

D6.5 Collection of all SWP deliverables
(nature=R) produced during months 25-36

Project number IST-027635
Project acronym Open_TC
Project title Open Trusted Computing
Deliverable type Report (see page 87/88 of Annex 1)

Deliverable reference number IST-027635/D6.5/1.0

Deliverable title Collection of all SWP deliverables (nature=R)
produced during months 25-36

WP contributing to the deliverable WP6
Due date M36 (postponed to M42)
Actual submission date 26.05.09

Responsible Organisation LDV, Lehrstuhl fuer Datenverarbeitung, TU
Munich

Authors Chun Hui Suen (LDV), Giovanni Cabiddu,
Gianluca Ramunno, Marco Vallini (POL),
Görkem Çetin, Kadir İmamoğlu (TUB)

Abstract Collection of all SWP deliverables (nature=R)
produced during months 25-36

Keywords OpenTC WP6

Dissemination level Public
Revision 1.0

Instrument IP Start date of the
project 1st November 2005

Thematic Priority IST Duration 42 months

 Collection of all SWP deliverables (nature=R) produced during months 25-36 V 1.0

Introduction:

This Deliverable is a collection of the following internal WP6 Deliverables out of the
Sub-Workpackages with Nature R (Report) within the period of M25 - M36:

● D06b.5 - MEITC Use Case Document
● D06c.2 - WYSIWYS application design specification

If you need further information, please visit our website www.opentc.net or contact
the coordinator:

Technikon Forschungs-und Planungsgesellschaft mbH
Burgplatz 3a, 9500 Villach, AUSTRIA
Tel.+43 4242 23355 –0
Fax. +43 4242 23355 –77
Email coordination@opentc.net

The information in this document is provided “as is”, and no guarantee
or warranty is given that the information is fit for any particular purpose.

The user thereof uses the information at its sole risk and liability.

Open_TC Deliverable 6.5

http://www.opentc.net/
mailto:coordination@opentc.net

WP06b.5 MEITC Use case document

Project number IST 027635
Project acronym Open_TC
Project title Open Trusted Computing
Document type (internal/public) Internal document

Report Number – OO Revision OTC-17
Title MEITC Use case document
Editor Görkem Çetin
Authors Görkem Çetin, Kadir İmamoğlu

Abstract This internal deliverable is the Use case
document for MEITC system

Keywords MEITC, TPM, TSS, Web Server, Mail Server,
Database Server, Log Service

 OTC-17: MEITC Use case document

Table of Contents
1 Introduction...3
2 Description...3
3 Use Cases..3
4 Abbreviations...38

Internal document 2/39

 OTC-17: MEITC Use case document

1 Introduction
The purpose of this document is to describe the use cases of the Message Exchange
Infrastructure for Trusted Computing (MEITC) which has been developed within a sub-
workpackage of the Open Trusted Computing (Open_TC) project by TUBITAK-UEKAE.
Prior to this document, TUBITAK UEKAE has released two documents, namely “D6b.3
MEITC Detailed Design and Test Document” and “D6b.2 MEITC Specification and Test
Plan”. Both documents give an overview of MEITC components.
2 Description
The MEITC system is not a self-contained system. It depends on a entire OpenTC
system (CC@H) which will be developed within the project. This system which is a
trusted environment must be ready in order to ensure that MEITC is fully functional.

The users of the MEITC system will use an unmodified web based browser (Mozilla
Firefox, Konqueror, Internet Explorer etc.) to access their accounts. Servers defined in
previous MEITC documents (I.e web server, mail server etc) will support virtualization,
and will also fully support TPM functions. Access to web servers will be realized
through a web based browser. In order to increase the trustworthiness of the whole
system, web browser and web server will communicate on a secure channel by using
HTTP on top of the conventional TLS/SSL protocols.

Users will connect to MEITC system via their web based browsers. Each page of the
messaging system will be prepared using JSP and HTML. There will be two types of
users: system administrators and unprivileged user. System administrators will have
administrative privileges to manage user accounts. The other user type will not have
administrative privileges, and instead they only have access to their messages in their
own message boxes.

The user interface of MEITC will have a user-centered design, in which tasks can be
easily followed and executed by the end-user. The user interface should also satisfy
the general requirements of the customer as the software evolves. End-users of MEITC
will see a simple webmail that will give them the ability to read, send and delete e-
mails (or other actions) they would like to take.

For more information about MEITC, refer to “Third MEITC Prototype” document
(D06b.7-Third MEITC Prototype.odt).
3 Use Cases
In this section, we will see what the users and the system administrators can do when
using the MEITC system.

General assumptions and requirements

The assumptions below describe the security aspects of the environment in which this
prototype will be used. These assumptions are heavily based on PET Banking
Demonstrator Use Cases document.

AR 10: Correct hardware

Internal document 3/39

 OTC-17: MEITC Use case document

The underlying hardware is non-malicious and behaves as expected. Optionally, the
correct properties of the hardware can be attested using a platform certificate.

AR 20: Trusted Administrator

Standard services for compartment administration and platform management must be
trusted to act in accordance with the wishes of users, since they have to access
security-critical information.

AR 30: Physical attacks

Physical attacks against the underlying hardware platform must not happen.

AR 40: Xen based system

The MEITC system will benefit from virtualization, so, a Xen based system should
already be installed on the system, featuring dom0 (the hypervisor) and domAPP (the
virtual machines).

AR 50: Trusted bootloader

A trusted bootloader, specifically tGRUB, is required in order to to measure the
integrity of the system.

AR 60: TPM driver

A TPM driver is required to reach the TPM module on the mainboard.

AR 70: Trusted Software Stack (TSS)

A trusted software stack (v1.x) is required to use the TPM driver.

AR 80: OpenSSL TPM Engine

An openssl tpm engine is required to access TPM hardware with an openssl
application.

Internal document 4/39

 OTC-17: MEITC Use case document

UC name UC 10: MEITC system startup
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. The MEITC components are installed on a

trusted computing base
2. The TPM ownership is already taken by the

system administrator
Postconditions All the servers have remotely attested and are up

and running
Main flow 1. dom0 is powered on by the administrator

2. dom0 is checked and booted by tGRUB
3. dom0 starts up the Database (DB), Web

Server (WS) and Mail Server (MS) servers
on different domAPP compartments

4. dom0 checks running status of the domAPP
compartments

5. If all the domAPP compartments are up and
running, then dom0 and each of the
compartments establish a connection

6. WS establishes a connection with DB
7. WS establishes a connection with MS

Alternative flow 2.a If the integrity checking process fails, the
system halts
5.a.1 If one of the compartments does not boot
properly, then the system administrator makes
sure that the corresponding domAPP starts
5.a.2 Operation continues with step 3

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 5/39

 OTC-17: MEITC Use case document

UC name UC 11: Taking TPM Ownership
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. The MEITC components are installed on a

trusted computing base
2. The ownership of the system's TPM has not

yet been taken
Postconditions TPM Ownership has been taken
Main flow 1. The ownership of the system's TPM is

properly taken
Alternative flow 1. The system administrator takes the

ownership of the system. As part of this
process, he specifies the owner password

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 6/39

 OTC-17: MEITC Use case document

UC name UC 13: MEITC system shutdown
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. The MEITC components are installed on a

trusted computing base
2. The TPM ownership is already taken by the

system administrator
Preconditions /UC 10/
Postconditions All the servers are shut down
Main flow 1. domDB is powered off by the administrator

2. domAPP is powered off by the administrator
3. dom0 is powered off by the administrator

Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 7/39

 OTC-17: MEITC Use case document

UC name UC 40: Adding a new user
Primary actors System administrator
Stakeholders and interest MEITC web server, MEITC database server, web

browser
Assumptions The system administrator is logged in to the

system
Postconditions User is created
Main flow 1. System administrator uses the web

interface to choose “add user” operation
2. System administrator enters the user

details using the web interface
3. Web browser checks all fields to ensure

there are no empty fields
4. Web server demands from the database if

the entered username is already defined
5. Database server responds that the user is

not already defined
6. User information is registered to the

database server
7. Database server informs the web server

that a new user has been created
8. Web server informs the administrator that

the new user has been created
Alternative flow 4.a.1 If the user is already defined the database

server sends an error message to web server.
4.a.2 Web server displays the message on the
web browser.
4.a.3 Web browser demands from the system
administrator to enter the user's details one more
time.
4.a.4 The operations continue with step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 8/39

 OTC-17: MEITC Use case document

UC name UC 45: Updating an existing user
Primary actors System administrator
Stakeholders and interest MEITC web server, MEITC database server, web

browser
Assumptions 1. The system administrator is logged in to

the system
Preconditions /UC 40/
Postconditions User updated
Main flow 1. System administrator chooses “update

user” operation from the web interface
2. System administrator enters the updated

user details using the web interface
3. Web browser checks all fields to ensure

there are no empty fields
4. Web server sends the user update

information to the database server
5. User information is updated in the database
6. Database server informs the web server

that the user details have been updated
7. Web server informs system administrator

that the user details have been updated
Alternative flow 4.a.1 If an empty field exists the browser shows

an error message to the user
4.a.2 Web browser demands that the system
administrator enters the updated users details
one more time
4.a.3 The operations continue with the step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 9/39

 OTC-17: MEITC Use case document

UC name UC 50: Deleting an existing user
Primary actors System administrator
Stakeholders and interest MEITC web server, MEITC database server, web

browser
Assumptions The system administrator is logged in to the

system
Postconditions User is deleted
Main flow 1. System administrator uses the web

interface to choose “delete user” operation
2. System administrator enters the username

to be deleted to the web interface
3. Web server demands from the database

whether this username is already defined
4. Database server responds that username is

already defined
5. Web server sends a confirmation request to

the web browser
6. Web browser requests confirmation from

the system administrator
7. System administrator confirms the

operation
8. Web browser sends the confirmation to the

web server
9. Web server sends the delete operation to

the database server
10.User is deleted from the database and a

message is sent to the web server
11.Web server passes this message to the web

browser
12.Web browser displays that the selected

user is deleted
Alternative flow 4.a.1 If the user is not already defined, database

server sends to the web server an error message
4.a.2 Web server displays this message on web
browser
4.a.3 Web browser requests from the system
administrator to select another username
4.a.4 The operation continues with the step 2

Internal document 10/39

 OTC-17: MEITC Use case document

7.a.1 System administrator does not confirm the
operation
7.a.2 Operation is interrupted

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 11/39

 OTC-17: MEITC Use case document

UC name UC 55: Adding an administrator user
Primary actors System administrator
Stakeholders and interest MEITC web server, MEITC database server, web

browser
Assumptions The system administrator is logged in to the

system
Postconditions Administrator user created
Main flow 1. System administrator uses the web

interface to choose “add admin” operation
2. System administrator enters the

administrator user details using the web
interface

3. Web server demands from the database if
the entered administrator username is
already defined

4. Database server responds that the
administrator user is not already defined

5. Administrator user information is registered
to the database

6. Database server informs the web server
that new administrator user is created

7. Web server informs administrator that the
new administrator user is created

Alternative flow 4.a.1 If the administrator user is already defined
the database server sends an error message to
web server
4.a.2 Web server displays the message on the
web browser
4.a.3 Web browser demands from the system
administrator to enter administrator user's
information one more time
4.a.4 The operation continues with the step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 12/39

 OTC-17: MEITC Use case document

UC name UC 56: Updating an existing administrator
user

Primary actors System administrator
Stakeholders and interest MEITC web server, MEITC database server, web

browser
Assumptions The system administrator is logged in to the

system
Preconditions /UC 55/
Postconditions Administrator user updated
Main flow 1. System administrator uses the web

interface to choose “update administrator
user” operation

2. System administrator enters updated
administrator user details using the web
interface

3. Web browser checks to ensure there are no
empty fields

4. Web server sends the updated
administrator user details to the database
server

5. Administrator user information is updated
to the database

6. Database server informs the web server
that the administrator user details have
been updated

7. Web server informs administrator that the
administrator user details have been
updated

Alternative flow 4.a.1 If an empty field is exists the browser shows
an error message to the user
4.a.2 Web browser demands from the system
administrator to enter updated administrator
user's information one more time
4.a.3 The operations continue with the step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 13/39

 OTC-17: MEITC Use case document

UC name UC 57: Delete an administrator user
Primary actors System administrator
Stakeholders and interest MEITC web server, MEITC database server, web

browser
Assumptions The system administrator is logged in to the

system
Preconditions /UC 55/
Postconditions Admin user is deleted
Main flow 1. System administrator uses the web

interface to choose “delete administrator
user” operation

2. System administrator selects the
administrator username to be deleted from
the web interface

3. Web server demands from the database
whether this administrator username is
already defined

4. Database server indicates that the
administrator username is already defined

5. Web server sends a confirmation request to
the web browser

6. Web browser requests confirmation from
the system administrator

7. System administrator confirms the
operation

8. Web browser sends the confirmation to the
web server

9. Web server sends the delete operation to
the database server

10.Administrator user is deleted from the
database and a message is sent to the web
server

11.Web server passes this message to the web
browser

12.Web browser displays that the selected
administrator user is deleted

Alternative flow 4.a.1 If the administrator user is not already
defined, database server sends to the web server

Internal document 14/39

 OTC-17: MEITC Use case document

an error message
4.a.2 Web server displays this message on web
browser
4.a.3 Web browser requests from the system
administrator to select another administrator
username
4.a.4 The operation continues with the step 2
7.a.1 System administrator doesn't confirm the
operation
7.a.2 Operation is interrupted

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 15/39

 OTC-17: MEITC Use case document

UC name UC 60: User authenticates via MEITC
Primary actors User
Stakeholders and interest All MEITC servers and web browser on client side
Assumptions 1. User is already defined in MEITC system

2. A web browser is installed in the client side
platform

Postconditions User is authenticated via MEITC
Main flow 1. User opens web browser in the client side

2. User enters her username and password
3. Web browser sends username and

password to the web server
4. Web server establishes a secure channel

with MEITC mail server
5. Web server sends username and password

to the mail server
6. Mail server establishes a secure channel

with the database server
7. Mail server asks the database server for the

username and password
8. Database server returns username and

password
9. Mail server checks username and password

with the database server
Alternative flow 10.a. If the authentication process fails, operation

stops
System requirements See general assumptions in section 3 "Use Cases"
Open issues 1. How (or whether) to implement the mutual

remote attestation is still an issue

Internal document 16/39

 OTC-17: MEITC Use case document

UC name UC 100: Accessing user's inbox
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. The user is authenticated as in UC 60
Postconditions User accesses her inbox
Main flow 1. WS connects to MS for accessing the mail

inbox data of the user
2. MS gets the inbox data from DB server
3. DB server gives the user data to MS
4. MS sends the data to WS
5. WS forwards the data to the client
6. User chooses next operation

Alternative flow 1.a.1 If MS is not properly functioning, then web
server gives an appropriate error message and
goes back to login page
2.a.1 If DB is not properly functioning, then web
server gives an appropriate error message and
goes back to login page

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 17/39

 OTC-17: MEITC Use case document

UC name UC 110: Sending an e-mail
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User is authenticated as in UC 60
3. User can read mails as explained in UC 100

Postconditions User sends an e-mail
Main flow 1. User composes the e-mail and selects the

signing and encryption options
2. Client sends the e-mail data to the WS
3. WS sends the e-mail data to the MS
4. MS sends the e-mail data to the CS for

signing and encrypting the e-mail
5. MS generates the signature for the e-mail

by using the sender's private key and/or
encrypts it by using the public keys of the
recipient

6. MS logs the e-mail transmission information
7. MS stores a record that contains details of

the e-mail
8. MS sends the e-mail data to the DB
9. DB stores the signed and/or encrypted e-

mail to the sender's and the recipients'
mailboxes

10.MS sends the acknowledge of the operation
and the update of the mailbox to the WS

11.WS forwards the acknowledge to the web
browser

Alternative flow 1. In any of the steps above, if the
corresponding (affected) server is not
functioning properly, then the WS sends a
reply showing the error to the user

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 18/39

 OTC-17: MEITC Use case document

UC name UC 120: Deleting an e-mail
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running, not necessarily

with all compartments
2. The user is authenticated as in UC 60
3. The user can read her e-mail as explained

in UC 100
4. The user has her inbox open

Postconditions The user deletes the selected e-mail
Main flow 1. User selects the appropriate e-mail to be

deleted
2. User clicks on the "Delete" button
3. WS sends this information to MS
4. MS deletes the e-mail and informs DB
5. E-mail is deleted from the DB

Alternative flow 1. In any of the steps above, if the
corresponding (affected) server is not
functioning properly, then the WS sends a
reply showing the error to the user

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 19/39

 OTC-17: MEITC Use case document

UC name UC 130: Backup MEITC System
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. Admin user is logged in
Preconditions /UC 10/
Postconditions MEITC system backup will be taken
Main flow 1. Administrator user clicks on "Backup" link

under the Administrator menu
2. Web Browser sends this link request to the

WS
3. WS (domAPP) retrieves database structure

and data from DB and writes to a text file
This text file will be archived and
compressed in .tar.gz file format

