervisor invalidateofithe memory and
returns the control back to the guest domain. Because ohtladid . t ext section
to which the PC points, the process will crash. Note thatimglyn support from
the PVM’s guest OS does not necessarily constitute a sgayajy, because a non-
cooperative PVM kernel would lead to a wrong hash value arttiisicase, as seen
above, the process will be forced to quit.

10.3.5 Evaluation

While the conceptual limitations have been discussed ini@€t0.3.1, we will now
evaluate the effectiveness and efficiency of our implentema

Functional Evaluation

The goal of the Lie-Detector is to expose malicious code. &alt information is
visible, we no longer focus on whether a particular LKM orgess is hostile.
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We first evaluated our implementation using a set of funetitests that implement
typical rootkit functionality, such as hiding processes;riel modules, mounts, or net-
work connections. Our Lie-Detector correctly exposedtdrapts to hide such critical
information.

We then tested the system using the adore-ng rootkii [10dGréng is an LKM-
based rootkit for Linux kernels which allows one to hide féesl directories, processes,
and network connections. The basic rootkit consists of #reéd module and a user-
space control program. While currently this is the only vgdavailable rootkit for
the Linux kernel 2.6, other similar rootkits exist for earlkernel versions and may be
ported to the 2.6 kernel.

In a fully protected X-Spy system, the rootkit cannot everirtstalled as the in-
sertion of modules is restricted through the SCI interaaptif the respective system
calls and the white-listing of allowed modules. After exjily allowing the rootkit to
insert itself into the kernel, we used its control prograritte processes, files, and net-
work connections. The X-Spy Lie-Detector component regabtthese hidden resources
faithfully by comparing the responses from the native aodtiDoor interfaces as de-
scribed in Section 10.3.3. Although the adore-ng kernelutewill remove itself from
the list of modules visible with snod, detection of the module by the Lie-Detector is
possible with the help of the shadow module list (see disonss Sectiori 10.314).

The rule set used in X-Spy’s event-driven protection meidmrcontained about
110 rules, e.g. to protect forensically relevant files (éxgar / | og/ nessages and
/var /| og/ wt np) and to prevent access to raw memotyév/ (k) mem) , secu-
rity relevant configuration files/ et ¢/ ssh. conf i g), and operating system tools
(/ bi n/ 1 s). In addition, we specified an explicit list of allowed kerneodules (mod-
ule white-listing). Once the rule set was active, it eithengrated security events with
information about the offending processes in the PVM or ssstully prevented the
deletion or truncation of log-files and the modification offiguration and utility files.

Performance Impact

To measure the performance impact of the Lie-Detector aedetrent-driven ap-
proach, we used a single machine implementing a web sereeaso. The PVM
hosted an Apache web server, and multiple clients were atedilusing theab
performance benchmarkingtool (detet p: / / ht t pd. apache. or g/ docs/ 2. 0/
pr ogr ams/ ab. ht m ). The networks were virtual and internal to this machine.

Figure[10.2(3) shows that the performance impact of thellatector depends on
how often it is run. The overhead is roughly 31% when it is ingrtontinuously, 20%
when it is run every 10 sec, and 4% when it is run every 30 sec.

Most practical applications will run infrequent scans. Histcase, the performance
impact of X-Spy is negligible, particularly when compareithathe performance re-
duction of moving Linux into a VM.

In a real-world setting, the frequency of “Lie Detection’ostid be chosen based
on the expected time until an intrusion occurs and the eggetine until such an
intrusion is detected. The latter is an important factoralse it denotes the critical
time window between the intrusion and its detection whenRk®/ is at the mercy
of the intruder, who can take arbitrary actions (such aslirsg a fake website or
copying private information onto a different system). VM runs a critical service
in which the critical time window should be minimized, thémretLie-Detector should
be run continuously.
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Figure 10.2: Performance impact of X-Spy components: nurobtulfilled requests
per second in the HTTP benchmark.

As seen in Figurg 10.2(b), the event-driven method resnlts performance loss
of about 4%. Compared with the 34% overhead incurred by dhgrfgpm a service
running on a non-virtualized platform to that running on enXeased PVM, the loss
incurred by the event-driven approach is minor.

10.4 Quantifying the Impact of Virtualization on Node
Reliability

In this section, we use combinatorial modeling to perforrel&bility analysis of re-
dundant fault-tolerant designs involving virtualization a single physical node and
compare them with the non-virtualized case. The results@finalysis highlight the
importance of improving the reliability of the hypervisor.

We consider a model in which multiple VMs run concurrentlytbe same node
and offer identical service. We derive lower bounds on theNkeéliability and the
number of VMs required for the virtualized node in order tavéndoetter reliability
than in the non-virtualized case. We also analyze the riétiabnpact of moving a
functionality common to all VMs out of the VMs and into the VMNh addition, we
analyze the reliability of a redundant execution schemedaa tolerate the corruption
of one out of three VMs running on the same physical host, amipare it with the
non-virtualized case. Our results point to the need forfohreodeling and analysis
before a design based on virtualization is used.

Combinatorial modeling and Markov modeling are the two nmaethods used for
reliability assessment of fault-tolerant designs [58]. éflese combinatorial modeling
because its simplicity enables easy elimination of “hog&lehoices in the early stage
of the design process. In combinatorial modeling, a systemsists of series and paral-
lel combinations of modules. The assumption is that modaileres are independent.
In a real-world setting, where module failures may not beepehdent, the reliability
value obtained using combinatorial modeling should bertassan upper bound on the
system reliability.

Non-Virtualized (NV) Node: For our reliability assessment, we consider a non-
virtualized single physical node as the base case. We mbeeldde using two mod-
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ules: hardwarel{) and the software machin@{) consisting of the operating system,
middleware, and applications (Figure_10.3(a)) . Thus, thaenis a simple serial sys-
tem consisting off and M, whose reliability is given b)Ré\;‘s/ = Ry Ry, WhereRx
denotes the reliability of modul® (Figure[10.3(b)).