4. WS archives and compresses users mail
directories. Users' mails are located in MS
in a directory

5. Administrator user will be asked whether to
download this file or not

Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 20/39

 OTC-17: MEITC Use case document

UC name UC 200: Requesting a certificate
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User logins to the certificate manager
Postconditions User requests a certificate
Main flow 1. User requests for a new self signed

certificate
2. This request is stored in the DB repository.
3. As the administrator logs in, he is asked to

accept or reject the request
4. As administrator accepts, the certificate is

generated
5. Certificate generation information is sent to

the user
Alternative flow 3.a. System administrator rejects revoking

process
System requirements See general assumptions in section 3 "Use Cases"
Open issues Normally, this should be done by system

administrator. Usual certificate requesting
mechanisms will be investigated

Internal document 21/39

 OTC-17: MEITC Use case document

UC name UC 205: Requesting a certificate for user via
administrator panel

Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. Administrator user is logged in
Postconditions Administrator user requests a user certificate
Main flow 1. Administrator user clicks to the "requests

for a new user certificate" link
2. Administrator user enters all users'

certificate request data information
3. Client sends this information to the WS
4. WS checks availability of the user
5. If the user exist WS sends this request to

CS
6. CS generates the certificate request and

stores it to the DB repository
7. WS forwards the acknowledge to the web

browser that the certificate request is
generated

Alternative flow 5.a. If the user doesn't exist in the system
5.a.1 If the user doesn't exist in the system the
administrator makes sure that the entered user is
defined
5.a.2 Operation continues with step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 22/39

 OTC-17: MEITC Use case document

UC name UC 210: Revoking a certificate
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User has a certificate
3. User logins to the certificate manager

Postconditions Certificate is revoked
Main flow 1. User asks for his certificate to be revoked

2. This request is stored in the DB repository
3. When the administrator logs in, he is asked

to accept or reject the revocation
4. If the administrator accepts, the certificate

is revoked
5. Certificate revocation information is sent to

the user
Alternative flow 3.a. System administrator rejects the revocation
System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 23/39

 OTC-17: MEITC Use case document

UC name UC 220: Viewing a certificate
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User logins to the certificate manager
3. User already has a certificate

Postconditions User views the selected certificate
Main flow 1. User clicks on the menu item in order to

view the certificate
Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues All users should be able to see other's certificates

Internal document 24/39

 OTC-17: MEITC Use case document

UC name UC 230: Accepting a certificate request
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. User has requested a certificate as in UC

200
2. MEITC system is running
3. Administrator logins to the certificate

manager
Postconditions Certificate request is granted and certificate is

generated
Main flow 1. Administrator views the certificate request

2. Administrator accepts the certificate
request

3. Certificate is generated by CS and stored
on the database

4. When the user logs in again, he'll be
informed that certificate is generated

Alternative flow 3.a. System administrator rejects certificate
request

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 25/39

 OTC-17: MEITC Use case document

UC name UC 240: Accepting a certificate revocation
request

Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. User has issues a certificate revocation

request as in UC 210
2. MEITC system is running
3. Administrator logins to the certificate

manager
Postconditions Certificate revocation request is accepted and

certificate is revoked
Main flow 1. Administrator views the certificate

revocation request
2. Administrator accepts the certificate

revocation request
3. Certificate is revoked by CS and revocation

information is stored on the database
4. Certificate is deleted from the DB

Alternative flow 3.a. System administrator rejects certificate
revocation request

System requirements See general assumptions in section 3 "Use Cases"
Open issues This process can optionally be issued

automatically by the system, immediately after a
user request, without administrator intervention

Internal document 26/39

 OTC-17: MEITC Use case document

UC name UC 270: Signing an e-mail
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User is authenticated as in UC 60
Postconditions User sends a signed e-mail
Main flow 1. User selects the signing option and

composes the e-mail
2. Client sends the e-mail data to the WS
3. WS sends the e-mail data to the MS
4. MS generates the signature for the e-mail

by using the sender's private key
5. MS logs the e-mail transmission information
6. MS stores a record that contains details of

the e-mail
7. MS stores the signed e-mail data to the

recipients' mailbox directory
8. MS sends the acknowledge of the operation

and the update of the mailbox to the WS
9. WS forwards the acknowledge to the web

browser
Alternative flow 1. In any of the steps above, if the corresponding

(affected) server is not functioning properly, then
the WS sends a reply showing the error to the
user
4.a.1 If the sender user's private key is not
available, the message is not signed
4.a.2 Operation is interrupted

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 27/39

 OTC-17: MEITC Use case document

UC name UC 280: Encrypting an e-mail
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User is authenticated as in UC 60
Postconditions User sends an encrypted e-mail
Main flow 1. User selects the encryption options and

composes the e-mail
2. Client sends the e-mail data to the WS
3. WS sends the e-mail data to the MS
4. MS encrypts the e-mail by using the public

key of the recipient
5. MS stores the encrypted e-mail data to the

recipients' mailbox directory
6. MS sends the acknowledge of the operation

and the update of the mailbox to the WS
7. WS forwards the acknowledge to the web

browser
Alternative flow 1. 1. In any of the steps above, if the corresponding

(affected) server is not functioning properly, then
the WS sends a reply showing the error to the
user
4.a.1 If the recipient user's public key is not
available, the message is not encrypted
4.a.2 Operation is interrupted

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 28/39

 OTC-17: MEITC Use case document

UC name UC 290: Decrypting an e-mail
Primary actors User
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. User is authenticated as in UC 60
3. E-Mail is encrypted as in UC 280
4. User can access inbox as in UC 100

Preconditions /UC 280/
Postconditions User decrypts the encrypted e-mail
Main flow 1. User tries to open encrypted e-mail

2. Client sends the request to the WS
3. WS sends the request to the MS
4. MS decrypts the e-mail by using senders'

private key
5. MS sends the decrypted e-mail data to the

WS
6. WS sends the encrypted email data to the

web browser
7. User read the message

Alternative flow 1. In any of the steps above, if the corresponding
(affected) server is not functioning properly, then
the WS sends a reply showing the error to the
user
4.a.1 If the user's private key is not available, the
message is not decrypted
4.a.2 Operation is interrupted

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 29/39

 OTC-17: MEITC Use case document

UC name UC 300: Encrypting system logs
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running.

2. Administrator user is logged in
Preconditions /UC 10/
Postconditions MEITC log files will be encrypted
Main flow 1. Administrator user clicks on “Log services”

menu
2. Administrator user chooses the a log type.

This log type can be MySQL, Maillog,
Tomcat Apache or MEITC application log

3. Log file is encrypted by using TPM based
certificate. This certificate is created by
using openssl tpm engine

4. Timestamp information will be added to the
encrypted log file name, like
log_file.YYYYMMDDHHMMSS.enc

5. This encrypted log file is be archived and
compressed

6. User downloads the encrypted file
Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues Trusted time and privacy CA services which will

be developed in OpenTC are not ready

Internal document 30/39

 OTC-17: MEITC Use case document

UC name UC 310: Decrypting system logs
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running.

2. Administrator user is logged in
Preconditions /UC 10/

/UC 300/
Postconditions MEITC log files will be decrypted
Main flow 1. Administrator user clicks on “Log services”

menu
2. Administrator user chooses an encrypted

log file
3. This log file is decrypted by using log server

key and CA application.
4. Decrypted log file is archived and

decompressed
5. Administrator user downloads this

decrypted file
Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues Trusted time and privacy CA services which will

be developed in OpenTC are not ready

Internal document 31/39

 OTC-17: MEITC Use case document

UC name UC 320: Showing TPM / TSS Status
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running.

2. Administrator user is logged in
Postconditions TPM / TSS Status information shown
Main flow 1. Administrator user clicks on "TPM / TSS

Status" link under the TPM Configurator
menu

2. Web Browser sends this link request to the
WS

3. WS (domAPP) opens SSH tunnel to dom0
4. In dom0 TPM / TSS status (whether it's

running or not) is checked by using TPM
Tools

5. WS sends TPM Status data to the web
browser

Alternative flow 3.a. If the SSH Tunnel doesn't open to dom0 from
domAPP
3.a.1 If the SSH Tunnel doesn't open to dom0
from domAPP the administrator makes sure that
the all MEITC services is running
3.a.2 Operation continues with step 2
4.a. If the TPM Tools does not run in the dom0
4.a.1 If the TPM Tools application does not run in
the dom0 the administrator makes sure that the
application is running properly
4.a.2 Operation continues with step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 32/39

 OTC-17: MEITC Use case document

UC name UC 330: Showing TPM / TSS Details
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running.

2. Administrator user is logged in
Postconditions TPM / TSS detailed information shown
Main flow 1. Administrator user clicks on "TPM / TSS

Detail" link under the TPM Configurator
menu

2. Web Browser sends this link request to the
WS

3. WS (domAPP) opens SSH tunnel to dom0
4. In dom0 TPM / TSS detail information (PCR

values) is checked by using TPM Tools
5. WS sends TPM detail data to the web

browser
Alternative flow 3.a. If SSH tunnel doesn't open from domAPP to

dom0
3.a.1 Administrator makes sure that all MEITC
services is running
3.a.2 Operation continues with step 2
4.a. If the TPM Tools does not run in the dom0
4.a.1 If the TPM Tools application does not run in
dom0, administrator makes sure that application
is running properly
4.a.2 Operation continues with step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 33/39

 OTC-17: MEITC Use case document

UC name UC 340: Logging out from MEITC admin
panel

Primary actors System administrator
Stakeholders and interest Web server and web browser on client side
Assumptions 1. Administrator user is already defined

2. A web browser is installed in the client side
Preconditions Administrator user is authenticated
Postconditions Administrator user is logged out
Main flow 1. User clicks the "Logout" link on the MEITC

administrator panel
2. Web browser sends the logout request to

the web server
3. Web server destroys administrator users

session information
4. WS forwards the acknowledge to the web

browser. In the acknowledge message it
says the administrator user is logged out of
the system

Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 34/39

 OTC-17: MEITC Use case document

UC name UC 350: Logging out from the MEITC
Certmanager

Primary actors User
Stakeholders and interest Web server and web browser on client side
Assumptions 1. User is already defined in MEITC

certmanager system.
2. A web browser is installed in the client side

platform
Preconditions User is authenticated to the MEITC certmanager
Postconditions User is logged out from the MEITC certmanager
Main flow 1. User clicks on "Logout" link on the MEITC

certmanager
2. Web browser sends a logout request to the

web server
3. Web server destroys user session

information
4. WS forwards the acknowledgement to the

web browser. In the acknowledgement
message it says the user is logged out from
the system

Alternative flow None
System requirements See general assumptions in section 3 "Use Cases"
Open issues None

Internal document 35/39

 OTC-17: MEITC Use case document

UC name UC 360: Creating TPM based log certificate
file for signing MEITC logs

Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. Administrator user is logged in
Postconditions TPM based certificate is created
Main flow 1. Administrator user clicks to "Create TPM

based log certificate" link under the Log
Management menu

2. In the TPM based certificate status page,
administrator user clicks “create TPM based
log certificate” button, if this certificate file
is not created before

3. Web browser sends this link request to WS
4. WS (domAPP) opens SSH tunnel to dom0
5. In dom0 a log key file is created using

openssl TPM engine application.
6. In dom0, TPM based certificate is created

using the previously created log keyfile,
openssl and openssl TPM engine
applications

Alternative flow 4.a. If the SSH Tunnel is not created from
domAPP to dom0
4.a.1 Administrator makes sure that all MEITC
services is running
4.a.2 Operation continues with step 2
5.a. If TSS doesn't run in dom0
5.a.1 Administrator makes sure that the
application is running properly
5.a.2 Operation continues with step 6

System requirements See general assumptions in section 3 "Use Cases"
Open issues Trousers is used as TSS

Internal document 36/39

 OTC-17: MEITC Use case document

UC name UC 370: Signing MEITC Log files with TPM
based log certificate

Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. Administrator user is logged in
Preconditions /UC 360/
Postconditions MEITC log file is signed with TPM based certificate
Main flow 1. Administrator user clicks to "MEITC logs"

link under the Log Management menu
2. In MEITC log page, administrator user

selects the component (MySQL, Tomcat) to
be signed

3. Web browser sends this link request to the
WS

4. WS (domAPP) opens SSH tunnel to dom0
5. In dom0 a sha1 log file of the selected

MEITC component is created using the log
file and sha1sum command

6. In dom0 sha1 log file is signed with TPM
based log certificate file. Openssl and
openssl TPM engine is used in this process

Alternative flow 4.a. If an SSH tunnel is not created from domAPP
to dom0
4.a.1 Administrator makes sure that the all
MEITC services is running
4.a.2 Operation continues with step 2
5.a. If TSS doesn't run in dom0
5.a.1 Administrator makes sure that application is
running properly
5.a.2 Operation continues with step 6

System requirements See general assumptions in section 3 "Use Cases"
Open issues Trousers is used as TSS

Internal document 37/39

 OTC-17: MEITC Use case document

UC name UC 380: Verifying Signed MEITC Log Files
Primary actors System administrator
Stakeholders and interest All MEITC servers
Assumptions 1. MEITC system is running

2. Administrator user is logged in
Preconditions /UC 360/

/UC 370/
Postconditions Signed MEITC log file is verified with tpm based

log certificate
Main flow 1. Administrator user clicks on “Verify logs”

link under Log Management menu
2. In the MEITC verify logs page, user clicks

the file to be verified
3. Web browser sends this link request to WS
4. WS (domAPP) opens an SSH tunnel to dom0
5. In dom0 compartment, selected MEITC

signed log file is verified with TPM based
log certificate

Alternative flow 4.a. If an SSH tunnel is not created from domAPP
to dom0
4.a.1 Administrator makes sure that all MEITC
services are running
4.a.2 Operation continues with step 2

System requirements See general assumptions in section 3 "Use Cases"
Open issues None

4 Abbreviations
Abbreviations used in this report are given in Table 1.

Table 1. Abbreviations
Abbreviation Terminology Definition
CS Certificate Service CS is the certificate service provider for

MEITC
TPM Trusted Platform

Module
The TPM is a micro controller that stores
keys, passwords and digital certificates.

TSS Trusted Software The TSS is a software specification that

Internal document 38/39

 OTC-17: MEITC Use case document

Abbreviation Terminology Definition
Stack provides a standard API (Application

Programming Interface) for accessing the
functions of the TPM.

PCR Platform
Configuration
Register

The measurement results of the
configuration by a TPM module are stored
in a platform configuration register inside
of the TPM module as PCR values.

OPENTC Open Trusted
Computing

OPEN TC consortium is an R&D project
focusing on the development of trusted
and secure computing systems based on
open source software.

MEITC Message Exchange
Infrastructure for
Trusted Computing

MEITC is a secure message exchange
environment.

HTTP Hyper Text Transfer
Protocol

HTTP, the actual communications protocol
that enables web browsing

OpenSSL Open Secure
Socket Layer

OpenSSL is a popular package to add
cryptographic security to applications
communicating over a network

JSP Java Server Pages Java Server Pages (JSP) are normal HTML
with Java code pieces embedded in them.
A JSP compiler is used to generate a
Servlet from the JSP page.

HTML Hypertext (or
HyperText) Markup
Language

HTML is a language to specify the
structure of documents for retrieval
across the Internet using browser
programs of the WorldWideWeb

TC Trusted Computing Trusted computing is a combination of
software and hardware supporting
applications to ensure that data cannot
be accessed unless the user’s system is
operating as expected and has not been
tampered with

LS Log Service LS is used in MEITC system
MS Mail Server MS is a component of MEITC system
WS Web Server WS is a component of MEITC system
DB Database DB server is a component of MEITC

system

Internal document 39/39

WP06.c2: WYSIWYS application design
specification

Project number IST- 027635
Project acronym Open_TC
Project title Open Trusted Computing
Deliverable type Internal deliverable

Deliverable reference number IST-027635/D06c.2/FINAL 1.10
Deliverable title WYSIWYS application design specification
WP contributing to the deliverable WP6
Due date Apr 2008 - M30
Actual submission date Apr 2009

Responsible Organisation Politecnico di Torino

Authors Giovanni Cabiddu, Gianluca Ramunno, Marco
Vallini (POL)

Abstract WYSIWYS is a functional and security
requirement for electronic signatures,
especially when used in legal contexts. This
document consists in the design specification
for a WYSIWYS application suitable for
OpenTC security architecture and satisfying
the WYSIWYS requirement. It also includes
the updated high level requirements
specification: for this reason it supersedes
the deliverable D06c.1. Finally it includes
some implementation detail of the prototype
delivered as D06c.3.

Keywords WYSIWYS, Trusted Computing, Virtualization

Dissemination level Public
Revision FINAL 1.10

Instrument IP Start date of the
project 1st November 2005

Thematic Priority IST Duration 42 months

 SWP06c WYSIWYS application design specification FINAL 1.10

Table of Contents
 1 Motivation and problem description..6
 2 Security Environment..7
 2.1 Assumptions..7
 2.2 Threats...9

 3 Functional Requirements (Use Case Model)..11
 3.1 Goal...11
 3.2 Target Groups..11
 3.3 Roles and Actors..11
 3.4 Overview..11
 3.5 Use Cases (Detailed Description)...12
 3.5.1 Sign a document...13
 3.5.2 Verify a signed document..14
 3.5.3 Basic operations..15

 4 Security Objectives & Security Requirements...23
 4.1 Security Objectives..23
 4.2 Security Requirements...24

 5 Supplementary Requirements..25
 5.1 Preconditions...25
 5.2 Required Criteria..25
 5.3 Desired Criteria..25
 5.4 Distinguishing Criteria..26
 5.5 Execution Environment..26
 5.5.1 Software..26
 5.5.2 Hardware...26

 5.6 Development Environment..26
 5.6.1 Software..26
 5.6.2 Hardware...26

 6 Architecture for WYSIWYS: Trusted Computing and Virtualization..........................27
 6.1 Compartments and integrity measures...27
 6.2 Solutions for integrity binding..29
 6.2.1 Keys and data structures..30
 6.2.2 Three phases bind...31
 6.2.3 Conditions...32
 6.2.4 Initialization phase..33
 6.2.5 Discussion on other types of binding...33

 6.3 Proving the WYSIWYS requirement..34
 7 High-Level Software Architecture...36
 7.1 Introduction...36
 7.2 Logical views..36
 7.2.1 Packages...36
 7.2.2 Use case realisation..38

 8 Design...49
 8.1 Communication between modules...49
 8.1.1 wys_commlib library..51
 8.1.2 Interactions between modules..53

 8.2 Modules..54
 8.2.1 WYSIWYS Control Service (CS)..54
 8.2.2 Signing Device Interface (SDI)...55

Open_TC Deliverable 06c.2 2/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.3 Trusted Integrity Service (TIS)...57
 8.2.4 Trusted Storage Service (TS)...59
 8.2.5 Trusted User Interface (TUI)..60
 8.2.6 Trusted Viewer Service (TVS)..63
 8.2.7 Trusted Window Service (TWS)...64
 8.2.8 Untrusted User Interface (UUI)..65

 9 Implementation details...66
 9.1 Three phase bind...66
 9.1.1 Key Registration..67
 9.1.2 Signature process..68
 9.1.3 WYSIWYS Application startup..70
 9.1.4 Drivers...71

 10 Security requirements for signature creation applications...................................75
 11 List of Abbreviations...79
 12 Acknowledgements...80
 13 References..81

Open_TC Deliverable 06c.2 3/81

 SWP06c WYSIWYS application design specification FINAL 1.10

List of figures
Figure 1: Use cases diagram..12
Figure 2: Keys...31
Figure 3: Three phase bind scheme..32
Figure 4: Package diagram...36
Figure 5: UC 30 sequence diagram...40
Figure 6: UC 40 sequence diagram...41
Figure 7: UC 50 sequence diagram...42
Figure 8: UC 60 sequence diagram...43
Figure 9: UC 65 sequence diagram...44
Figure 10: UC 70 sequence diagram...46
Figure 11: UC 80 sequence diagram...47
Figure 12: UC 90 sequence diagram...48
Figure 13: Tag-Length-Value ...49
Figure 14: T field...49
Figure 15: Stack of libraries..50
Figure 16: Interactions between modules...53
Figure 17: Trusted Integrity Service DB..67
Figure 18: Drivel Model...71
Figure 19: SDI software stack for POLITO Student's Smart Card..................................73

Open_TC Deliverable 06c.2 4/81

 SWP06c WYSIWYS application design specification FINAL 1.10

List of Tables
Table 1: Packages required by use cases...39

Open_TC Deliverable 06c.2 5/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 1 Motivation and problem description
“What You See Is What You Sign” (WYSIWYS) is a functional and security requirement
for electronic signatures, especially when used in legal contexts (e.g. the European
Directive 1999/93/EC [9] on electronic signatures). To guarantee the trustworthiness
of the content displayed and being signed, there is the need to guarantee a trusted
path from the signing (or verifying) application to the user and in the opposite
direction. Many past and present solutions that claim to be WYSIWYS compliant, in
reality they are not. In fact they do not protect against Trojan software or other
“malware” that can either modify the document image displayed to the user or the
user’s input to activate the signing device operations. This is caused by the insecure
architecture of the I/O subsystems integrated within the current monolithic Operating
Systems.
Therefore the design of a WYSIWYS application must also take into account the
underlying architecture in order to guarantee the actual trustworthiness of the
application. In particular trusted input/output paths between the application and the
user must be must be in place in order to guarantee the correct binding between the
document presentation and the data actually signed or verified.
The security properties and services provided by OpenTC architecture can be used as
foundation for a WYSIWYS application; enabling features from OpenTC are the trusted
GUI and the assurance about the integrity of the Trusted Computing Base including
hypervisor, operating system, and applications. Moreover memory isolation through
virtualization and information flow control policies allow designing the WYSIWYS
application in a modular fashion with a strong confinement of components with
different levels of requirements for strength.
Another relevant aspect is the correctness of the document presentation. Given the
complexity of the current document formats, there is no sufficient market for
designing and implementing trustworthy viewers solely for the purpose of secure
electronic signatures. We therefore use a pragmatic approach for achieving this
requirement. Standard applications used to produce the documents being signed can
be used as “trusted viewers” provided that they are properly configured to avoid
hidden content, and dynamic content depending on the platform configuration or on
the time when the document is presented.
This document includes the design specification for a WYSIWYS application for a
reference architecture of an application for signing and verifying electronic documents
that satisfies the WYSIWYS requirement. It also includes the updated high level
requirements specification: for this reason it supersedes the deliverable D06c.1 [8].
Finally it includes some implementation detail of the prototype delivered as D06c.3.

Open_TC Deliverable 06c.2 6/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 2 Security Environment
This section describes the security aspects of the environment in which the
product is intended to be used and the manner in which it is expected to be
employed.

 2.1 Assumptions
A description of assumptions shall describe the security aspects of the
environment in which the Target of Evaluation (TOE) will be used or is intended
to be used. This shall include the following:

● information about the intended usage of the TOE, including such aspects
as the intended application, potential asset value, and possible limitations
of use; and

● information about the environment of use of the TOE, including physical,
personnel, and connectivity aspects.

/A 10/ Trusted Administrator
The security administrator of the system is non-malicious.

/A 20/ Correct hardware
The underlying hardware (e.g., CPU, devices, TPM, ...) does not contain backdoors, is
non-malicious and behaves as specified.

/A 30/ No Physical attacks
Physical attacks against the underlying hardware platform do not happen.

/A 40/ TOE Binding
The IT-environment offers a mechanism that allows the TOE (WYSIWYS application) to
store information and data like signing keys such that it cannot be accessed by
another TOE configuration. Example mechanisms are the sealing function offered by a
TPM as specified by the TCG in combination with an authenticated bootstrap
architecture, or a tamper-resistant storage in combination with a secure bootstrap
architecture.

/A 50/ No man-in-the-middle attack
The user can determine whether he/she has a direct trusted path to the video and
keyboard interfaces of the computer. A physical attack that relays the whole
communication between a local user and the Input/Output devices to another device
does not happen.

/A 60/ Trusted video path
The architecture underlying TOE provides a reliable and secure video output path.

Open_TC Deliverable 06c.2 7/81

 SWP06c WYSIWYS application design specification FINAL 1.10

/A 70/ Trusted input paths
The architecture underlying TOE provides reliable and secure paths for input devices
(keyboard, mouse, etc.).

/A 80/ Trusted path to cryptographic devices
The architecture underlying TOE, i.e. the TCB, provides a reliable and secure path to
signing devices.

/A 90/ CRTM, TPM, boot loader, VMM and basic security services are
trustworthy
The architecture underlying TOE, namely Core Root of Trust for Measurement (CRTM),
TPM, boot loader, Virtual Machine Monitor (VMM) and services providing security
features behave as expected. All of them are referred to as Trusted Computing Base
(TCB) hereinafter.

/A 100/ TCB guarantees memory isolation between VMs
The TCB guarantees memory isolation between Virtual Machines (VMs) also called
compartments.

/A 110/ TCB is able to enforce security policies for information flow control
The TCB can enforce security policies for information flow control between
compartments: it can guarantee authenticity, integrity and confidentiality of
communication channels among compartments.

/A 120/ TCB prevents exploits and replay attacks
The TCB is designed to prevent exploits of uncritical applications to gain access to
security sensitive information and replay attacks, namely resetting the state of an
application by replaying an older state.

/A 130/ TCB provides secure installation services for TOE
TCB provides installation services for all security critical applications like TOE.

/A 140/ Integrity of TOE is guaranteed by TCB
The TCB guarantees the integrity of TOE: either preventing TOE from running if it
compromised or allowing TOE to be started but alerting the user about TOE being
compromised.

/A 150/ TCB provides secure GUI
The TCB provides a way to distinguish Trusted Compartments from untrusted ones
when shown.

/A 160/ Atomic operations and internal data
The TCB guarantees that operations that are required to be atomic are executed

Open_TC Deliverable 06c.2 8/81

 SWP06c WYSIWYS application design specification FINAL 1.10

properly. If the operation fails, all internal data related with that procedure are
deleted.

/A 170/ TCB allows selected VMs to interact with a remote system
The TCB, if needed, can enable any compartment to interact with a remote system (for
example a server on the Internet). All interactions are enforced by security policies.

 2.2 Threats
A description of threats shall include all threats to the assets against which
specific protection within the TOE or its environment is required. Note that not all
possible threats that might be encountered in the environment need to be listed,
only those which are relevant for secure TOE operation.
A threat shall be described in terms of an identified threat agent, the attack, and
the asset that is the subject of the attack. Threat agents should be described by
addressing aspects such as expertise, available resources, and motivation.
Attacks should be described by addressing aspects such as attack methods, any
vulnerabilities exploited, and opportunity.
If security objectives are derived from only organizational security policies and
assumptions, then the description of threats may be omitted.

/T 10/ Trojan Horse
An adversary may try to get access to sensitive information by deceiving
Administrators or Users such that an application under control of the adversary claims
to be the TOE.

/T 20/ Unauthorised User
An unauthorised user may use TOE to read or modify information owned by another
user.

/T 30/ Unauthorised Administrator
An unauthorised user may use a management functionality of the TOE to grant itself
access to sensitive information.

/T 40/ Unauthorised Data Access
An unauthorised application may read or manipulate user information persistently
stored by TOE.

/T 50/ Denial of Service
An adversary may try to prevent that authorised users can use the TOE by denial of
service attacks against the TCB or the TOE itself.

/T 60/ Document replacement when displayed
A malicious application may try to replace the document being displayed to fool the
user.

Open_TC Deliverable 06c.2 9/81

 SWP06c WYSIWYS application design specification FINAL 1.10

/T 70/ Document replacement when being signed
A malicious application may try to replace the document being signed with another
one while keeping displayed the document selected by the user.

/T 80/ Incorrect document visualisation by output device
The output device may not be able to correctly represent all document details, e.g.
due to screen resolution or output device size not enough for a correct representation
or a limited set of available colours.

/T 90/ Misinterpretation of document format
The format of the document to be signed or verified may be wrongly interpreted by
the viewer.

/T 100/ Dynamic code embedded in the document
The document may include dynamic code (i.e. macros) which can, without invalidating
the signature, modify the document visualisation if different platforms are used or the
document is displayed at different times (e.g. signature or verification time).

/T 110/ Hidden content
The document may include hidden content being signed (e.g. text in the same colour
as the background) without the user being able to notice it.

/T 120/ Third party software bugs and failures
Software made by a third party, like a document viewer for a specific document
format, used inside a VM, may contains bugs and can cause malfunctioning.
Furthermore, that software may accidentally embed malware code.

/T 130/ Replay attacks using valid platform attestation values
An adversary may try to use valid attestation informations to certify a signature
generated by a rogue platform.

/T 140/ Signature invalidation
An adversary may try to invalidate a good digital signature or a valid platform
attestation.

Open_TC Deliverable 06c.2 10/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3 Functional Requirements (Use Case Model)

 3.1 Goal
The goal is designing an application for signing and verifying an electronic document
such that the WYSIWYS requirement is met. Furthermore, the application must provide
a way to prove that a signature is made by a platform in a known state - i.e. that
meets the WYSIWYS requirement - giving additional guarantees to the signer and the
verifier. To achieve this goal, the design is based on the OpenTC platform, a security
architecture built on top of Trusted Computing and virtualization technologies. The
application performs the following operations: displaying the document to be signed
and electronically signing the document, displaying an already signed document and
verifying the electronic signature.

 3.2 Target Groups
Defines the users/other components that wish to use the product.
● Home user (Single-user platform at home)
● Employee (Multi-user platform in enterprise environment)

 3.3 Roles and Actors
In this section we define different roles and actors important for the use case
model. Actors are parties outside the system that interact with the system; an
actor can be a class of users, roles users can play, or other systems. Note that,
depending on the use case, some parties or actors may not be involved.

User: The user of a computing platform is an entity interacting with the platform
under the platform's security policy. Examples are employees using enterprise-owned
hardware.

 3.4 Overview
The user can use WYSIWYS application to perform two main operations:

1. signing a document
2. verifying a signed document

Open_TC Deliverable 06c.2 11/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5 Use Cases (Detailed Description)
Each use case focuses on describing how to achieve a single business goal or
task. From a traditional software engineering perspective a use case describes
just one feature of the system. For most software projects this means that
multiple, perhaps dozens, of use cases are needed to fully specify the new
system. The degree of formality of a particular software project and the stage of
the project will influence the level of detail required in each use case.
A use case defines the interactions between external actors and the system
under consideration to accomplish a business goal.
Use cases treat the system as a "black box", and the interactions with the
system, including system responses, are perceived as such from outside the
system. This is a deliberate policy, because it simplifies the description of
requirements, and avoids the trap of making assumptions about how this
functionality will be accomplished.
A use case should:

● describe a business task to serve a business goal
● have no implementation-specific language
● be at the appropriate level of detail
● be short enough to implement by one software developer in a single

release.

Open_TC Deliverable 06c.2 12/81

Figure 1: Use cases diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.1 Sign a document

Use case unique ID /UC 10/

Title Sign document

Short description/purpose(s) The user wants to sign a document

Actors User

Includes /UC 30/ Send file to WYSIWYS
/UC 40/ Display document
/UC 50/ Choose operation
/UC 60/ Choose signing device & key
/UC 65/ Show attributes and confirm
/UC 70/ Create signed document
/UC 90/ Delete files & close sessions

Preconditions WYSIWYS application is running

Postcondition The user receives back the signed
document

Normal Flow 1. Send file to WYSIWYS application
/UC 30/

2. Display document /UC 40/
3. Choose operation (sign) /UC 50/
4. Choose signing device & key /UC

60/
5. Show attributes and confirm /UC

65/
6. Create signed document /UC 70/
7. Delete file & close sessions /UC 90/

Open_TC Deliverable 06c.2 13/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.2 Verify a signed document

Use case unique ID /UC 20/

Title Verify signed document

Short description/purpose(s) The user wants to verify a signature
applied to a document

Actors User

Includes /UC 30/ Send file to WYSIWYS application
/UC 40/ Display document
/UC 50/ Choose operation
/UC 80/ Signature verification
/UC 90/ Delete file & close sessions

Preconditions WYSIWYS application is running

Postcondition The user receives the result of signature
verification

Normal Flow 1. Send file to WYSIWYS application
/UC 30/

2. Display document /UC 40/
3. Choose operation (verify) /UC 50/
4. Signature verification /UC 80/
5. Delete file & sessions /UC 90/

Open_TC Deliverable 06c.2 14/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3 Basic operations

 3.5.3.1 Send file to WYSIWYS application

Use case unique ID /UC 30/

Title Send file to WYSIWYS application

Short description/purpose(s) The user sends file to WYSIWYS
application

Actors User

Preconditions WYSIWYS application is running

Postcondition The document is loaded into WYSIWYS
application

Normal Flow 1. The user sends the application the
document's file using a proper
command

2. The application saves the
document internally

3. The application activates a trusted
interface for user interaction

Open_TC Deliverable 06c.2 15/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.2 Display document

Use case unique ID /UC 40/

Title Display document

Short description/purpose(s) The application shows the document and
guarantees a trustworthy display

Preconditions /UC 30/

Postcondition The document is shown to the user

Normal Flow 1. The application activates the
correct viewer for the document
format

2. The application loads the document
file from an internal storage

3. The application performs some
checks in the document (e.g.
macro, hidden text) and alerts the
user if their results fail

4. The document is displayed to the
user

Open_TC Deliverable 06c.2 16/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.3 Choose operation