Virtualized Node with n Independent, Identical VMs: Figure[10.%(a) shows a
physical node consisting df, a type-1 VMM () that runs directly on the hardware
(such a VMM is referred to astaypervisoj, and one or more VMs{(M,},i > 1). The
VMs provide identical service concurrently and indeperlygine., without the need
for strong synchronization). For example, each VM could bigtaal server answering
client requests for static web content. Thus, the node isiassparallel system (Fig-
ure[I0.3(b)) whose overall reliability is given B, . = Ry Ry [1 —[];_,(1 — Ras,)].
Here, we consider the reliability of the hardware to be theesas that in the non-
virtualized case because the underlying hardware is the saboth cases. An obvious
concern is whether the hardware in the virtualized noderetlister a significant drop
in reliability due to load/stress compared with the nortuatized node. However, this
concern does not apply to our context of application serveasdata center, in which
typical hardware utilization in a non-virtualized node s/amally low (less than 5%)
andn is typically in the low tens of VMs.

The condition for then-replicated service to be more reliable than the non-
virtualized service is given bRz, > R)Y. i.e., RgRy[l — [[}_o(1 — Ru,)] >
R Rys. For simplicity, letRy;, = Ry forall1 < ¢ < n. This is a reasonable as-
sumption, as each VM has the same functionality as the sodtweachineM in the
non-virtualized case. Then, the above condition becomes

Rv[l — (1 — R]\/[)n] > Ry (101)

Inequality [Z0.1) immediately yields two conclusions. sEijiif n = 1, then again
the above condition does not hol&{ < 1). What this means is that it is necessary
to have some additional coordination mechanism or protbuait into the system to
compensate for the reliability lost by the introductionted thypervisor. In the absence
of such a mechanism/protocol, simply adding a hypervisperao a node will only
decrease node reliability. SecondRif = R, then it is obvious that above condition
does not hold.

It is clear that thénypervisor has to be more reliable than the individual VNIke
interesting question is how much more reliable. Figurelkh®ws that for a fixed
R value, the hypervisor has to be more reliable when deplofgagr VMs. The
graph also shows that, for fixed valuesif; and Ry, there exists a lower bound on
n below which the virtualized node reliability will definitebe lower than that of a
non-virtualized node. For example, whé&a, = 0.1 andRy = 0.3, deploying fewer
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operating VMs providing identical ser-
vice.

than 4 VMs would only lower the node reliability. This is a fidgesult, as in many
practical settingsRy; and Ry values may be fixed, e.g., when the hypervisor, guest
OS, and application are commercial off-the-shelf (COTShponents with no source-
code access.

The equation fofzg, , also suggests that by increasing the number of VMs, the node
reliability can be made as close to the hypervisor religbdis desired. Suppose we
desire the node reliability to b, whereR < Ry. Then,R = Ry Ry [1—(1—Rpy)"].
Assume that the hardware is highly reliable, i8; ~ 1. Then, the above equation
becomes the inequality,

R < Ry[1—(1—Rp)"

:>(17RM)H<17%
= n.log(1l — Ry) < log(1l — %)
Dividing by log(1 — Rjs), a negative number, we obtain,

. log(1 — %)
log(1 — Ryr)’

Inequality [10.P) gives a lower bound on the number of VMsuiezd for a virtu-
alized physical node to meet a given reliability requiretén practice, the number
of VMs that can be hosted on a physical node is ultimatelytéchby the resources
available on that node. Comparing the lower bound with thaler of VMs that can
possibly be co-hosted provides an easy way of eliminatingirechoices early in the
design process.

Figure[I0.6 shows the lower bound farfor two different R values (0.98 and
0.998) as the VM reliability R,) is increased from roughly 0.1 to 1.0, with the hyper-
visor reliability fixed at0.999. The figure shows that for fixe®y, and Rj; values, a
higher system reliability (up t®y-) can be obtained by increasing the number of VMs
hosted. However, whemis large, one is faced with the practical difficulty of obtiaig
sufficient diversity to ensure that VM failures are indepemtd

Moving Functionality out of the VMs into the Hypervisor: We now analyze the
reliability impact of moving a functionality out of the VMsd into the hypervisor.
As before, our system model is one in which a physical node:hasl independent

(10.2)
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Figure 10.7: Moving functionality out of the VMs into the hstisor

and concurrently operating VMs providing identical seevi€onsider a functionality
implemented inside each VM. Then, each \W} can be divided into two components,
f andMi', the latter representing the restbf;. Figure[10.V(a) shows the reliability
model for a node containing such VMs. Let us call this node configuration.
Further, suppose that the functionalityis moved out of the VMs and substituted by
component#’ implemented as part of the hypervisor. Now, the new hyperdensists
of two componentd” and the old hypervisov'. Figure[10./(b) shows the reliability
model for a node with the modified hypervisor. Let us call tivsle configuratiods.

We now derive the condition faf; to be at least as reliable 5. For simplicity,
let us assume theRM; = Ry forall 1 <14 < n. Then, the desired condition is

}%Cb ;2 }%CH

sYs SYSs
= RyRyRp[l — (1 — Ry)"] > RyRy[1 — (1 — RyRyp)"]

[1-(1—RfRu )"
[1—(1—= Ry )"

It is easy to see from Figute 10.7 that if there is only one ViMides not matter
whether the functionality is implemented in the hypervigpm the VM. We can also
confirm this observation by substituting= 1 in inequality [10.B).

FiguredI0.B(a) and (b) illustrate ha- varies asi?; is increased from 0.1 to 1.
The graphs show that for configuratioi to be more reliable tha6', F' has to be
more reliable tharf. Figurd 10.B(a) shows that &, increases, the degree by which
F should be more reliable thghalso increases. Figure 10.8(b) shows that the degree is
also considerably higher when more VMs are co-hosted oratime physical host. For
example, even with modest,,» andR; values of 0.75F" has to be ultra-reliablei
has to be more than 0.9932 and 0.9994 i 6 andn = 9, respectively. Thus, when
more than a handful of VMs are co-hosted on the same physickd, ra better system
reliability is more likely to be obtained by retaining a pyoreliable functionality in
the VM rather than by moving the functionality into the hyyisor.