Use case unique ID /UC 50/

Title Choose operation

Short description/purpose(s) The user chooses to sign or verify a
document

Actors User

Preconditions /UC 40/

Postcondition The user has chosen the operation to be
executed

Normal Flow 1. The user is required to choose one
operation

2. The user decides to sign or verify
the document

3. The application takes charge of
user's choice

Open_TC Deliverable 06c.2 17/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.4 Choose signing device & key

Use case unique ID /UC 60/

Title Choose signing device & key

Short description/purpose(s) The user selects the signing device and
key

Actors User

Preconditions /UC 50/

Postcondition The signing device and the key are
chosen

Normal Flow 1. The application shows to the user
the list of available signing devices

2. The user chooses the signing
device

3. The application shows to the user
the list of available keys

4. The user chooses the signing key

Open_TC Deliverable 06c.2 18/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.5 Show signing attributes and confirm

Use case unique ID /UC 65/

Title Show signing attributes and confirm

Short description/purpose(s) The application shows the signing
attributes (i.e. the attributes being
signed) and asks the user if he/she really
wants to sign the presented document
and attributes

Actors User

Preconditions /UC 60/

Postcondition The user has decided if he/she wants to
continue the operation

Normal Flow 1. The application shows to the user
the list of signing attributes

2. The user decides if he/she wants to
confirm the signing operation

Open_TC Deliverable 06c.2 19/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.6 Create signed document

Use case unique ID /UC 70/

Title Create signed document

Short description/purpose(s) Create the file containing the signed
document

Preconditions /UC 65/

Postcondition The user receives the signed document

Normal Flow 1. The application loads the document
to be signed from the internal
storage

2. The selected signing device
generates the electronic signature
over document file using the
selected key

3. The application creates the file
containing the document, the
signature and the attestation of the
state of integrity of the platform

4. The application returns to the user
the signed document

Open_TC Deliverable 06c.2 20/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.7 Signature verification

Use case unique ID /UC 80/

Title Signature verification

Short description/purpose(s) The application verifies the correctness of
the electronic signature over the
document

Preconditions /UC 50/

Postcondition The user receives the result of verification

Normal Flow 1. The application loads the signed
document to be verified from the
internal storage

2. The application actually verifies the
correctness of the signature

3. The application returns the result of
the verification to the user

Open_TC Deliverable 06c.2 21/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 3.5.3.8 Delete file & close sessions

Use case unique ID /UC 90/

Title Delete file & close sessions

Short description/purpose(s) All sessions are destroyed and the file
internally saved is deleted

Preconditions /UC 70/ or /UC 80/

Postcondition The application returned to its initial
state, ready to perform another operation
(sign or verify)

Normal Flow 1. The application deletes the file
from the internal storage

2. The application closes all sessions

Open_TC Deliverable 06c.2 22/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 4 Security Objectives & Security Requirements

 4.1 Security Objectives
The security objectives shall address all of the security environment aspects
identified. The security objectives shall reflect the stated intent and shall be
suitable to counter all identified threats and cover all identified organizational
security policies and assumptions. A threat may be countered by one or more
objectives for the product, one or more objectives for the environment, or a
combination of these.

/SO 10/ Separability
The use of different security-critical TOE components based on the OpenTC security
architecture has to be at least as secure as the execution of the same applications on
physically separated computing platforms connected via network.

/SO 20/ No unauthorized use of TOE components
Unauthorized entities must not be able to arbitrarily execute TOE components.

/SO 30/ Visual identification of TOE User Interface
The user must be able to reliably identify the User Interface of TOE.

/SO 40/ Correct visualisation of the document
TOE must correctly visualise the document being signed or verified.

/SO 50/ Binding between visualisation and signature/verification operations
TOE must actually sign or verify the document being displayed to the user.

/SO 60/ Guarantee the integrity of the components
Building upon the TCB, TOE must be able to guarantee the integrity of the components
that compose the TOE itself to both the signer and the verifier.

/SO 70/ Report the state of integrity of the platform to a remote party
TOE must be able to reliably report to a third party the state of integrity of the
platform – also including the TOE - held during the signing operations. The state must
be bound to the signature.

/SO 80/ Digital Signature
TOE must be able to produce Digital Signatures that can be classified as the so called
Qualified Electronic Signatures (QES) signatures, i.e. the Advanced Electronic
Signatures based on a Qualified Certificate and generated through a Secure Signature
Creation Device [9].

Open_TC Deliverable 06c.2 23/81

 SWP06c WYSIWYS application design specification FINAL 1.10

NOTE: the present document does not include requirements and design items related
to the “classic” aspects of a Public Key Infrastructure (PKI), like Time Stamping,
Revocation Status Checking and others, required by a QES.

 4.2 Security Requirements
This part of the requirement specification defines the security requirements that
have to be satisfied by the product. The statements shall define the functional
and assurance security requirements that the product and the supporting
evidence for its evaluation need to satisfy in order to meet the security
objectives.

/SR 10/ No communication among TOE components and external parties
Security policies should be enforced to guarantee that TOE components cannot
interact with external parties, with the exception of a single component acting as
interface towards compartments not belonging to the TOE.

/SR 20/ Information flow
Security policies should be enforced to guarantee that information flow is only possible
among TOE components. Primarily, eavesdropping on another, non-cooperating
compartment must be foiled.

/SR 30/ Integrity of document to be signed or verified
TOE should guarantee that the displayed document cannot be corrupted while being
signed or verified.

/SR 40/ Trusted WORM Storage
The TOE should use a trusted storage Write Once Read Many (WORM) for storing
documents to be signed or verified and used by TOE components during all
intermediate operations. The document is loaded once by the TOE and stored onto the
WORM storage; all components can then read the document but not modify it; the
document can be deleted at the end of operations.

/SR 50/ Trusted RW Storage
The TOE should use a trusted storage Read/Write for temporary files during
operations.

/SR 60/ Integrity of the application
TOE should use Trusted Computing functions for measuring the integrity of the
components that compose the TOE. The TOE should locally enforce the integrity of the
components (e.g. by using sealing for data required by TOE to be operational).

/SR 70/ Signature binding
TOE should bind the signature (with legal value) with the integrity state of the signing
platform (TCB and TOE) active during the signing operation. This way it is possible to
guarantee and report the integrity of the components to a remote (verifying) party.

Open_TC Deliverable 06c.2 24/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 5 Supplementary Requirements
Obligatory criteria, mandatory for successful completion.

 5.1 Preconditions
Requirements that have to be fulfilled already, because they were needed for the
development process.

/PR 100/ Trusted Computing Base
The TOE is build upon OpenTC, a security architecture for Trusted Computing Base.

/PR 200/ Reliable document viewer
The TOE should use at least one application that is considered reliable as viewer for
one specific document format (e.g. OpenDocument).

 5.2 Required Criteria
Mandatory criteria, that are obligatory for successful completion.

/RC 10/ Xen support
The realization of the use cases should be based on a Xen-based architecture.

/RC 20/ Single-user support
The TOE should support at least one user.

/RC 30/ Cryptographic devices
The TOE should support at least one hardware and one software cryptographic device
through standard interfaces (particularly PKCS#11).

/RC 40/ Document formats
The TOE should support virtually any type of document format via plug-in based
architecture for document viewers.

 5.3 Desired Criteria
Optional criteria, that are not mandatory for successful completion.

/DC 10/ Multi-user support
The security architecture should be able to handle multiple users.

/DC 20/ L4 support
The realization of the use cases should be based on an L4-based architecture.

Open_TC Deliverable 06c.2 25/81

 SWP06c WYSIWYS application design specification FINAL 1.10

/DC 30/ Cryptographic devices
The TOE should support all common cryptographic devices - hardware and software -
through standard interfaces (particularly PKCS#11).

 5.4 Distinguishing Criteria
What our product does not provide.

 5.5 Execution Environment
This section specifies software and hardware the user requires at least to run our
product successfully.

 5.5.1 Software
● Standard Linux 2.6.x distribution
● Xenolinux 3.x.x (Linux 2.6.x running on top of Xen 3.x.x hypervisor)
● OpenOffice 2.3 or higher
● (optional) L4-Linux (Linux 2.6.x running on top of Fiasco, L4V2 µ-kernel)

 5.5.2 Hardware
● Intel LT/VT or AMD-V Platform
● TPM 1.2 Platform

 5.6 Development Environment
This section specifies hard- and software that developers need at least to
implement the product successfully.

 5.6.1 Software
● Linux 2.6.x
● gcc 4.2.x
● eclipse-3.1
● OpenOffice 2.3 or higher

 5.6.2 Hardware
● Intel LT/VT or AMD-V Platform
● TPM 1.2 Platform

Open_TC Deliverable 06c.2 26/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 6 Architecture for WYSIWYS: Trusted Computing and
Virtualization

Nowadays many software manufacturers assert their digital signature applications are
compliant to WYSIWYS requirement; it is not really true. Even if a digital signature
application can be correct, ideally devoid of worms, it could not be the same for the
system where that software is installed. Usually it is a PC class platform where an
operating system like MS-Windows or Linux and applications have vulnerabilities.
These ones may compromise the whole signature system, if conveniently exploited
(see [1]). Furthermore, the Internet encourages the spread of malware or trojan horses
that a attacker may use to achieve his intents.
Very often a user installs on his PC any kind of software being unaware of its
provenance or trustworthiness. In those conditions how is it possible to know if the
installed software does exactly what the manufacturer has declared? The only way
could be checking the whole software source code; sometimes it is not available or, if
it is , analysing it requires an advanced knowledge in computer science and much
time. Assuming that a software manufacturer behaves correctly, which way a
“traditional” platform can be used for securely signing (or verifying) a document (or a
signature)? Moreover, how is it possible to guarantee that the input and the output of
the application have not been tampered with? The simplest solution may be to have
an isolated system, without any connection with other machines (the outside world),
where hardware and software are carefully checked. In that machine should be
installed only the operating system, the essential drivers and the sign/verify
application. Furthermore in that computer must not be possible to install other
software and only the owner must have physical access.
In addition, in order to guarantee the WYSIWYS requirement, other security criteria
should be met. In fact some threats are related to the document itself when it is
shown to the signer and the verifier. Thus, in a possibly strict solution the document
must be created directly on the same machine used for signing and the signature
software must not allow neither the presence of active code in the document (i.e.
macro) nor hidden text. Or a document created on an untrusted platform should be
moved to a controlled platform used to validate the document with a trusted viewer
prior to signing.
These solutions appear, nevertheless, limiting because they prevent the utilization of
the machine for other purposes. Moreover, they are not still complete because they do
not allow proving to third parties that the signature was made in a “protected”
environment namely with specific security characteristics that satisfy the WYSIWYS
requirement.
The suggested example is useful to focus on some relevant aspects: isolation, system
trustworthiness (according to [2]) and remote attestation of platform integrity. All
these elements are the foundation of the software application, i.e. the TOE, whose
design will be presented. Such application, by means of Trusted Computing and
virtualization, overcomes or mitigates the limitation of the model based on a physical
platform completely isolated.

 6.1 Compartments and integrity measures

To avoid having a physical platform being isolated from the the outside world, it is

Open_TC Deliverable 06c.2 27/81

 SWP06c WYSIWYS application design specification FINAL 1.10

possible to use virtualization techniques. This kind of technology allows executing on a
single physical computer different instances of virtual machines (VMs) completely
isolated1 from each other. This allows strongly separating into compartments the
software components being executed at the same time on a machine.
A central aspect of the application's design is the subdivision in functional modules
that will be executed on different VMs. Communication between modules will happen
through well known interfaces and will be regulated by policies that will limit the
interaction down to the bare minimum. The compartments will have minimum size and
run verified software components. All these countermeasures minimize risks due to
vulnerabilities that can be present in the signature application. Particularly, isolation
and strict communication policies minimize the opportunity that a bug could be
exploited from outside the application – namely from another virtual machine, for
example, that is used by the user for the daily work or other physical machines. Or
that the effects of a possible malfunctioning of a component triggered during normal
operations compromises the security or the availability of other modules2.
All these components will be executed on a TCB (Trusted Computing Base) that is a
set of hardware and software in charge of VMs management and security policy
enforcement that implements security mechanisms and Trusted Services3. The TCB
vouches for realization of a trusted path between the user and the application, and the
effective fulfilment of the policies that regulate the communications between VMs and
the application itself. Finally, it guarantees that other virtual machines cannot
interfere with the application and can interact with it only using a limited and well
known interface. It is therefore required that the TCB must be trustworthy.
To the architecture previously described – that allows satisfying the WYSIWYS
requirement – it is possible to apply Trusted Computing technologies that allow
achieving additional guarantees during the signing or verification acts. (1) Each time
the signer uses the application, it guarantees that the signature system is in a specific
state (hopefully “good”) (integrity check), namely in the same state assumed during
the installation phase. (2) The verifier (or a third party, for example a judge in the
event of dispute) can verify that the signature was created on a platform that meets
the WYSIWYS requirement by identifying all components. (3) The verifier (or a third
party) can repeat in a reliable way the visualization experience of the document had
by the signer or could try to have another experience, however as close as possible to
the signer's one. The guarantees (2) and (3) form an evidence that makes a signature
with WYSIWYS technically more strong compared to signatures generated using legacy
software.
For this purpose the TCB must be bound to the TPM (Trusted Platform Module) that
measures all components and builds the Chain Of Trust. Each component of the TCB

1 Each virtual machine cannot access the memory of other VMs running at the same time.
2 From this viewpoint, the most critical component is the document visualization software.

Ideally, for each document format should be developed an ad-hoc viewer, whose correctness
of implementation should be formally verified. Practically, it is highly improbable that a
software company decides to develop and maintain such kind of application. A pragmatic
approach to solve this problem can be using, as viewers, the legacy applications used to
create the documents: probably they implement the best interpretation of the document
formats but it is difficult to assume that they are correctly implemented.

3 The design of the application relies upon the properties and the services given by OpenTC
architecture. This guarantees the integrity of the measurements of the architecture and the
application.

Open_TC Deliverable 06c.2 28/81

 SWP06c WYSIWYS application design specification FINAL 1.10

must be measured before its execution4; similarly for the application modules5.
The measurements are useful for two reasons: (1) retrieving encrypted data
associated to a specific integrity state of the platform (unsealing), namely associated
to the TCB and the TOE, i.e. the signature application: the impossibility to access some
data shows to the signer that the state of the platform is changed; (2) reporting to
third parties the integrity state of the platform through the so-called remote
attestation6.
For the daily operations, like handling e-mails and producing documents that will be
signed, the user can use one or more untrusted compartments; even if a virus or a
trojan horse were installed in one of them, the signature application would not be
compromised.

 6.2 Solutions for integrity binding
One of the problems to contend with is how to strongly bind a digital signature with an
attestation of the platform state. It is necessary to prove to a verifier that during the
signing time:

● the platform was in a well-known state;
● if the measured state was “good”7 the signer watched the document correctly

shown and he signed it on his own free will8.
In order to carry out signatures with strong legal value (QES) according to Italian and
European laws, digital signatures must be generated using an external device (Secure
Signature Creation Device – SSCD), like a smart card, which must be certified as
compliant with a Protection Profile [4] Common Criteria. SSCD hedges in the user's
private key; at signature time, it receives from the platform a hash of the file to sign
and a PIN (if the SSCD or the connecting device like a smart card reader does not have
a numerical keypad for inputting the PIN) essential for the authentication of the device
owner. If the PIN is correct, the private key is unblocked and is used to apply the
signature algorithm to the document hash; the result, a blob that represents the
digital signature, is returned to the platform.
By using the TPM it is possible to prove that the SSCD has been controlled by a trusted
platform9 that was in a known state. The fact that the signer's key Ksign is not protected

4 The measurements are stored in particular TPM's registers called PCR. Each PCR can be
updated only by means of an operation called “extending” PCRs: PCRnew = SHA1(PCRold||
Measurement) where the measurement is the hash of the binaries of the component.

5 In this case the measurement is the hash of the binaries of the compartment (i.e. the whole
file system) and of its configuration.

6 Measurements do not suggest that the software does not contains pitfalls or it is good, but
they allow identifying the components running on the machine, thus letting verify that a
known configuration is in place. In a signature application, the integrity measurements will
be useful for reporting, namely, that the application behaves correctly and guarantees
trusted paths.

7 A machine is intended to be in a good state if it behaves correctly.
8 All cases of legal repudiation are excluded whereas, also using a good platform that

guarantees correctness and technical non-repudiation, a person signs against his will
because is threaten or is of unsound mind.

9 This guarantees, for example, that the hash sent to the device was not replaced in transit or
the unblocking PIN of the device will not be stolen during the signature generation and after
injected by an attacker to make another signature.