Virtualized Node with VMM-level Voting: Consider a fault-tolerant 2-out-of-3
replication scheme in which three VMs providing identioaihdce are co-hosted on a
single physical node. The VMM layer receives client regsiasd forwards them to all
three VMs in the same order. Assume that the service is ardetistic state machine;
thus, the VM replicas yield the same result for the same retqdi&e VMM receives the
results from the VM replicas. Once the VMM has obtained e=pfrom two replicas
with identical result values for a given client request,atvfards the result value to
the corresponding client. Such a scheme can tolerate tliteaaytfailure of one VM
replica, and is similar to the one suggested in the RESH teicthire for fault-tolerant
replication using virtualizatiori [92]. Assuming that thé/i¢ fail independently, the

= Rp >

(10.3)
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system reliability is given by
3
R%°1=3 = Ry Ry [R3, + (2) R3,(1— Rum)).

sYs

Then,R%°f=3 > RNV gives the condition for the 2-out-of-3 replication schembé

sYs sYs

more reliable than the non-virtualized service. Thus, wiziob

3
RHR\/[R?W + (2) R?W(l — R]u)] > RyRy

1
3Ry — 2R2,

Inequality [Z0.#) gives a lower bound on the hypervisoatlity for the 2-out-of-3
replication scheme to have better reliability than the niotualized case. Figufe 10.9

shows a plot 0f3RM+2R2 < Ry < 1. ltis clear from the graph that there exists no
s M

Ry value that satisfies inequality (10.4) and is less than 1 whgn< 0.5. In other
words, if the VM reliability (i.e., the operating system asetvice reliability) is poor to
begin with, then the 2-out-of-3 replication scheme willypmake the node reliability
worse even if the hypervisor is ultra-reliable. This resolhcurs with the well-known
fact that any form of redundancy with majority voting is netjful for improving over-
all system reliability when the overall system is composkchodules with individual
reliabilities of less thai.5 [58]. The graph also shows that the higher the hypervisor
reliability, the larger the range of VM reliability valuesrfwhich the 2-out-of-3 repli-
cation scheme has better reliability than the non-virkealicase. For example, when
Ry = 0.98, the range of VM reliability values that can be accommodétegteater
than the range wheRy = 0.9.

= Ry > (104)

10.5 An Architecture for a More Reliable Xen VMM

As shown by the model-based analysis in Se¢tion10.4, igislyidesirable to make the
VMM as reliable as possible to improve the overall reliahitf a virtualized node. In
this section, we leverage our X-Spy implementation to psepa reliability-enhanced
design of the popular Xen open-source VMM][11].

The Xen VMM (Figure[10.1I0(a)) consists of a hypervisor cone a privileged
domain (or VM) called DomO or domain zero. The hypervisoedgrsmall in size and
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Figure 10.10: Enhancing the Reliability of the Xen VMM

concerned with virtualizing the memory and CPU. DomO is &ffedged VM running
a guest OS (Linux) and virtualizes other hardware devicash(ss disks and network
interfaces). Domo is the first domain that is created, androtmall other domains,
called user domains or DomUs. For any given physical dewie&n, the native device
driver is part of at most one VM. If the device is to be sharethwther VMs, then the
VM with the native device driver makes the device availabtetigh eback-end driver
Any VM that wants to share the device exports a virtual dediveer called thdront-
end driverto the back-end driver. Every front-end virtual device twalsé connected to
a corresponding back-end virtual device; only then doedrthe-end device become
active. The mapping is one-to-one, i.e., each front-endi@device from each user
domain is mapped to a corresponding back-end virtual devitee communication
between the back-end and front-end drivers takes placeaghrshared memory and
event channels. The event channel is used for sending sligpte/eight notifications
and the shared memory is used for sending requests and data.

As DomoO is relatively large, we expect its reliability to mver than that of the
hypervisor core. Thus, improving the reliability of DomOQcgicial to improving the
reliability of the Xen VMM as a whole. We combine some of theheologies de-
scribed in Sectioh 10,2, namely, intrusion detection, mmifig fail-stop behavior, and
intrusion response in form of software rejuvenation, tchdect a more reliable Xen
VMM, which we callR-Xen

In R-Xen, we enhance the reliability of Dom0 by replicatidfigure[10.1D(b)).
Dom0 is a single logical entity that actually consists ofethprivileged domains,
Dom0.A Dom0.B and Dom0.G with identical privilege levels. The three replicas
mutually monitor each other using the techniques we desdrédbove in our X-Spy
implementation. Specifically, each DomO replica is simnétausly the PVM and the
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SSVM for the other two DomOs. Periodically, the DomO repdisabmit a fault detec-
tion vote to the hypervisor core that indicates whether dits dwo peers is thought to
be compromised. If any given DomO replica is labeled as bioljy by its two peer
SSVMs, then the replica will be terminated and rejuvenatethb hypervisor. In this
way, we enforce fail-stop behavior of the replica despitefghesence of a more severe
kind of fault in the replica. The hypervisor core then startsew DomO replica as a
replacement of the terminated one.

One of the DomO replicas is designatedaativeby the hypervisor core, and it is
this active replica that provides the back-end driverstierdevices of the user domains.
The other two replicas are designategassiveand do not provide any back-end de-
vices. As mentioned above, each of the three DomO replicastars and is being
monitored by the other two. If the hypervisor gets repomsftwo independent repli-
cas labeling the third replica as faulty, then the hypemisoninates that replica and
replaces it with a new DomO replica. If the terminated replig a primary, then the
hypervisor designates one of the backups as the new prirapliga by re-connecting
the front-end devices of the user domain(s) to the replicatk-end devices. The dis-
connection and reconnection of the user domain(s) to ardiffteDomO0 has already
been implemented in Xen and is used for live migration of dosaTherefore, the
code can be reused. The hypervisor itself has to actively gérmissions for doing
the reconnection and re-routing the data from the old DontBémew one. It also has
to shutdown the old DomO after the reconnection process éas bompleted. Using
a previously started backup as the new primary results mitgsrruption to the user
domain than using the replacement replica (which has to besddrom scratch) as the
new primary. It also enables the booting of the replacemepitaa to occur concur-
rently to the re-connection of the front-end devices. Likieeo fault-detection-based
techniques, there is the drawbackdwtection latencyi.e., a time delay between the
actual occurrence of the fault and its detection. 1/O retpusent by the user domain(s)
during this latency period may have to be re-issued. On te#@ip@side, our technique
can be implemented in a manner that is completely transparene user domain(s).
In other words, a DomU running on normal Xen should be abletowithout modifi-
cation on this type of R-Xen as well.

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



150 OpenTC D05.6 — Final Report of OpenTC Workpackage 5

OpenTC Document D05.6/V01 — Final R7628/2009/01/15/0penTC Public (PU)



Part Il

Evaluation and Outlook

151



Chapter 11

Security Management
Components of the OpenTC
Virtual Datacenter Prototype

11.1 Overview

We realized a prototype of a physical data center implemgmtiulti-tenant virtual data
centers. Each one, usually owned by a different customernajgped onto a different
TVD.

Our prototype is based on two classes of building blockssklayhosts providing
VMs for the virtual domains and hosts running the data cesgerices.

Figure[IT.1 shows a host of the first class, a single securerigor platform (that
we henceforth refer to as “the platform”) that is based onXee architecture[[11]
(Xen 3.1.1 and Linux kernel 2.6.22). Following the Xen modie¢ platform consists
of a core hypervisor, the privileged management VM calledn@m-0, and the guest
VMs. We have also implemented the TVD Master role that runa second class host
and maintains policies and membership for a given virtuahdio.

The following components are provided by our platform. T@npartment Man-
ager manages the life-cycle and the integrity of the guest VMsdaalled compart-
ment). The TVD Proxyis the local representative of the TVD Master running on
the platform and enforcing the policies of that TVD. Each TWibxy is created and
spawned by a TVD Proxy Factory, whenever a TVD needs to bendgtéto a new
host. TheSecure Virtual Network subsystemeates, manages, and makes secure the
virtual LAN for each TVD. TheTrusted Channel Proximplements the Trusted Chan-
nel needed for the pre-admission phase. In the current meiéation, all these com-
ponents run in Domain-0. Together with the Xen hypervisal thre other services in
Domain-0, they constitute the Trusted Computing Base (Ta@B)e platform, i.e., the
integrity of these components must be ensured to guaramemtrect enforcement of
the TVD policies.

The integrity measurements of the TCB components are peediduring the au-

1A compartment is a protected execution environment, stibjeimformation flow control policies en-
forced by the hypervisor: a compartment can securely hosigéesprocess running with threads as well as
full-fledged VMs.
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Figure 11.1: Xen Architecture for TVD.

thenticated boot, when the chain of trust begun by the Com BbTrust for Mea-
surement (CRTM) is extended using TrustedGRUB [4], a TCBaaced version of
the standard GRUB boot loader. The TVD Master implementsamukof the Trusted
Channel establishment protocol. The other end is the TVDRyPFactory.

Figure[II.P shows the simplified layout of our prototype dzgater. It has two
virtual networks per customer: a management network forageny the customer’s
VMs within the TVD and a user data network for the actual comioation between
client VMs. Furthermore, the data center has a DMZ for extleronnections, a virtual
data center management network (VDC) that is used for coruation between our
data center management components, and finally a SAN nethatrprovides storage
to the individual platforms.

Each virtual domain has a intra-domain management VM thregt tlie management
software of the customer and connects to the managemenikethis management
software interacts with a filtered XenAPI (called XenAPHat hides infrastructure and
machines belonging to other virtual domains and providestaal view of the data
center. Each administrator in a virtual domain can then defimd start any number of
guest VMs that get connected to the corresponding data nietwo

11.2 Security Services

In [55], we have described a Xen-based prototype of our gg@arvices for integrity
management and obtaining compliance proofs. The protatypéles the protection
of security policies against modification and allows staltdérs to verify the poli-
cies actually implemented. The paper also describes nriliige cases, in which we
demonstrated the policy enforcement and compliance-éhgclapabilities of our im-
plementation. For example, we showed how to validate thégamation of the virtual
networking subsystem on each host (assuming that a TPM isdaelol in each host).
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Figure 11.2: Layout of our prototype virtual data center.

Here, we provide an overview of our security services im@etation. The Com-
partment Manager (CM) is responsible for the VM life-cyclamagement. As the
sole entry point for VM-related user commands, it commuteisalirectly with the
hypervisor and orchestrates the Integrity Manager anddabers device virtualization
functions of the platform. These functions base on the stahden managementtools.

The CM through the Integrity Manager (IM) is responsible Yerifying the in-
tegrity of the VMs. The root file system is made available tohe®M, including
Domain-0, through a pair of partitions or virtual disks. Qrfehem is read-only, con-
tains the initial root file system, and is measured togethtr the VM configuration
file; the resulting whole integrity measurement of the VMher accumulated into the
TPM by extending one PCR. The other partition or virtual diskich is read/write
and empty at the beginning of the VM life, records the chamagesirring on the root
file system while the VM is running. This is done through th@ycon-write mecha-
nism provided byunionfs[5] [1] which allows the stacking of multiple file systems and
provides the operating system with a unified view. CM and I®l@&so responsible for
guaranteeing the confidentiality of a VM'’s data (stored andbcond read/write image)
by encrypting it usingim-crypt]2], which is the Linux device mapper with support for
encrypting block devices (e.g. physical or virtual diskd gartitions). Next, the en-
cryption key is sealed against the measurement of the TCB&tite VM (stored in
a set of PCRs). We use this “sealed disk” scheme to protectlifis confidential
data. This scheme can be applied to all disks, except themaafe, depending on the
security requirements given.