Open_TC Deliverable 06c.2 29/81

 SWP06c WYSIWYS application design specification FINAL 1.10

by TPM poses a problem to be solved.
In the TCG architecture, the verification of the integrity state on a remote user side (in
this case the verification of a signature) is known as remote attestation. A technique
for producing an evidence that a particular event (for example the signature) happens
when the platform is in a particular state can be wrapping the event via cryptographic
methods, namely through digital signatures, between two remote attestations, one
before and the other one after the event occurs. If the states returned by both
attestations are identical, then the event occurred when the platform was in such
state.
The mechanism chosen for the attestation is implicit: instead of the TPM_quote()
operation, a TPM key sealed (namely associated to a particular state of the platform)
and certified is used.
Using that key with success for generating a signature means that the unsealing
operation succeeded, namely the platform is in the state indicated in the certification
applied to the key.
Consequently the association between digital signature with legal recognition
appended to a document and the integrity state of the platform at signing time is
realized with a solution based on multiple hierarchical signatures: the three phases
bind.
To carry to the verifier the whole needed information (resolution, colour depth, result
of checks done on the document, etc.) for reproducing the same representation of the
document the signer experienced, a collection of state data will be the input of the
signature process that forms the first attestation, done with the sealed and certified
TPM key.
It is a kind of attestation with no interaction with a verifier during the attestation
process; therefore the random data normally chosen by the verifier to prevent replay
attacks (namely a possible reuse of integrity informations) must be supplied in a
different way. The first signature will be performed on the signer's public key and on
the document itself.
The data input for the first signature and the signature itself, will be signed together
with the document via a SSCD as by law enacted. From the cryptographic point of
view, the document does not need to be included in the second signature since it is
already included in the first one. Nevertheless, for compatibility with standardized
formats and legacy digital signature applications, it is necessary to include the
document as main input to the second signature and the first signature as attribute to
be signed together (i.e. with a PKCS#7 envelope [3]). The second signature is
generated by a SSCD (e.g. a smart card) and will be the input for the third signature
done by the TPM, as the second attestation. The third signature can be carried as
unsigned attribute (inside the PKCS#7 envelope).

 6.2.1 Keys and data structures
In order to describe the binding solution, it is necessary to list the keys and the data
structures that will be involved in the procedure:

Open_TC Deliverable 06c.2 30/81

 SWP06c WYSIWYS application design specification FINAL 1.10

Signature key (Ksign): it is a key pair (PKsign, SKsign) used for signing a document with
legal value. A digital certificate (X.509 [10]) issued by a Certificate Authority attests
the association between the key and the owner. For signatures with strong legal
recognition the private key PKsign is kept protected in a hardware Personal Security
Environment, the SSCD stated by the EU directive (i.e. a USB token or a smart card)
and it is never released outside.
Attestation Identity Key (AIK key, KAIK): the key pair KAIK (PKAIK, SKAIK) represents
one of the possible platform identities to be used during a remote attestation; with this
respect it can be considered as an alias of the Endorsement Key (EK Key) which
represents the unique TPM identity. It is non-migratable and its private part it is never
released by the TPM unencrypted - but only encrypted with the Storage Root Key, SRK.
Moreover, it is a key certified by a Privacy CA (PCA) that guarantees that the TPM is
genuine through the EK certificate. It is typically used for the remote attestation
(TPM_Quote()) or to certify other TPM keys (Tspi_Key_CertifyKey()).
The so called Subject Key Attestation Evidence key (SKAE Key, KSKAE): it is a TPM
key pair is non-migratable KSKAE (PKSKAE, SKSKAE) and it is created after an AIK (KAIK) has
been certified and installed. The private part of the key is sealed with respect to a
specific configuration of the TCB. The public part is certified.
SKAE: consists in (1) a TPM_CERTIFY_INFO structure that contains the configuration of
the TCB when KSKAE was generated (and that must be in place to let the key be
released) and a digest of PKSKAE, (2) the signature, through KAIK of the latter block. SKAE
is used by TCB as proposed in [5].

 6.2.2 Three phases bind
Three phases bind is a solution based on three signatures that guarantees, under
some conditions, the association between a digital signature on a document, created
with an external device, and the attestation of the platform integrity.
It is composed of three operations in sequence:

1. Attestation A – CERT-1
CERT-1 = Signature(PKsign||Hash(Document),KSKAE)
CERT-1 is the signature generated with KSKAE on the public part of Ksign (PKSIGN),
i.e. the key that will be used for signing the document with legal recognition,
concatenated with the hash of the document being signed. CERT-1 can be
considered as the statement that the document will be signed on this platform
using SKsign corresponding to PKsign

10.
10PKsign, furthermore, allows making CERT-1 distinguishable in case of parallel and

independent signature.

Open_TC Deliverable 06c.2 31/81

Figure 2: Keys

 SWP06c WYSIWYS application design specification FINAL 1.10

The attestation of the platform is implicit in the signature, in fact KSKAE is sealed
and it can be used only if the TCB is in a known state, i.e. the one certified by
SKAE.

2. Digital Signature with legal value
FDGT = Signature(Document||CERT-1,KSIGN)
It is the digital signature with legal value generated by a SSCD. CERT-1 will be
inserted as signed attribute in the PKCS#7 envelope. This step asserts that
CERT-1 existed before the generation of FDGT.

3. Attestation B – CERT-3
CERT-3 = Signature(FDGT,KSKAE)
This signature declares that FDGT was created on the same platform that
signed CERT-1. The state of the TCB and of the application is the same as for
CERT-1 because of sealing: indeed it must be generated using the same sealed
KSKAE used to create CERT-1. When CERT-3 is created the TCB must verify that
PKsign included in CERT-1 verifies the signature FDGT (i.e. that PKsign corresponds
to SKsign used to sign FDGT) to avoid the release of inconsistent associations.

 6.2.3 Conditions
The three phases bind requires that the TCB and the application behaves in well-
defined ways:

● Each of the three operations must be atomic and executed in sequence; if one
of the phases fails, all data (signatures and other data) resulting from the
previous phase must be deleted;

● The TCB must assure that there is no leakage of sensitive information before
CERT-3 is issued (see Section 6.2.5);

● CERT-1 attestation must not be considered of any value if released alone (i.e.
without FDGT and CERT-3);

● Before the release of the last certification block (CERT-3) all data previously
collected and all signatures previously created must be verified;

Open_TC Deliverable 06c.2 32/81

Figure 3: Three phase bind scheme

 SWP06c WYSIWYS application design specification FINAL 1.10

● If the platform is hibernated while the signature procedure is in act, no sensitive
data must be written to the disk unless they are encrypted.

 6.2.4 Initialization phase
The initialization phase can be done the first time a signing device is used together
with a platform running the TOE (i.e. the WYSIWYS application). This procedure is split
in three steps:

1. AIK key creation and certification;
2. SKAE key creation and certification through the AIK generated in (1);
3. association of the SKAE key with the keys available on the signing devices.

The AIK must be certified by a Privacy CA that verifies if the TPM is genuine through
the analysis of EK certificate and other Trusted Computing credentials.
This procedure is not essential for the three phases bind, but it avoids the generation
of new TPM keys for the same user at each signature, thus making the operations
faster.
In order to make the SKAE credential associated with the signing key resident in the
device, the platform may ask a Proof-Of-Possession of the private key to avoid that a
third party may install on the system keys it does not own, thus leading to a wrong
registration phase. This can be done by signing a dummy document. If the verification
succeeds, then the association between keys will be stored inside the application.
The registration phase should be only possible if the platform is in a well-known state;
therefore it will be used with sealing in order to execute the TOE only if the platform is
in a good state.
If the platform was not in a “good” state during the key registration phase,
TPM_CERTIFY_INFO structure will contain unknown PCR values not representing a good
configuration. The digital signature, in that case, would have the same validity as the
one generated on a traditional platform.

 6.2.5 Discussion on other types of binding
In this section two alternatives will be presented to the three phase bind that can
guarantee the integrity association with a legacy digital signature using a lower
number of steps and with more restrictive assumptions for the TCB.
Solution A: CERT-1, FDGT
In this scheme CERT-1 and FDGT are the same as described in Section 6.2.2 and are
executed in sequence. The TCB must guarantees (1) that both operations are
executed in atomic way, (2) that no data is issued before the end of the operations
and (3) the signature made by SSCD is verified against the key included in CERT-1. If
the verification in (3) does not succeeded or (1) is unsatisfied than it is possible to
mount a replay attack.
An example follows:

1. A user performs the key registration procedure of his key; KSKAE is generated and
an association between the keys is created;

2. An attacker makes a device declare to be owned by the legitimate user with an

Open_TC Deliverable 06c.2 33/81

 SWP06c WYSIWYS application design specification FINAL 1.10

arbitrary Ksign, and generates CERT-1 in the signing platform;
3. The attacker, somehow, convinces the user to sign (alternatively: the attacker

somehow obtains the document signed by the user), with success, on a
different platform, CERT-1 and the document associated to the user. This way
the attacker may assert that the user has signed the document using a “good”
platform.

Solution B: FDGT – CERT-3
In this scheme FDGT and CERT-3 are executed in sequence. The attestation of
integrity is done after the signature with legal recognition generated by SSCD. This
scheme is vulnerable.
An example follows:

1. A user performs the key registration procedure of his key; KSKAE is generated and
an association between the keys is created;

2. An attacker convinces the user to sign, on a different platform, an arbitrary
document;

3. The attacker modifies a signing device to assert that it is owned by the
legitimate user, registered during the the first step. Inside that device is held
the signature generated during the second step and the device's logic allows
releasing it when receives a “sign command”.

4. The attacker asks the trusted platform to sign the document created during the
second step using the modified device. In that way he succeeds to have the
certification that the signature has been generated on a trusted platform.

To solve this problem FDGT, should be modified by randomizing it. Another way can be
removing the keys registration procedure and generating TPM keys at every signature.
If the signatures are generated using RSA with probabilistic padding (PSS, see PKCS#1
version 2.1 [11]) or DSA, further modification are not required to make this scheme
robust.

 6.3 Proving the WYSIWYS requirement
The trusted platform realizes a trusted path, namely it guarantees that the input and
the output of the application are protected against unauthorized accesses from other
applications.
Furthermore the signature application should check the document and report the
results of those checks in order to let a verifier look into them.
The result of those checks will be inserted on CERT-1. This asserts that the platform
guarantees that all those checks have been performed. Furthermore, by including in
CERT-1 all details concerning to visualization conditions (by the signer), the verifier
can re-create, in a trusted way, the experience had by the signer.
The relevant data that can be included in CERT-1 are:

● application version;
● file name with extension;
● configuration of the viewer and of the environment during the visualization of

the document (resolution, colour depth);

Open_TC Deliverable 06c.2 34/81

 SWP06c WYSIWYS application design specification FINAL 1.10

● duration of the document visualization;
● way of visualization (zoom percentage and viewed pages);
● properties of the document;
● presence of macro;
● presence of macro that depends on the time or on the machine configuration;
● presence of hidden text (namely text with the same colour as the background);
● sequence of warnings (about macro and hidden text) and choices made by the

user, important to provide the verifier with a report to make him/her able to
recreate the conditions and the configurations in place at signature time;

● digest of visualization video streaming;
● implicit information and explicit data about the transformations made on the

document before being visualized, for example a XSLt [6] transformation for a
XML document [7].

Open_TC Deliverable 06c.2 35/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 7 High-Level Software Architecture

 7.1 Introduction
This section contains some views of a high-level software architecture for the TOE, a
WYSIWYS application. In particular the granularity of the views is at package level;
each package includes a group of components that share the same level of strength
for security requirements. Such groups can be actually compartmented using different
virtual machines. To show the interactions among those virtual machines sequence
diagrams are used, thus overloading their semantic, since they are normally used to
show interactions among objects.

 7.2 Logical views

 7.2.1 Packages
In figure 4 the package diagram shows the 'use' relationships among different
packages.

Open_TC Deliverable 06c.2 36/81

Figure 4: Package diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

Untrusted User Interface
It is the standard interface provided to the user by the environment for daily
operations (like browsing the Internet, reading e-mails and writing documents); it
allows the user to start the WYSIWYS application and to choose the document file to
sign or verify.

Trusted User Interface
It is part of WYSIWYS application and it allows the user to interact with WYSIWYS
Control Service to choose the operation (sign or verify) to be executed and the related
options.

WYSIWYS Control Service
It implements the application logic and controls all packages. It receives the document
file to be signed or verified from Untrusted User Interface and it manages the
interactions between all packages.

Signing Devices Interface
It exposes a simple API to give access to the signing devices. Different types of
devices can be supported: software and hardware (commonly used smart-cards or
TPM). Each user can use a (sub)set of all devices the platform makes available. Such
devices hold the users' keys.

Trusted Viewer Service
It shows the document to be signed or verified. It guarantees a trustworthy
visualisation using the correct viewer with regards to the document format.

Trusted Storage Service
It allows a trusted storage of the document file for all WYSIWYS operations. It
implements a WORM storage (Write Once Read Many) which guarantees the integrity
of a file once written. Every package can write a new file (which can be read, but not
modified, by all other packages); no package but the Control Service can delete the
existing files.

Trusted Integrity Service
Controls all operations related to the integrity of the platform (i.e. interactions with the
TPM), including the creation of the platform integrity certifications that will be
embedded within the PKCS#7 envelope. It holds a database (TISdb) of keys useful for
the association between user device(s) keys and TPM keys.

Trusted Window Service
Controls which component's output must be displayed, i.e. which domain screen must
be put in foreground.

Open_TC Deliverable 06c.2 37/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 7.2.2 Use case realisation
Table 1 lists the required packages for the realisation of each use case. Then the
implementation of such use cases (with the details of the local attestation, i.e. the
certification) is described through the interaction of components grouped in packages
via sequence diagrams.

Open_TC Deliverable 06c.2 38/81

 SWP06c WYSIWYS application design specification FINAL 1.10

Open_TC Deliverable 06c.2 39/81

Use Case Required packages

/UC 30/ Send file to WYSIWYS application Untrusted User Interface,
WYSIWYS Control Service,
Trusted Storage Service,
Trusted User Interface,
Signing Devices Interface,
Trusted Window Service.

/UC 40/ Display document WYSIWYS Control Service,
Trusted Viewer Service,
Trusted Storage Service,
Trusted Recorder Service,
Trusted Window Service.

/UC 50/ Choose operation Trusted User Interface,
WYSIWYS Control Service.

/UC 60/ Choose signing device & key WYSIWYS Control Service,
Signing Devices Interface,
Trusted User Interface,
Trusted Integrity Service.

/UC 65/ Show signing attributes and
confirm

WYSIWYS Control Service,
Trusted User Interface,
Trusted Storage Service,
Trusted Integrity Service.

/UC 70/ Create signed document Trusted Integrity Service,
WYSIWYS Control Service,
Untrusted User Interface,
Trusted User Interface,
Trusted Storage Service,
Signing Devices Interface,
Untrusted User Interface.

/UC 80/ Signature verification WYSIWYS Control Service,
Trusted User Interface,
Signing Devices Interface,
Trusted Storage Service,
Trusted Integrity Service.

/UC 90/ Delete file & close sessions Trusted User Interface,
WYSIWYS Control Service,
Trusted Storage Service,
Trusted Viewer Service,
Trusted Window Service.

Table 1: Packages required by use cases

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 30/ Send File to WYSIWYS application
The User selects the file to be signed or verified through the Untrusted User Interface
that sends that file to WYSIWYS Control Service. The file is then sent to Trusted
Storage Service that saves it in the secure Write Only Read Many storage. Trusted
Storage Service returns a result about the correctness of the saving operation. Then
WYSIWYS Control Service first checks whether the file includes only the document or
an envelope complete with a signature via Signing Devices Interface; then it activates
the Trusted User Interface to interact with the User.

Open_TC Deliverable 06c.2 40/81

Figure 5: UC 30 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 40/ Display document
WYSIWYS Control Service requests Trusted Viewer Service to show the document.
Trusted Viewer Service loads the document file directly from Trusted Storage Service,
then activates the proper viewer with regards to the file format and shows the
document. The Trusted Viewer Service performs some checks (i.e. presence of macro
or hidden text), stores the results into the Trusted Storage Service and returns a result
about the correctness of the display operation.

Open_TC Deliverable 06c.2 41/81

Figure 6: UC 40 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 50/ Choose operation
WYSIWYS Control Service requests Trusted User Interface to show the list of allowed
operations (sign or verify) to User. He/she selects the wanted operation and the choice
is then taken in charge of by WYSIWYS Control Service.

Open_TC Deliverable 06c.2 42/81

Figure 7: UC 50 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 60/ Choose signing device & key
WYSIWYS Control Service has received the command to sign the document, so it
requests Signing Devices Interface for the list of available signing devices for the User.
Through Trusted User Interface the User chooses the signing device to be used. A
similar sequence of operations is performed to allow the User to select the wanted
signing key for the chosen device.

Open_TC Deliverable 06c.2 43/81

Figure 8: UC 60 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 65/ Show Signature attributes and confirm
WYSIWYS Control Service requests Trusted User Interface to show the signing
attributes. The latter retrieves from Trusted Integrity Service the user's Public Key
Certificate, associated to the key selected by the user, and from the Trusted Storage
Service the visualization attributes previously stored. Then the Trusted User Interface
formats the output and shows it to the user. At the end it asks the user if he/she really
wants to sign the showed document.