The TVD policy defines, for each VM, the disks that need to besuneed, the
PCR(s) in which the measurements need to be stored, andske ttiat need to be
sealed. Once the policy has been executed and all disks learefdvepared (mea-
sured/unsealed), the admission protocol involving the Gid tne TVD Proxy (see
Section$ 34 arld 11.3) follows. Then the CM requests Xeratt thte VM. To manage
VMs, the CM maintains the association between a running Viitae policy that was
used to start it.
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11.3 TVD Master, Proxies and Proxy Factories

The TVD policy of our prototype lists all VMs that can poteaily be admitted to the
TVD. Each VM is identified by the Xen domain identifier. For Ba¢éM, the policy
specifies the required integrity measurement value. OrilyeifVM'’s actual measure-
ment value (obtained by the CM) matches the required valei& ¥ will be admitted
to the TVD. The policy also specifies the MAC address assigogde VM’s virtual
NIC, if the admission is successful. Moreover, it identifies VLAN corresponding
to the TVD, and the VPN keys needed for establishing secunaeexdions within the
TVD. Currently one shared key per TVD is used to protect aémure links.

When a VM wants to be admitted to the TVD (i.e., this is stateithe configuration
file of the VM), the related TVD Proxy is contacted by CM usingtateless TCP-
based protocol called Compartment Admission Protocol (CSkihce a platform can
host VMs belonging to different TVDs, the CM contacts the TYbxy Factory to
obtain the TVD Proxy end-point for the requested TVD. If sd¢¥D Proxy is not
running yet, the TVD Proxy Factory creates and spawns itofestarting the VM,
CM measures it (as explained in Section 11.2) and asks the PRy whether the
VM can be admitted to the TVD by passing the identifier and tleasarement of the
VM. If the answer is positive, CM receives the MAC addresscéffesl in the policy
from the TVD Proxy, creates the back-end network device Sastiorf 1114 for further
explanations about Xen back-end and front-end devices) sats the MAC address
for the front-end device. Finally, the CM requests the TVIDXBrto attach the VM to
the virtual switch (vSwitch) of the VLAN corresponding teeti VD by specifying the
identifier, measurement value, and the names of back-eridedefor the VM being
admitted. In the case of a negative response from the TVDyPitbe CM can be
configured to either start the VM even though it will not be wected to the TVD
VLAN or not to start it at all.

11.4 Secure Virtual Network subsystem

The prototype implementation of our Secure Virtual Netwsuksystem has been doc-
umented in[[18] and has been integrated in the prototypeyh@iesented in this paper.
Our networking extensions consist of vSwitches, VLAN taggiand LAN encapsula-
tion modules. They are implemented as kernel modules in DeMavhich also acts
as the driver VM for the physical NIC(s) of each physical host

To specify the particular vSwitch and the particular porthia vSwitch to which a
VM’s Xen back-end device must be attached, the Xen VM conéiion file is used.
This file is generated by CM after having received informat{MAC address and
VLAN identifier) from the TVD Proxy. We use additional scrgpto specify whether
a particular vSwitch should use one or both of the VLAN taggamd encapsulation
mechanisms for isolating separate virtual networks.

The vSwitches maintain a table mapping virtual network desito ports on a par-
ticular vSwitch. The encapsulation module implements BEhprocessing for packets
coming out of and destined for the VMs. The VLAN segments eissed with dif-
ferent TVDs and the corresponding vSwitches are assigneguerndentifiers. The
network identifier field in the EtherlP packets is set to theniifier of the vSwitch that
the target VM is attached to.

The VLAN tagging module tags the packet with the VLAN idemtiftorresponding
to the VLAN that the target VM is a part of. At the destinatidatform, the VLAN
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module removes the VLAN tags, and routes the packets to theoppate vSwitch
based on the VLAN tag.

11.5 Trusted Channel Proxies

The Trusted Channel between TVD Proxy Factory and TVD Massed during the
pre-admission phase is set up by means of a pair of servitlesl dausted Channel
proxies. They implement the Trusted Channel at the appicdayer via a TLS tun-
nel, made available to TVD Proxy Factory and Master once temtbestation has been
successful. The remote attestation is done by performiad®M_Quot e operation,
namely, digitally signing a set of PCRs and a challenge veckirom the remote at-
tester using a TPM asymmetric key. The latter can be certifiedttestation Identity
Key (AIK) by a Privacy CA. The result of thEPM_Quot e operation (i.e. the signature
over a set of PCR values), the actual PCR values and the Alkidiby Certificate
are sent by the TVD Proxy Factory to the TVD Master to be vetifief the verifi-
cation is successful, then the remote attestation can b&d=red successful, and the
two proxies start tunneling the incoming TCP packets thhotlgg TLS channel. An
alternative implementation for attesting via Trusted Gieis documented in [9] and
will be integrated in our prototype. This approach replabe§PM Quot e operation
with the usage of sealing and TPM certified keys.
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Chapter 12

Evaluation of the Prototype

12.1 Performance Evaluation

We implemented our data center prototype using HP ProLia@6B G2 blade servers
each fitted with two AMD Opteron processors running at 2 GHzB&ystem memory
and a Gigabit Ethernet card. We now discuss the performamer @rototype. Most
of our components implement or support management tasksy die dedicated to
automate the secure set-up of platforms, virtual machimelsdmmains, if possible
with minimal performance impact on the running system.