Open_TC Deliverable 06c.2 44/81

Figure 9: UC 65 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 70/ Create signed document
WYSIWYS Control Service requests Trusted Integrity Service to attest the state of the
platform. Trusted Integrity Service loads the document and the signing attributes from
Trusted Storage Service, generates CERT1 by interacting with the TPM and stores it.
Then WYSIWYS Control Service requests Signing Devices Interface to sign the
document file. Signing Devices Interface directly loads the document file and CERT1
from Trusted Storage Service and signs both using the chosen device and key: the
user is requested to input the PIN through the Trusted User Interface. Then the
PKCS#7 file just created is stored on the Trusted Storage Service. Lastly WYSIWYS
Control Service requests Trusted Integrity Service to do another attestation of the
state of the platform. Trusted Integrity Service loads the PKCS#7 envelope just
generated and signs it, thus generating CERT3 that will be included in the envelope,
and finally it returns the signed document to User through the Untrusted User
Interface.

Open_TC Deliverable 06c.2 45/81

 SWP06c WYSIWYS application design specification FINAL 1.10

Open_TC Deliverable 06c.2 46/81

Figure 10: UC 70 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 80/ Signature verification
WYSIWYS Control Service requests Signing Devices Interface to verify a signed
document. Signing Devices Interface loads the file directly from Trusted Storage
Service, verifies the signature and if there is attestation information included in the
PKCS#7 envelope, it asks Trusted Integrity Service to check its validity. Then it returns
the result of the verification to WYSIWYS Control Service that in turn returns the result
to User through Trusted User Interface.

Open_TC Deliverable 06c.2 47/81

Figure 11: UC 80 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

/UC 90/ Delete file & close sessions
WYSIWYS Control Service deletes from Trusted Storage Service the file previously
loaded upon user's choice, then it requests Trusted Viewer Service and Trusted User
Interface to close the session opened for the requested operation. At the end,
WYSIWYS Control Service requests Trusted Window Service to put the Untrusted User
Interface to the foreground.

Open_TC Deliverable 06c.2 48/81

Figure 12: UC 90 sequence diagram

 SWP06c WYSIWYS application design specification FINAL 1.10

 8 Design

 8.1 Communication between modules
Each module should be able to exchange messages with the others for cooperation, in
order to delegate the execution of operations and receive results.

At low level, each module sends messages structured in as Tag-Length-Value (TLV), as
shown in Figure 13.
TLV messages are composed by three fields: a header called tag (T), a length field (L)
and a value field (V).
T contains the command that the module must execute and some additional
controlling information. L represents the length of the field V expressed in bytes,
whereas V contains application data to transfer. The latter may encapsulate different
kinds of data that will be inserted in a precise sequence during the marshalling phase.
The application, typically, carries 16 or 32 bit integers or buffers of bytes.
T and L have a fixed length of respectively 16 and 32 bits, while V has a variable
length that can be at most 4GB. Sometimes modules do not have to exchange data
but only events; for this reason L and V are optional.

Figure 14 shows the structure of T field. As it is possible to observe, it is split in two
parts: flags and cmd.
Flags are four (4 bits) and transport control information.

● FREE: not used, for future uses;
● GEN_ERROR: general application failure;
● CMD_FAILED: activated only in a replay message which shows that a request

caused a failure;

Open_TC Deliverable 06c.2 49/81

Figure 14: T field

Figure 13: Tag-Length-Value

 SWP06c WYSIWYS application design specification FINAL 1.10

● NOPAYLOAD: the message has minimum length because it does not contain L
and V fields.

The remaining 12 bits are split in two subgroups:
● recipient and command: 8 bits referring to the operation that must be done

by the module;
● sender: 4 bits that refer to the module making the request. In fact, not all

modules can call all functions. This field is used to perform an additional check,
being aware that a component may change it at its convenience.

The sub field command has meaning only inside a module, whereas recipient and
sender have a global meaning. The list of possible values for those fields is reported in
the following table.

Module Recipient Sender
UNTRST_USER_INTERFACE 0x-0-- 0x---0

TRST_CONTROL_SERVICE 0x-1-- 0x---1

TRST_STORAGE_SERVICE 0x-2-- 0x---2

TRST_USER_INTERFACE 0x-3-- 0x---3

TRST_VIEWER_SERVICE 0x-4-- 0x---4

TRST_SIGNING_DEV_INTERFACE 0x-5-- 0x---5

TRST_INTEGRITY_SERVICE 0x-6-- 0x---6

TRST_WINDOW_SERVICE 0x-7-- 0x---7

The libraries involved in the message building are two: commlib and wys_commlib. The
first one performs data marshalling and un-marshalling, manages the errors and
prepare TLV packet; the latter handles module commands and implements the
transport level abstraction. Figure 15 shows the library stack used by each module
composing the application.

Open_TC Deliverable 06c.2 50/81

Figure 15: Stack of libraries

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.1.1 wys_commlib library
wys_commlib is a tiny library designed to support both TCP/IP and HP-XIDC transports.
It is an abstraction layer that provides, as an interface, two main functions which
implement sending and receiving functionalities.

int _send_message (struct comm_type *_comm_type,
 uint16_t tag, uint32_t length,
 unsigned char *value);

int _recv_message (struct comm_type *_comm_type,
 uint16_t *tag, uint32_t *length,
 unsigned char *value);

_send_message allows sending a message to another module. It takes as parameters a
tag value, in accordance with the TLV structure previously defined, an unsigned char
pointer to a buffer containing the data to send, value, and a 32 bits field, length, which
specifies the size in bytes of the buffer pointed by value.
_recv_message is used to receive a message sent by a module. Similarly to the
function for sending, it takes a pointer to the received tag, value and length.
Both functions take as parameter a pointer to a comm_type structure that is defined as
follows:

typedef struct comm_type {
uint8_t type;
uint16_t source;
uint16_t destination;
unsigned char ct_data[14];

} COMM_TYPE, *PCOMM_TYPE;

comm_type is a generic structure that contains a field called type which specifies the
underlying transport protocols and may assume two values, 0x00 (TCP/IP)11 and 0x01
(XIDC). Furthermore there are two fields in the structure that specify the recipient
(destination) and the source of the current message. The ct_data buffer allows the
specialization of that structure, reported as follows:

typedef struct comm_type_sock {
uint8_t type;
uint16_t source;
uint16_t destination;
int fd;
unsigned char ct_zero[(sizeof(struct comm_type) -

sizeof(uint8_t) -
sizeof(uint16_t) -
sizeof(uint16_t) -
sizeof(int))];

} COMM_TYPE_SOCK, *PCOMM_TYPE_SOCK;

typedef struct comm_type_xidc {
uint8_t type;

11This value refers to the transport that can be set up through the system call:
socket (int domain, int type, int protocol) where domain is AF_INET and type is
SOCK_STREAM.

Open_TC Deliverable 06c.2 51/81

 SWP06c WYSIWYS application design specification FINAL 1.10

uint16_t source;
uint16_t destination;
xidc_t *xidc_handle;
unsigned char ct_zero[(sizeof(struct comm_type) -

sizeof(uint8_t) -
sizeof(uint16_t) -
sizeof(uint16_t) -
sizeof(xidc_t*))];

} COMM_TYPE_XIDC, *PCOMM_TYPE_XIDC;

The first one allows the communication with a module which is listening on a TCP port,
the last one allows opening a connection with a module that uses XIDC.
Moreover, the library provides other functions:

int _read_configuration_from_file (char *config_file);

It reads the configuration of WYSIWYS application from file. It takes as argument the
name of the configuration file. The file must be a list structured as follows:

<MODULE_NAME_1> <IP_ADDR>:<PORT> <COMPARTMENT_NO>
<MODULE_NAME_2> <IP_ADDR>:<PORT> <COMPARTMENT_NO>
...

<IP_ADDR>:<PORT> and <COMPARTMENT_NO> are exclusive. This file defines which is the
transport used by the module; this way the library, automatically selects
comm_type_sock or comm_type_xidc.
The function:

int _create_connection_to (struct comm_type *_comm_type);

creates a connection to a module. It takes as argument a _comm_type structure that
must have only the destination field initialized.
The function:

int _close_connection_to (struct comm_type *_comm_type);

closes a connection opened by _create_connection_to function.
If the operations end without errors, the functions return 1, otherwise 0.

Open_TC Deliverable 06c.2 52/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.1.2 Interactions between modules
All interactions between modules are synchronous, as shown in the sequence
diagrams. The source code implementing such interactions is organised in layers.

A module must execute the following operations (see Figure 16) to send a message to
another module:

1. allocate a comm_type structure;
2. set the destination field of that structure;
3. call the function _create_connection_to() and pass to it as parameter the

data structure set at step #2;
4. prepare the message and send with the function _send_message().

Open_TC Deliverable 06c.2 53/81

Figure 16: Interactions between modules

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2 Modules

 8.2.1 WYSIWYS Control Service (CS)
It implements the whole logic of the application and controls all other modules that
compose the signature system. It manages the life cycle of a signature or verification
request by saving the related data in a SESSION structure defined as follows:

typedef struct session_state
{

uint16_t file_id;
uint16_t doc_id;
int is_pkcs7;
uint16_t cert1_id;
uint16_t attrib_id;
uint16_t video_id;
uint16_t key_id;
char key_serial[0xFF];
uint16_t token_id;
char token_serial[0xFF];
uint16_t signed_file_id;
int verify_result;

} SESSION, *PSESSION;

There are three data types stored in this structure:
● file_IDs: allows CS to retrieve (or refers to) a file stored on TS; each file_ID

number is unique for each file used by the application in a session and it is
chosen by TS. In SESSION there are: file_id, doc_id, cert1_id,
attrib_id, video_id, signed_file_id;

● results from operations that condition the execution flow. In SESSION are:
is_pkcs7, verify_result;

● values that depend on user's choices. In SESSION are: key_id, token_id,
key_serial[0xFF], token_serial[0xFF].

This module provides the interface exposed to a standard Virtual Machine used for
day-by-day tasks including the creation of the document to be signed and the
activation of the WYSIWYS application.
It can handle only one user's request at a time, thus making this application single-
user. This is the only one application module that can delete a file stored on TS.
CS exposes only one function:
SEND_FILE: allows receiving the data to sign or a PKCS#7 envelope to verify. It takes
as input a byte sequence that can be an OpenOffice Writer file or a PKCS#7 envelope
that contains a document and the related signature; it returns a value that indicates
the operation chosen by the user (sign/verify).

Command Tag Input parameters Output parameters
SEND_FILE 0x00F0 uint8_t filebytes uint16_t operation

Open_TC Deliverable 06c.2 54/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.2 Signing Device Interface (SDI)
It controls the signing device, performs the digest operation in software and
implements the creation of the PKCS#7 envelope for signed documents.
SDI exposes the following functions:

● SIGN_FILE: allows signing a document using the cryptographic device and the
key chosen by the user; for this purpose it uses the SDI driver linked with the
signing device. At the end of the procedure it saves the PKCS#7 envelope, that
contains the signature, in the Trusted Storage.
It takes as parameters: (1) the device serial number, (2) the key ID of the key
chosen by the user, (3) the ID of the document to sign and (4) the ID of CERT1
(3 and 4 are stored on TS).
Returns a file ID that identifies the signature in TS.
This function requires interacting with the following modules: Trusted Integrity
Service (LOAD_CERTIFICATE), Trusted Storage Service (LOAD_FILE,
STORE_FILE) and Trusted User Interface (PIN_REQ).
This function can be called only from CS (/UC 70/).

● IS_PKCS#7: checks if the sent file is in PKCS#7 format. If the result of this check
is “true”, it extracts the document from the envelope and saves it on TS.
It takes as parameters: (1) the ID of the file sent by the user.
It returns the result of the operation and optionally (if the sent file is in PKCS#7
format) the document ID returned by TS.
This function requires interacting with the following modules: Trusted Storage
Service (LOAD_FILE, STORE_FILE).
This function can be called only from CS (/UC 30/).

● GET_SIGNING_DEVICES: returns the list of the devices installed on the system.
It takes as parameters: none.
It returns a buffer of characters that contains the list of installed devices.
This function requires interacting with the following modules: none.
This function can be called only from CS (/UC 60/).

● VERIFY_SIGNED_DOC: verifies the signature over a document.
It takes as parameters: (1) the ID of the file sent by the user.
IT returns the result of the operation.
This function requires interacting with the following modules: Trusted Storage
Service (LOAD_FILE) and Trusted Integrity Service (GET_PLATFORM_STATE).
This function can be called only from CS (/UC 80/).

Open_TC Deliverable 06c.2 55/81

 SWP06c WYSIWYS application design specification FINAL 1.10

Command Tag Input parameters Output parameters
SIGN_FILE 0x00F0 uint8_t[]

tokenSerialID
uint8_t[] keyID
uint16_t documentID
uint16_t cert1ID

uint16_t signatureID

IS_PKCS#7 0x00E0 uint16_t fileID uint16_t file_ID
(0 if is_pkcs#7 is false)

GET_SIGNING_DEVICES 0x00D0 none uint8_t[] availableDevs

VERIFY_SIGNED_DOC 0x00C0 uint16_t fileID uint16_t verificationRes

Open_TC Deliverable 06c.2 56/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.3 Trusted Integrity Service (TIS)
It controls all operations related to the integrity of the platform (i.e. interactions with
the TPM), including the creation of the platform integrity certifications that will be
embedded within the PKCS#7 envelope. It holds a database (TISdb) of keys useful for
the association between user device keys and TPM keys.
TIS exposes the following functions:

● GET_AVAILABLE_KEYS: returns the list of the available keys for a particular
signing device registered in TISdb, that can be used for signing a document.
It takes as parameters: (1) the token serial ID of the device that will be used for
the signature.
It returns the list of signature keys registered in TISdb for the chosen device;
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 60/).

● LOAD_CERTIFICATE: retrieves the user's Public Key Certificate (PKC) associated
to the chosen key.
It takes as parameters: (1) the token serial ID of the device that will be used for
the signature, (2) the key ID associated to the key chosen by the user.
It returns the DER-encoded PKC.
This function does not require interacting with other modules.
This function can be called from: Trusted User Interface (/UC 65/), Signing
Device Interface (/UC 70/).

● GET_PLATFORM_STATE: returns the current PCR values
It takes as parameters: none.
It returns a buffer of characters that contains the current PCR values
This function does not require any interaction with other modules.
This function can be called only from TUI (/UC 65/).

● CERT1_REQ: generates CERT1, namely a signature, made with a registered SKAE
key, over the hash of the document that the user is going to sign, the user's
Public Key Certificate corresponding to the key that will be used to sign the
document and the viewer attributes.
It takes as parameters: (1) the token serial ID of the device that will be used for
the signature, (2) the key ID associated to the key chosen by the user, (3) the ID
of the document to sign, (4) the ID of the viewer attributes.
It returns the ID of CERT1 in TS.
This function requires interacting with the following modules: Trusted Storage
Service (LOAD_FILE, STORE_FILE).
This function can be called only from CS (/UC 70/).

● CERT3_REQ: generates CERT3 namely a signature, made with a registered SKAE
key, over the signature data embedded in the PKCS#7 envelope: it contains

Open_TC Deliverable 06c.2 57/81

 SWP06c WYSIWYS application design specification FINAL 1.10

CERT1 and the legal signature made by the signing device. At the end it inserts
CERT3 as unsigned attribute in the PKCS#7 envelope.
It takes as parameters: (1) the ID of the PKCS#7 envelope stored on TS, (2) the
token serial ID of the device used for the signature, (3) the key ID associated to
the key chosen by the user, (4) the ID of CERT1 previously generated.
It returns the PKCS#7 envelope now including CERT3.
This function requires interacting with the following modules: Trusted Storage
Service (LOAD_FILE).
This function can be called only from CS (/UC 70/).

● CHECK_PLATFORM_STATE: checks if the sent PCR values are good by comparing
them with the “good values” contained in a reference database.
It takes as parameters: (1) a buffer that contains a TPM_PCR_INFO12 structure.
It returns the result of the check.
This function does not require any interaction with other modules.
This function can be called only from SDI (/UC 80/).

Command Tag Input parameters Output parameters
GET_AVAILABLE_KEYS 0x00F0 uint8_t[] tokenSerialID uint8_t[]

availableKeys

LOAD_CERTIFICATE 0x00E0 uint8_t[] tokenSerialID
uint8_t[] keyID

uint8_t[] filebytes

GET_PLATFORM_STATE 0x00D0 none uint8_t[] filebytes

CERT1_REQ 0x00C0 uint8_t[] tokenSerialID
uint8_t[] keyID
uint16_t documentID
uint16_t attributesID

uint16_t cert1ID

CERT3_REQ 0x00B0 uint16_t signatureID
uint8_t[] tokenSerialID
uint8_t[] keyID
uint16_t cert1ID

uint8_t[] filebytes

CHECK_PLATFORM_STATE 0x00A0 uint8_t[] filebytes uint16_t result

12Defined in TSS [16] specification.