Note that measuring performance of virtual systems is maigdttforward. We
first usedi ost at to retrieve CPU usage data frohpr oc/ st at under Linux and
in Domain-0. This wrongly indicated that Xen needs half tHeéUCas compared to
Linux. We then used the Xen torknt op that gathers the data via hyper-calls to the
hypervisor. Since this represents the time given to each Bbir{ain-0, guest VM) by
the hypervisor, the resulting data was no longer distorteth® virtual notion of time
given to the VMs in Xen.

12.1.1 Management

In Table1Z.1 compares the boot-up and shut-down delay leetfee virtual machines
using the unmodified Xen implementation and our componeftgraged over 235
measurements, our components add some 10 percent to thedgimaldime-to boot.
The delay is caused by measuring the configuration, attestithe VM, transferring
and checking configuration measurements, and (in case oéssicattaching the VM
to the corresponding network. Stopping a virtual machiogires 2.4s instead of 0.5s
for the original Xen implementation. Here, the overheadassed by the fact that
the current implementation of the compartment manages plo# VM in rather long
intervals to verify a successful shut-down.

System Measured

Operation ‘ Prototype  Xen

Management Start 3.601s 3.332s
Stop" 2.371s 0.460s

Table 12.1: Performance Measurements of our Prototype
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Throughput| Linux | VLAN Tagging | Xen Bridging | EtherIP

TX (Mbps) | 932 883 872 847
RX (Mbps) | 932 881 870 851
Comparison| 100% 56.79% 55.98% 54.69%

Table 12.2: NetPerf Benchmark: Guest VM to Guest VM Throughp

| Minimum | Average| Maximum | Mean Deviation

Bridged | 0.136s | 0.180s 0.294s 0.024s
VLAN 0.140s 0.212s 0.357s 0.030s
EtherlP | 0.151s | 0.246s 0.378s 0.034s

Table 12.3: Round-trip Times using Ping.

12.1.2 Networking

We obtained the throughput results using Meg Per f network benchmark and the
latency results using thei ng tool. Using the former benchmark, we measured the
Tx (outgoing) and Rx (incoming) throughput for traffic fromeguest VM to another
guest VM on the same physical host. To do so, we ran one irestafritbe benchmark
on one guest VM as a server process and another instance sadtied guest VM to
do the actual benchmark.

We report the throughput results for different networkichemes in Table12.2.
The figures show that the throughput results for both VLANgiag and EtherlP
schemes are comparable to that of the standard Xen (bridgdjgaration. As ex-
pected, VLAN tagging yields the best throughput in a virized system that outper-
forms the standard Xen configuration. Both Xen bridging ahé\M tagging perform
better on thé@'x path. For EtherlP, the major cost in the Tx path is having to alteea
fresh socket buffergkb) and copy the original buffer data into the freskb. When
first allocating askb, the Linux network stack allocates a fixed amount of headroom
for the expected headers that will be added to the packetgse’ down the stack.
Unfortunately, not enough space is allocated upfront tovalls to fit in the EtherlP
header; so, we have to copy the data around, which is verlycost

In the Rx path, there is no packet-copying overhead for thei#? approach; the
extra EtherlP header merely has to be removed before thepacent to a VM. As
compared to VLAN tagging, in which packets are grabbed fromltinux network
stack, EtherlP requires that packets are passed to andsgeatéy the host OS IP
stack before they are handed over to the EtherlP packetéranftthe vSwitch code.

Table[12.B shows the round-trip times between two guest ViMa physical host
for the bridged, VLAN, and EtherlP encapsulation casesinbthusing thei ng - ¢
1000 host command, i.e., 1000 packets sent. The results show thatvérage
round-trip times for VLAN and EtherlP encapsulation are8%.and 36.7% higher
than that of the standard Xen bridged configuration.

12.1.3 Storage

Timing the set-up of storage has been part of the managemelua¢gion. We now
evaluate actual run-time performance of virtual disks.
We compared three set-ups using an IBM Thinkpad T60p: Disksxfrom DomoO,
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CPU Utilization | Linux | Xen (Dom0+DomU)
Encrypted 42% 45% (42+3%)
Unencrypted 5% 13% (10+3%)

Table 12.4: CPU Utilization of Virtual Disks at 30MB/s.

disk access in a Linux without Xen, and disk access from atguMsFor each of these
three systems we compared encrypted and unencrypted access

We first measured read/write throughput. A first observatias that in all cases,
the disk performance limited our overall performance, eacryption did not result in
a performance penalty in a single-VM system (all 6 set-upsided approx 30MB/s
throughput).

As a consequence, we then measured the CPU utilization dfiffeeent set-ups
(see Tabl€12]4). This figure points out that encrypting & @i80MB/s requires 42%
CPU under Linux and 45% under Xen while servicing a guest VkisBhows that
the utilization is similar to a plain Linux. The fairly highRLJ utilization substantially
limits the usage of encryption in a data centers. Fortupagakryption in a data center
can often be replaced by physical security or other meastitesonly exceptions are
removable media that are moved between locations.

12.2 Limitations of our Prototype

OpenTC has made substantial progress in design an implaticenof secure virtual-
ization. However, there are still open challenges to ovaeeo

Standardized Management APIs One goal of our prototype is to enable indepen-
dent and transparéhmanagement of the different virtual domains. In principie,
aimed at allowing each TVD administrator to manage a giveTwependently of
all other domains. This would require that a TVD owner canrdefiolicies, define
images, and start them while being independent of othersnahtheing required to
modify any tooling. While our prototype achieves managetimetependence, we re-
quire some modifications to existing tooling. While maclsiman be managed using
the standard APIs libVirt or XenAPI (sdd bvi rt. or g andwi ki . xensour ce.
coni xenwi ki / XenApi ), there exists no similar API for managing virtual machine
images. As a consequence, we require that each customexdgplmages into per-
domain sub-directories. Once the images are stored, timethea be referenced during
machine creation.

Federated Identities The first limitation are globally unique identifiers. Our cemt
prototype uses a haming authority. In the long run, TVDs &hba federated without
any mediation of a central authority, making an identificatscheme like UUID[[72]
necessary to guarantee the uniqueness beforehand.

Integrity Management Architecture The current scheme for measuring VM in-
tegrity is coarse-grained, because the entire file systane'asureﬂ. It is a first at-

1with transparent, we mean that each customer can use unetbstiéindard APIs to manage its machines
and resources.
?Note that unlike[TZ0B] we aimed at implementing integritp{ection at the virtualization layer.
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tempt of measuring the VMs while allowing a persistent gferdnowever it has a big
shortcoming: the measurements do not capture the modifitathat occurred on the
file system because they are stored on the second read/istut&l disk, which is never

measured. Moreover, the VM is measured only prior to beiages, and so far there
is no support for run-time monitoring yet. In the long run, widl use a finer-grained

integrity measurements, e.g., through a virtualizatinohaaced version of the IMA

proposed in[[103] while using integrity-enhanced stor&@& [B9] to protect data at
rest. However, these concepts are not widely available anteavith a performance
penz%y. In the long run, integrity-protecting storagedveaire would resolve these
issues.

Policy Management and Distribution Another part of our architecture that has not
been fully implemented is the TVD Masters. Today, they orgyform intra-TVD
policy distribution. In the long run, they should enablestrbrokering and delegation
to allow trust establishment between multiple TVDs.

Finally, in this first implementation, all TVD componentsige in Domain-0, the
Xen-privileged VM. Following the approach of Domain-0 djguegatioﬂ [83], the
TVD Proxy and VNET components will be moved away from Dom@iis run in
dedicated and isolated VMs.

Secure Virtual Networking Our networking approach adds security mechanisms
in DomO of Xen. In the long run, virtualization support in thetworking hardware
would be desirable to reduce context switches and thusaserperformance. Note
that this requirement is independent from security. Howefee securing network,
VPN support in the network cards would be desirable in paldicfor datacenters.

Swith integrity-protecting storage we mean that the hard din output a hash-value for a range of
blocks. Integrity-protection then means that only blocgsesponding to this hash-value are readable while
modified blocks will produce read errors.

4The OpenTC consortium is pursuing this approach to redugevtkight of the trust assumptions on
Domain-0.
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Chapter 13

Conclusion and Outlook

13.1 Lessons Learned

Embedding integrity verification mechanisms in a distralsecurity architecture cre-
ates serious challenges. Conceptually, many of them caddressed with property-
based attestation. However, property-based attestagpertls on well-defined and
potentially institutionalized processes for validatihg behavioral equivalence of dif-
ferent configurations. Certifying that two configuratiore/é identical properties is
currently a manual and labor-intensive exercise, whichostlg and does not scale
beyond single TVD owners or data center administrators.

While the migration of VMs between different physical hoistsvell understood,
the migration of a complete trust context associated withvihas proved to be dif-
ficult. The latter type of migration requires the migratidhnot only the virtual net-
working and storage devices (with associated cryptogcakéys, if necessary), but
also of a virtual TPM, if present, which will be rooted in dfent hardware TPMs
prior to and after the migration. During the migration pregehe integrity of all these
components has to be guaranteed while managing the haotfinfjdevice access in
a transactional fashion. Note that the importance of segutiis transition has been
further emphasized by recently published attacks on \imzchines in transit.

Building a security API that is at the same time flexible, usabnd manageable
has proved to be more difficult than expected. A key reasomhisrdifficulty is the
requirement that the API should be easily adaptable to dtiyeervisor architectures
and to workstation scenarios with GUI interfaces. Whileradding each of these
requirements separately is feasible, their combinationeowith many trade-offs.

Yet another type of trade-off concerns our aim of decomppisia Xen architecture
into multiple security services each running in dedicabey ¥Ms while reducing the
reliance on Domain-0, the privileged management VM. Whilehsdecomposition is
advantageous from a security perspective, it tends to eeffiexdbility. The availability
of a full-fledged Linux management VM with access to all suhsgns enables easy
extensibility and rapid prototyping (scripting, addingvites, firewalls, VPNs etc),
and also corresponds to the expectations of many Xen usargerieral, however,
considerations of usability tend to favor design decisitbvag are sub-optimal from a
strict security perspective.
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13.2 The Future of Secure Virtualization and Trusted
Computing

WP5 aimed at securing virtualization by using trusted cotimgutechnologies. We
managed to prototype a secure virtual datacenter that ws#sd computing hardware
for proving its integrity to stakeholders.

13.2.1 Trusted Computing

Observations During the course of our project, we have made several oasens.
The first is that trusted computing hardware (i.e., TPM) igfulsfor protecting keys
and cryptographic operations using these keys. This usaggtablishes a hardware-
protected machine identity. This is similar to today’s wesa§smart-cards.

We furthermore realized that integrity-protection usihi thardware is very diffi-
cult in practice. Due to the fact that minimal changes to tifensare render an attesta-
tion invalid, maintaining the integrity of such a systemiigoe-prone.

We believe that there are several aspects that make itegidation challeng-
ing. The first is the variety and variability of code. Even rgecurity project the
code-based changed a lot. As a consequence, any practegiiy-validation mech-
anism needs to be able to tackle this code evolution whilindigishing between de-
sired (=secure) and undesired (=insecure) upgrades. @neaqh towards solving this
problem is to use the Linux package management infrastreittudefine acceptable
code [82].

The other challenging aspect is the lack of isolation in y&lanvironments. To-
day, any malicious code in a VM can essentially take over aptetm VM. As a con-
sequence, the integrity of any code in the VM depends on hératode. As a con-
sequence, integrity of a component can usually not be etealua isolation. This
substantially increases the overall complexity of an iritggssessment since in prin-
ciple any untrusted component on the system threatenslbveegrity of most other
components. It also lowers the performance since any changé/M needs to be
assessed. While we provide isolation between VMs, a long-s@lution would be to
lower the granularity to provide strong isolation on an cbja package level.