Open_TC Deliverable 06c.2 58/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.4 Trusted Storage Service (TS)
It implements a Trusted Storage “Software Write Once Read Many” (SWORM) used to
store the document being signed/verified and other data shared by the modules
during the operations.
Each file stored on TS is identified by a unique ID that allows modules to address the
file and retrieve it. All modules can store a file in TS but only CS can remove it.
TS exposes the following functions:

● LOAD_FILE: allows a module to read a file stored on TS through its ID.
It takes as parameters: (1) the ID of the requested file.
It returns a buffer containing the bytes of the requested file.
This function does not require any interaction with other modules.
This function can be called from: Signing Device Interface /UC 30/, Trusted
Viewer Service /UC 40/, Trusted User Interface /UC 65/, Trusted Integrity Service
/UC 70/, Signing Device Interface /UC 70/, Signing Device Interface /UC 80/.

● STORE_FILE: allows a module to write a file on TS.
It takes as parameters: (1) a buffer containing the file to store.
Returns an ID that identifies the file stored on TS.
This function does not require interacting with other modules.
This function can be called from: Control Service /UC 30/, Signing Device
Interface /UC 30/, Trusted Viewer Service /UC 40/, Trusted Recorder Service /UC
40/, Trusted Integrity Service /UC 70/, Signing Device Interface /UC 70/.

● DELETE_FILE: allows a module to delete a file stored on TS.
It takes as parameters: (1) the ID of the file to delete.
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from CS.

● DELETE_ALL_FILES: allows a module to delete all files stored on TS.
It takes as parameters: none
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 90/).

Command Tag Input parameters Output parameters
LOAD_FILE 0x00F0 uint16_t fileID uint8_t[] filebytes

STORE_FILE 0x00E0 uint8_t[] filebytes uint16_t fileID

DELETE_FILE 0x00D0 uint16_t fileID none

DELETE_ALL_FILES 0x00C0 none none

Open_TC Deliverable 06c.2 59/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.5 Trusted User Interface (TUI)
It implements the Trusted Interface of the application towards the user: it is used to
request the type of operation to be performed (signing/verifying), to input the PIN for
the signing device (i.e. a smart card) and to show the attributes being signed.
TUI exposes the following functions:

● INIT_TUI: initializes the user interface by clearing the screen and putting its
window in foreground.
It takes as parameters: none.
It returns: none.
This function requires interacting with the following modules: Trusted Window
Service (FOREGROUND_TUI_WIN).
This function can be called only from CS (/UC 30/).

● CHOOSE_OP: shows the list of available operations (sign/verify/exit).
It takes as parameters: none.
It returns a value representing the user's choice.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 50/).

● CHOOSE_SD: shows the list of the available signing device and asks the user to
select one of them.
It takes as parameters: (1) a buffer containing the text (ASCII) data to show, in
this case the list of available devices.
It returns a value that represents the user's choice.
This function does not require interacting with other modules.
This function can be called only from CS (/UC 50/).

● CHOOSE_KEY: shows the list with the available keys for a specific signing device.
Takes as parameters: (1) a buffer containing the text (ASCII) data to show, in
this case the list of available keys.
It returns a value that represents the user's choice.
This function does not require interacting with other modules.
This function can be called only from CS (/UC 60/).

● SHOW_ATTRIBS: retrieves the signing attributes and shows them to the user.
It takes as parameters: (1) the token serial ID of the device that will be used for
the signature, (2) the key ID associated to the key chosen by the user, (3) the ID
of the attributes stored by the viewer.
It returns: none.
This function requires interacting with the following modules: Trusted Integrity
Service (LOAD_CERTIFICATE, GET_PLATFORM_STATE), Trusted Storage Service

Open_TC Deliverable 06c.2 60/81

 SWP06c WYSIWYS application design specification FINAL 1.10

(LOAD_FILE).
This function can be called only from CS (/UC 65/).

● CONFIRM_REQ: asks the user if he/she really wants to sign the document.
It takes as parameters: none.
It returns an integer that contains the user's choice.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 65/).

● PIN_REQ: asks the user to input the PIN of his/her signing device.
It takes as parameters: none.
It returns a buffer containing the characters of the PIN typed by the user.
This function does not require any interaction with other modules.
This function can be called only from SDI (/UC 65/).

● SHOW_RES: is used to tell the user the result of the signing operation, namely if
the signing process ended without errors or there were some problems during
the operation.
It takes as parameters: (1) a buffer of characters with the text (ASCII) data to
show.
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 70/).

● SEND_MSG: is used to tell the user the result of the verification process, namely
if the signature present in the PKCS#7 envelope and the attestation data (if
present) are valid.
It takes as parameters: (1) an integer that contains the result of the verification
phase.
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 80/).

● SHUTDOWN_TUI: shuts down the Trusted User Interface.
It takes as parameters: none.
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 90/).

Open_TC Deliverable 06c.2 61/81

 SWP06c WYSIWYS application design specification FINAL 1.10

Command Tag Input parameters Output parameters
INIT_TUI 0x00F0 none none

CHOOSE_OP 0x00E0 none uint16_t operationId

CHOOSE_SD 0x00D0 uint8_t[]
availableDevices

uint16_t tokenID

CHOOSE_KEY 0x00C0 uint8_t[] availableKeys uint16_t messageId

SHOW_ATTRIBS 0x00B0 uint16_t tokenSerialID
uint16_t keyId
uint16_t attributesID

none

CONFIRM_REQ 0x00A0 none uint16_t user_choice

PIN_REQ 0x0090 none uint8_t[] pin

SHOW_RES 0x0080 uint8_t[] result none

SEND_MSG 0x0070 uint16_t
verification_result

none

SHUTDOWN_UUI 0x0060 none none

Open_TC Deliverable 06c.2 62/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.6 Trusted Viewer Service (TVS)
It implements the Trusted Viewer in charge of correctly presenting the document
being signed/verified to the user. If the user sends a document with an unsupported
format this component should shows a warning message.
This component should perform additional checks over the document (i.e. presence of
macro or hidden text) and should add the results as attributes within the signature.
TVS exposes the following functions:

● SHOW_FILE: receives the document to show, selects a suitable viewer for the
file and shows the document. At the same time, it performs checks on the
document and it retrieves information about the visualization environment, like
size of the viewer window and the colour depth.
It takes as parameters: (1) the ID of the document saved on TS.
It returns: the ID of the viewer attributes saved on TS.
This function requires interacting with the following modules: Trusted Storage
Service (LOAD_FILE, STORE_FILE), Window Service (FOREGROUND_TVS_WIN,
FOREGROUND_TUI_WIN).
This function can be called only from CS (/UC 90/).

● SHUTDOWN_TVS: shuts down the Trusted Viewer.
It takes as parameters: none.
It returns: none.
This function does not require interacting with other modules.
This function can be called only from CS (/UC 90/).

Command Tag Input parameters Output parameters
SHOW_FILE 0x00F0 uint16_t fileId uint16_t

attributes_ID

SHUTDOWN_TVS 0x00E0 none none

Open_TC Deliverable 06c.2 63/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.7 Trusted Window Service (TWS)
It controls the output of which component must be displayed, i.e. which domain screen
must be put in foreground.
TWS exposes the following functions:

● FOREGROUND_TUI_WIN: puts in foreground the Trusted User Interface window.
It takes as parameters: none.
It returns: none.
This function does not require any interaction with other modules.
This function can be called from TUI (/UC 30/) and TVS (/UC 40/).

● FOREGROUND_TVS_WIN: puts in foreground the Trusted Viewer Service window.
It takes as parameters: none.
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from TVS (/UC 40/).

● FOREGROUND_UUI_WIN: puts in foreground the Untrusted User Interface window.
It takes as parameters: none.
It returns: none.
This function does not require any interaction with other modules.
This function can be called only from CS (/UC 40/).

Command Tag Input parameters Output parameters
FOREGROUND_TUI_WIN 0x00F0 none none

FOREGROUND_TVS_WIN 0x00E0 none none

FOREGROUND_UUI_WIN 0x00D0 none none

Open_TC Deliverable 06c.2 64/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 8.2.8 Untrusted User Interface (UUI)
It interacts with CS to request the signing/verifying operations and it runs in a Virtual
Machine used for daily operations.
It does not exposes any function.

Open_TC Deliverable 06c.2 65/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 9 Implementation details
This section describes some details of the implemented prototype delivered as [12]
which also includes the complete usage instructions. The prototype is based on the
OpenTC Corporate Computing at Home prototype and works with Xen hypervisor.

 9.1 Three phase bind

Open_TC Deliverable 06c.2 66/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 9.1.1 Key Registration
For the generation of CERT-1 and CERT-3, a certified (called SKAE) TPM key is needed.
The latter should be associated to the key used for the signature of the document.
During the key registration phase a key database (DB) is created in TIS whose
structure is shown in Figure 17.

For each smart card (or cryptographic device) there is a folder named with the device
serial number which contains:

● the AIK key blob encrypted with SRK, used for certifying the SKAE key;
● the Public Key Certificate associated to the AIK issued by a Privacy CA;
● the SKAE key blob encrypted with SRK, sealed and certified by AIK;
● as many folders as the key pairs available from the signing device named with

the key IDs: each folder contains the Public Key Certificate related to the key;
● a file named “keys.dat” that describes all keys registered in the DB (used in /UC

60/ as response to the function call getListOfAvailableKeys).
The procedure for the generation of TISdb, explained in [12] makes use of IAIK's
JtpmTools [13] for generating the AIK key and a command line tool, called “gen_skae”,
for generating and certifying the SKAE key.

Open_TC Deliverable 06c.2 67/81

Figure 17: Trusted Integrity Service DB

 SWP06c WYSIWYS application design specification FINAL 1.10

 9.1.2 Signature process
The operations performed by the WYSIWYS application to generate the signature are
executed as follows:

CERT1
After the signer has read the document and confirmed the signing operation, CS
requests TIS to generate CERT1. TIS retrieves from TS a copy of the document
the signer wants to sign and the viewer's attributes. Using OpenSSL, TIS
extracts, from the user's Public Key Certificate associated to the selected key,
the PKsign and calculates the hash over the latter, the document and the viewer's
attributes. Then, the TPM tries to encrypt (i.e. to sign) the resulting hash using
the SKAE key associated to PKsign. If this operation does not fail, this means that
the platform is in a good state, because of the successful unsealing of the SKAE
key.
All these data are MIME-encoded; an example follows:
Content-Type: multipart/mixed; boundary="=_MIME_CONTENT_BREAK_="

--=_MIME_CONTENT_BREAK_=
Content-Type: text/plain
Content-Disposition: attachment; filename="TVS_attributes"
Content-Transfer-Encoding: 7bit

resolution=1080x1024
color_depth=24bit
macro=NO_MACRO
hidden_text=NO
document_type=OpenOfficeDocument

--=_MIME_CONTENT_BREAK_=
Content-Type: text/plain
Content-Disposition: attachment; filename="pubkey_sign"
Content-Transfer-Encoding: 7bit

-----BEGIN PUBLIC KEY-----
MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCyvcyNi/usH3KSYg2KPkJ7kmyU
ImUp4kp5u9CepO39IUAUpO/I3snJCztFBRvS5rdpP84+r8ZNQR6AJ8pESjcq90DJ
LsaapkEQtNBKOdY/s63CWwTIMyjtTl5ixig9HGXGBzGc0F76VREr5SzZKG+a5Foh
SOjSP6lbmcRyNgu01QIDAQAB
-----END PUBLIC KEY-----

--=_MIME_CONTENT_BREAK_=
Content-Type: text/plain
Content-Disposition: attachment; filename="document.hash"
Content-Transfer-Encoding: 7bit

85568d03040f4df4a2420a2aa4a2fc0ab1d9fc66

--=_MIME_CONTENT_BREAK_=
Content-Type: text/plain
Content-Disposition: attachment; filename="aik.cert"
Content-Transfer-Encoding: base64
MIIF4TCCBYugAwIBAgIHR1fF9q9GijANBgkqhkiG9w0BAQUFADBuMQswCQYDVQQGEwJBVDEXMBUG
A1UEChMOSlRwbVRvb2xzIEx0ZC4xHzAdBgNVBAsTFlRydXN0ZWQgQ29tcHV0aW5nIExhYnMxJTAj
BgNVBAMTHFRlc3QgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwHhcNMDgxMjMxMDk1MjEyWhcNMDkx
MjMxMDk1MjEyWjAAMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAi3f4l1ryV0TUUea4
fREOGj/N3DcOuDeXlGxY4j5qAmb1fkJSidHUoQkiT0L9SPnbr9sRsoDsJ2/5Sv2VudUkwGVjGd60
exBYT1sroB5a4mgwwX/bCjvB2/M8NRQHf2UNEaLxEuhlHxldg9DKhPsady5yedhuB2LLLyST4UQs
j2bga8czggEqDRROfxyvslaYtbxTP3dgWBxIr7ObShpHCUYf/Ap/DLL78TF8R4Fp+8XiTG+tleE8

Open_TC Deliverable 06c.2 68/81

 SWP06c WYSIWYS application design specification FINAL 1.10

1p7rRQ8CYz4LnPbqa6B+YbzRTUITzIHjlJQRjY3Spb02op9iUbREREtgDVd1jWJR7KvKjfx5p1jT
...
//UOFmsyxIUlyN34iz05BQIDAQABo4IDsjCCA64wDwYDVR0TAQH/BAUwAwIBADCBrQYDVR0RAQH/
ZdoeyXJMxxvT+K9wwVFM6Rm82y8hz8RuHRKkq/A=
--=_MIME_CONTENT_BREAK_=

Content-Type: text/plain
Content-Disposition: attachment; filename="skae.pubkey"
Content-Transfer-Encoding: base64

LS0tLS1CRUdJTiBQVUJMSUMgS0VZLS0tLS0KTUlJQklqQU5CZ2txaGtpRzl3MEJBUUVGQUFPQ0FR
OEFNSUlCQ2dLQ0FRRUFockJrelc2UFBWT2dYT1pndStnUQpOVmFsTmJFd1ZWR3RJZUJlczV3YzJv
dE1OOXZvcmRVU1oyRUkzL05pQ09hdzdlTnRsS0lhQzJLRFZEYWdHT2FUCjVSUzY3cEdyUVdBOVdm
VHdadVRMcFZ1LzJKa2dicE1INHVZbVdGajBqcW1rMUFSdXVwTjlnZmtVdjloYWdWaTMKYzVhY09Q
NmNkU0pCMG1FVHpOWlU4dzhjRk9hV3RKRDFtUUlyMVU4alVmWGFaYk9rUUlaTnNXOFdMeGc2NGJF
UwpUNGo0ZXNIS0RuOEMyR0poRG4zc0pCNG1iVUtXSmxZZWowVTZmSlphS2JNSXNwbkIzdVUvMjk0
V3UvWUk0OGUzClhUeldTVHhSTFN0VUtlYU0yaDZCbmZ2TFk0alZFTzVCRkRqcU5FblFJZmRsK0ZT
RHFRYjYrZGJua2RtZXBTb3MKbndJREFRQUIKLS0tLS1FTkQgUFVCTElDIEtFWS0tLS0tCg==
--=_MIME_CONTENT_BREAK_=

Content-Type: text/plain
Content-Disposition: attachment; filename="TPM_CERTIFY_INFO"
Content-Transfer-Encoding: base64

AQEAAAAQAAAAAAEAAAABAAEAAgAAAAwAAAgAAAAAAgAAAACimYxY0SCuZkUCZi7Qb3b6Zpks/Gou
xlRiWwNO8QpsTJ9mg5Md4Ni4AAAAACwAAjAAJ+8fMxWJ6XuoYCy3voP52enY+WgAAAAAAAAAAAAA
AAAAAAAAAAAAAA==
--=_MIME_CONTENT_BREAK_=

Content-Type: text/plain
Content-Disposition: attachment; filename="tpm_signature_SKskae"
Content-Transfer-Encoding: base64
CxH9sEfQm92u2TYb2Z4TlQxGzPYlgF7TX9OMDO4Of5IOY6jBU0O1Q4L2bi7yaaMc2QFoVWsxWKrZ
KwOmYG/nXNxOAF4rDLhP2kN5S8WeEFtY3/02UlKVy4nmRBDj4wKUMsOU/X2ZIix/lV5XGPbxBloL
8j8eDK/LgVJgzirzE4YnMGUQuB32oMBnS2qq7/AjymR4RZh+Eo2+7OIwIyp+8GKz/P4X41l+HFMY
dW4NiaPnKpcdKGEb/gR8xGclIG9x8jB2y8L3X3N1r46JQ6por74sq5S0lZE96HvaYJxj44jfa+1P
bnH6B4Au5ArxAw2W8czWyBdttWQjWdkIIvOuNQ==
--=_MIME_CONTENT_BREAK_=--

At the end of the operation CERT1 is stored on TS.
DGTS
In this phase, performed by SDI, the user's document and CERT1 are retrieved
from TS and are legally signed through the signing device using the key chosen
by the user. CERT1 is inserted as Signed Attribute inside the PKCS#7 envelope.
SDI includes an OpenSSL PKCS#11 engine for OpenSSL that handles the
communication with the signing device (i.e. a smart card).
At the end of the operation the PKCS#7 envelope is stored onto TS.
CERT3
In the last phase, TIS retrieves the PKCS#7 envelope previously generated and
calculates the hash over it. The latter is encrypted (i.e. signed) by the TPM,
using the SKAE key associated to PKsign. This TPM signature is then inserted into
the PKCS#7 envelope as Unsigned Attribute.
At the end of the operation, if there no error occurred, the envelope is sent back
to the user.