Consequences We believe that the pervasive deployment of TPM hardwarifuri
ther enable and support the usage of TPMs as machine iésraitid for protecting
cryptographic keys. However, based on our observationseleve that the applica-
bility of trusted computing in the near future will be limitéo small-scale and stable
high-assurance systems. Examples include embedded systehigh-assurance sys-
tems such as high-assurance workstations for defense yintegrity-critical appli-
cations. Another example are virtualization platformsdrecuting virtual appliances.
For these cases, the limited and stable trusted computswyibaeffectively verifiable
using trusted computing.

Open Challenges The first open challenge is to provide and manage finer-gilaine
isolation to enable more localized integrity verificatidnralividual components. This
would enable tree-like verification of a trusted computimgé where siblings cannot
destroy each others integrity. This is similar to the Oper@p@roach of running in-
dependent virtual machines that cannot invalidate eackrthtegrity. However, for
an actual operating platform based on these principlesyttéueularity would need to
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be lowered from the VM to the object level. Overall, this ceptis closer to the
isolated-objects approach of L4. However, for practicadlaability the performance
and life-cycle management of thousands of isolated comguibjects will remain
challenging.

A second open challenge is run-time attestation, i.e., ngpfriom boot-time val-
idation of a system towards real-time validation. This nsetirat whenever code is
executed that this code has been validated. Without suadhtinea validation, in par-
ticular long-running systems that were unmodified at bouetcan be attacked at run-
time such that the code changes are not detected.

A third open challenge is to develop new approaches towartdgrity validation
that are based on the integrity pedigree of isolated objedts believe that such a
method will require a high amount of initial validation bhiosild then enable simplified
updates to maintain running code along with its integrisuaance.

13.2.2 Secure Virtualization

Observations In OpenTC, we have implemented a virtual datacenter thatsihioat
isolated machines with well-defined sharing. We manageditonaated most man-
agement tasks. This enabled us to hide implementationisiétam users such that
users could concentrate on their computing resources thia iwdependent of the re-
sources of other customers. Automating management of isetias been essential
since manual management is costly and error-prone.

Consequences We believe that there is a trend towards such scalable Virifras-
tructures that are automatically managed and hide its im@ieation details from
users. This so-called “Cloud Computing” approach has celzantages from a us-
ability perspective. Unfortunately, today’s cloud comipgtplatforms do not provide
sufficient security. Furthermore, from a security perspectiding implementation
details no longer allows users to validate the security efffatform themselves.

Overall, we believe that this in-transparent approach tde/aloud computing will
be limited to low-trust scenarios similar to today’s grichgauting. These clouds will
either be used within organizations that trust each othéhifwan enterprise or with
a strong supplier-customer trust relationship). Anotleensrio are uncritical applica-
tions such as web-servers or scientific computing on pulalia.d

Open Challenges An open challenge is how to balance transparency with ggcuri
assurance. In OpenTC, we aimed at full verifiability, i.ecuatomer can see all imple-
mentation details of the infrastructure. Only actual camfagions of peer customers
are hidden from our users. In the long run, however, hidires¢himplementation
details (which are secrets of the provider) from customdridesguaranteeing security
will remain challenging. In addition, secure compositiénictual services that are po-
tentially provided by different cloud implementations cgted by mutually mistrusting
providers will remain a challenge. In particular for thiswtl-of-clouds scenarios well-
defined operation and implementation guidelines (and gud# well as standardized
assurance exchange interfaces will be required [61].
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13.3 Conclusions

In this report, we have described the OpenTC approach anga@oents for a Trusted
Virtual Datacenter. The core idea is to build a datacentatr aliows for and isolates
multiple customers while satisfying the security requiesns of each customer.

Securing the access to data on persistent media and dwairgjer over the network
is a serious problem in distributed virtual data-center elndd computing scenarios.
We described a framework based on TVDs and Trusted Compiatirsgcure network
and storage virtualization that includes mechanisms fafyieg the integrity of the
hypervisor, VMs, and security policy enforcement points.

This is achieved by means of so-called Trusted Virtual Do #iat provide a vir-
tual environment for each customer. Each trusted virtuataio exposes a standard-
ized management interface that allows customers to rutimximanagement software
to manage their respective domains. The concept of TVDgjid gnough to allow
consistent policy enforcement across a group of domaineésnwhile being flexible
enough to support policy-controlled interactions betwdierent TVDs. TVD poli-
cies and configurations are ‘backward-compatible’ in suipg options that could be
taken for granted in non-virtualized data centers. For @tanto-hosting of specific
customer services with those of other data-center custamethe same physical plat
form could be inhibited if so desired. By incorporating haade-based Trusted Com
puting technology, our framework allows the creation oigotiomains with attestable
trust properties for each of the domain nodes.

In order to enforce the given security requirements, wedagtble security services
described in Deliverable D05.488] that allow verifiablesgty within each domain.
This includes validation of the trusted computing base al ageverifiable enforce-
ment of given per-domain policies. The inclusion of integmeasurement and man-
agement mechanisms as part of the physical platform’s T€®8sqes both data-center
customers and administrators with a much needed view ofléments (hypervisors,
VMs, etc.) that are part of their virtual infrastructure aslas information on the
configurations of those elements. Our framework can be usethtain information
about the elements on a ‘need-to-know’ basis without haterigtroduce all-powerful
roles of administrators with access to every aspect of éopfat

We have substantially contributed to the knowledge in seintualization and
trusted computing. Overall, we managed to build the firgidagcale virtual datacenter
that can be validated using trusted computing technologgvelheless, despite our
substantial progress, there are still several open radsehatlenges. Examples include
large-scale management and validation of integrity as ageéfficient implementation
strong isolation guarantees on a finer-grained level. Iddhg run, we hope that this
will enable to lower the granularity of integrity guarartédeom Virtual Machines to
individual objects.
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