Open_TC Deliverable 06c.2 69/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 9.1.3 WYSIWYS Application startup
The root file systems of all virtual machines that compose the application are stored in
a read-only image file on disk; this is the root file system of Xen's privileged Virtual
Machine called Domain-0, which constitutes the Trusted Computing Base (TCB) of the
system.
At the start of the whole system, firstly the components of the TCB then the VMs of the
WYSIWYS application are measured and executed, thus continuing the Chain of Trust.
TCB's measurements are stored into PCRs 0 to 15 while WYSIWYS application's
measurents in PCR 23.
The start of the VMs is executed according to a fixed sequence by the script otc-
start-wysiwys:

1. WYSIWYS Control Service
2. Trusted Storage Service
3. Trusted User Interface
4. Trusted Viewer Service
5. Signing Devices Interface

Each VM is started using the tool ibmxm, part of the IBM security services available
with OpenTC CC@H prototype, which measures the VM and its configuration file,
extends PCR 23 with that measurement and finally starts the VM.
These measurements are used to check the integrity of the whole WYSIWYS system; in
fact, the TIS database is stored on an image file encrypted with a symmetric key, Ksimm,
that is in turn encrypted with a sealed asymmetric key PKtis. This key is generated at
the configuration of the application. If the unsealing process fails, this means that the
image file of the TCB or a VM changed; since the decryption key for the TISdb cannot
be retrieved, accessing this DB is not possible; therefore all VMs that compose the
application are stopped.

Open_TC Deliverable 06c.2 70/81

mailto:CC@H

 SWP06c WYSIWYS application design specification FINAL 1.10

 9.1.4 Drivers
The driver model, in our context, is used to support new components without
modifying the module. This approach is used for all viewers in Trusted Viewer Service
and all signing devices in Signing Device Interface. This way it is possible to extend
the application by installing new viewers for other document formats or using other
devices for the legally valid signature.
A driver model, as the one implemented, is shown in Figure 18.

The application calls the driver functions using a controller that provides a standard
interface; this way the application component knows which is the driver used but does
not know any detail about its implementation.
Each driver is a dynamic library and must implement a function called driver_entry.
The latter is called when the driver is registered on the system and takes only one
parameter: a driver_object structure that contains a set of not initialized function
pointers. The driver should register its implemented functions in that structure.
SDI Driver
A driver for Signing Device Interface allows using different devices, like new smart
cards or USB cryptographic tokens, for signing a document. Using a new device
requires writing a module that respects some conventions.
First of all, that module must be a dynamic linked library which exports a function
called driver_entry(), whose prototype is:

 void driver_entry(PSIGNING_DEVICE_DRV_OBJ driver_obj);

It takes as argument a pointer to the signing_device_driver_obj structure defined
as follows:

 typedef struct signing_device_driver_obj {

 char *signing_device_name;

 int (*get_token_serial) (unsigned char **serial, uint32_t *serial_len);
 int (*get_key_list) (unsigned char **keys, uint32_t *keys_len);

Open_TC Deliverable 06c.2 71/81

Figure 18: Drivel Model

 SWP06c WYSIWYS application design specification FINAL 1.10

 int (*sign_document) (unsigned char *document, uint32_t doc_len,
 unsigned char *certificate, uint32_t cert_len,
 unsigned char *sign_attrib, uint32_t aign_attr_len,
 unsigned char *pin, unsigned char *key_id,
 unsigned char **signature, uint32_t *sign_len);
 int (*verify_document) (unsigned char *document, uint32_t doc_len,
 unsigned char *signature, uint32_t sign_len,
 uint16_t *verify_result);

 } SIGNING_DEVICE_DRV_OBJ, *PSIGNING_DEVICE_DRV_OBJ;

In driver_entry this structure must be initialized by setting all pointers. Particularly
signing_device_name should point to a buffer that contains the characters of the
driver's name and each function pointer must point to one of the functions listed in
the following table:

Function Description Parameters
(*get_token_serial) retrieve the serial

name of the token
IN none

OUT unsigned char **serial must point to a buffer that
contains the serial no

uint32_t *serial_len length of serial buffer
(*get_key_list) retrieve a list

containing the keys
stored into the smart
card (not used)

IN none

OUT unsigned char **keys, must point to a buffer that
contains a list of keys
separated by comma

uint32_t *keys_len length of keys buffer
(*sign_document) sign a document IN unsigned char *document buffer that contains the

document to sign
uint32_t doc_len document length in bytes
unsigned char *certificate buffer that contains the

signatory's certificate
uint32_t cert_len certificate length
unsigned char *sign_attrib buffer that contains the

viewer's attributes
uint32_t aign_attr_len attributes length
unsigned char *pin points to a buffer that

contains the PIN inserted by
the user

unsigned char *key_id points to a buffer that
contains the id of the key
selected by the user

OUT unsigned char **signature buffer with the signature
uint32_t *sign_len length of the signature

(*verify_document) IN unsigned char *document points to a buffer that
contains the document

uint32_t doc_len length of the document
unsigned char *signature points to a buffer that

contains the signature
uint32_t sign_len length of the signature

OUT uint16_t *verify_result the result of the signature:

Open_TC Deliverable 06c.2 72/81

 SWP06c WYSIWYS application design specification FINAL 1.10

0 OK – 1 NOT OK

In case of double pointers, the called function is in charge of the memory allocation.
For the proof-of-concept of the WYSIWYS application delivered as [13] only one SDI
driver developed: it allows using the Smart Card included in the student ID card of
Politecnico di Torino (POLITO). The stack of used software is shown in Figure 19.

Open_TC Deliverable 06c.2 73/81

Figure 19: SDI software stack for
POLITO Student's Smart Card

 SWP06c WYSIWYS application design specification FINAL 1.10

TVS Driver
A driver for Trusted Viewer Service allows extending the set of document formats
supported by the signing application. The TVS Driver may implement additional
document checks, like the presence of macros and hidden text. Using a new viewer
requires writing a module that respects some conventions.
First of all, this module must be a dynamic linked library which exports a function
called driver_entry(), whose prototype is:
 void driver_entry(PVIEWER_DRIVER_OBJECT driver_obj);

It takes as argument a pointer to a viewer_driver_obj structure defined as follows:
 typedef struct viewer_driver_obj {
 char *viewer_name;
 int (*show_document) (char *path_data, char *filename,
 char **visualization_attributes_file);
 int (*do_macro_check) (char *path_data, char *filename,
 uint16_t *result);
 int (*do_content_type_check)(char *path_data, char *filename)
 uint16_t *result);
 int (*do_ocr_framebuf_check)(char *path_data, char *filename)
 uint16_t *result);
 } VIEWER_DRIVER_OBJECT, *PVIEWER_DRIVER_OBJECT;

In driver_entry this structure must be initialized by setting all pointers. Particularly
viewer_name should point to a buffer that contains the characters of the viewer's
name and each function pointer must point to one of the functions listed in the
following table:

Function Description Parameters
(*show_document) shows the

document
IN char *path_data character buffer with the absolute path

where the file is stored
char *filename character buffer that contains the file

name
OUT char

**visualization_
attributes_file

buffer that contains the viewer attributes

(*do_macro_check) performs a
document macro
check

IN char *path_data character buffer with the absolute path
where the file is stored

char *filename character buffer that contains the file
name

OUT uint16_t *result result of the check
(*do_content_type_check) checks if the

document format
is compatible
with this driver

IN char *path_data character buffer with the absolute path
where the file is stored

char *filename character buffer that contains the file
name

OUT uint16_t *result result of the check
(*do_ocr_framebuf_check) performs

OCR/framebuffer
check

IN char *path_data character buffer with the absolute path
where the file is stored

char *filename character buffer that contains the file
name

OUT uint16_t *result result of the check

Open_TC Deliverable 06c.2 74/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 10 Security requirements for signature creation applications
CEN CWA 14170 [14] specifies the “Security requirements and recommendations for
Signature Creation Applications that generate advanced electronic signatures by
means of a secure signature-creation device”.
All requirements defined in this document are listed in the following as sequence of
threats and for each of them the way the WYSIWYS application meets it is described.
The analysis is reported in a table where the first column refers to a requirement in
[14], the second contains the title of the threat (as defined in [14]) and the last one
explains what the WYSIWYS application does to satisfy that requirement.
The reference to a requirement listed in CEN/CWA document, follows this convention:
/C-<chapter_number>-T<table>-<threat/requirement_number>/
where
<chapter_number>: is the chapter number in CWA 14170 ;
<table>: is the table number inside the chapter;
<threat/requirement_number>: is the row number inside the table.
The identifier -A- is used to repeat the same text for the degree of satisfaction for
several threats.

Threat
Reference

Title of Threat Satisfaction

Security Requirements for a Trusted Path

/C-7.2.1-T1-1/ Accidental or malicious corruption of the
Data To Be Signed (DTBS) components

-A- : guaranteed by the platform if the TCB
is in a “good” state and the signature
application is identified by means of the
measurements that match reference
values.

/C-7.2.1-T1-2/ Accidental or malicious breach of
confidentiality of the Signer's
Authentication Data or DTBS components
or DTBSF

-A-

Security Requirements for a Public SCA operated by a service provider

/C-7.2.2-T2-1/ Disclosure or misuse of the Signer's
Authentication Data or DTBS or DTBSF by
a Public SCS operated by a service
provider

Not taken into account.

Security Requirements for referencing the correct SD and Signature Attributes

/C-7.2.3-T3-1/ Substitution of one or more DTBS or
DTBSF components

-A-

Security requirements for Distributed Signature Creation Applications

Open_TC Deliverable 06c.2 75/81

 SWP06c WYSIWYS application design specification FINAL 1.10

/C-7.3-T4-1/ Breach of Integrity or Confidentiality of
Signer's Authentication Data during
transfer between SCA components The design makes provision that the

application is not physically distributed
over different platforms./C-7.3-T4-2/ Breach of Integrity or Confidentiality of the

DTBS or DTBSF during transfer between
SCA functions

Requirements for protection against un-trusted SCA components
/C-7.4-T5-1/ Interference from un-trusted processes

and communications ports of the SCA
Guaranteed by design.

Requirements of the DTBS
/C-7.6-T6-1/ Generation of an inappropriate signature The application does not allow to sign a

“null” document.

/C-7.6-T6-2/ Ambiguity of the signer's certificate
implied by the signature.

-A-

/C-7.6-T6-3/ Inappropriate presentation of the SD. Guaranteed by design. The application
includes the Signer's Document Data
Content type of the document as Signed
Attribute, so that a verifier may interpret
the data in the right way.

Data content type requirements
/C-8.3-T7-1/ Mis-interpretation of the SD through lack

of Data Content Type information.
The application includes the Signer's
Document Data Content type of the
document as Signed Attribute.

/C-8.3-T7-2/ Syntax fail If the application does not include a viewer
for a specified format or the document is
not conforming to the syntax, the
application warns the signer of this fact and
allows the signer to abort the signature
process.

/C-8.3-T7-3/ Signing a document with an inappropriate
Data Content Type

Guaranteed by design. The application
does not allow signing documents with
unsupported formats.

/C-8.3-T7-4/ Signing the wrong SD Guaranteed by design.

/C-8.3-T7-5/ Signing falsified components of the SD. The application allows signing only
documents without other data embedded.
Furthermore it does not allow producing
parallel or hierarchical signatures.

/C-8.3-T7-6/ Accidental modification of the SD by the
signer.

When the document is shown to the user,
the viewer only has read-only access to it.
Modifying it during the presentation is not
possible.

/C-8.3-T7-7/ Inadequate SD presentation due to SDP
limitations

Not taken into account.

SD Non-ambiguity Requirements
/C-8.4-T9-1/ Ambiguity of SD Presentation Taken into account in the design phase but

only partially implemented.

Open_TC Deliverable 06c.2 76/81

 SWP06c WYSIWYS application design specification FINAL 1.10

Requirements for Presentation Insensitive SDs
/C-8.5-T10-1/ Ambiguity of a non-presentable SD Not taken into account.

Hidden Text and Active Code Requirements
/C-8.6-T11-1/ SD alterations The application warns the signer about the

presentation of hidden text and active code
that may modify the presentation of the
document.

Security Requirements of the Signature Attribute Viewer
/C-9-T12-1/ Signing a wrong Signature Attribute Guarantee by design. Furthermore, the

Signature Attributes are shown to the user.

/C-9-T12-2/ Accidental or malicious alteration of the
Signature Attributes by the SCA

Guaranteed by design.

/C-9-T12-3/ Signing Signature Attributes that may
automatically change before presentation
to the verifier.

The application does not allow attributes
that contain active components.

/C-9-T12-4/ Referencing an invalid certificate in a
signature.

Not taken into account for the current
implementation.

Security Requirements of the Certificate Presentation
/C-9-T13-1/ Use of the wrong Certificate The application shows the content of the

main fields of the certificate selected by
the user for the signature.

Security Requirements for obtaining the Signature Invocation
/C-10.2-T14-1/ Accidental invocation of the signature

process
The invocation of the signature application
is explicit and the activation of the signing
process is explicitly required.

Security Requirements for Inactivity Timeout
/C-10.3-T15-1/ An unattended SCA permits unauthorized

signatures generation
The signer authentication data (i.e. the PIN)
is used for a single signature, then it must
be input again.

User Interface Aspects
/C-10.6-T16-1/ Signer's actions undermine the process

safety.
The application user interface is
straightforward to prevent the signer from
creating security loopholes.

/C-10.6-T16-2/ Personal data revealed by signature
process interruption.

After the completion of each signature
operation, the screen is cleared.

Security Requirements for the Signer's Authentication Component (knowledge based signer
authentication data)
/C-11.8-T18-1/ Unauthorised use of the SCDev -A-

/C-11.8-T18-2/ Disclosure of the Signer's Authentication
Data by the SCA

-A-

/C-11.8-T18-3/ Accidental input of the wrong Signer's
Authentication Data

The application allows inserting the
authentication data only once.

/C-11.8-T18-4/ PIN/PW guessing The application allows inserting the
authentication data only once.

Open_TC Deliverable 06c.2 77/81

 SWP06c WYSIWYS application design specification FINAL 1.10

/C-11.8-T18-5/ Detection and misuse of knowledge based
signer authentication data

-A-

/C-11.8-T18-6/ PIN/PW secrecy is compromised Not taken into account.

/C-11.8-T18-7/ Display of PIN or password When the signer types the PIN, for each
digit input an asterisk is shown.

/C-11.8-T18-8/ Typing error by change of PIN/PW Not taken into account in the current
version of the application.

Security Requirements for the DTBSF component
/C-12.2-T19-1/ Wrong or incomplete DTBS production -A-

Security Requirements for the DHC Component
/C-13.4-T20-1/ Weak hash algorithms Not taken into account.

/C-13.4-T20-2/ Weak electronic signature input formats Not taken into account.

/C-13.4-T20-3/ Wrong or incomplete DTBSR production Associated requirement satisfied.

Security requirements for the SSC Component
/C-14.10-T21-1/ Wrong signature through malfunction of

the physical interface
Associated requirement satisfied.

/C-14.10-T21-2/ Eavesdropping or interfering at a wireless
interface between SCA and SCDev

Associated requirement satisfied.

/C-14.10-T21-3/ Wrong selection of the signature creation
data

Associated requirement satisfied.

/C-14.10-T21-4/ Wrong signature creation due to SSC
corruption

-A-

Security Requirements for the SSA Component
/C-16.1-T23-1/ Compromise by a faked public SCA Associated requirement satisfied.

Security Requirements for Input Control
/C-18.5-T24-1/ Compromise of SCA components by

malicious code
-A-

/C-18.5-T24-2/ Compromise of SCA components by
intruders

-A-

/C-18.5-T24-3/ Compromise if faked SCA components are
installed

-A-

Open_TC Deliverable 06c.2 78/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 11 List of Abbreviations
Listing of term definitions and abbreviations used in the overview documents and
architectural design specification (IT expressions and terms from the application
domain).
Abbreviation Explanation
AIK Attestation Identity Key
CPU Central Processing Unit
CWA CEN Workshop Agreement
DSA Digital Signature Algorithm
IT Information Technology
PCR Platform Configuration Register
PKC Public Key Certificate
PKCS Public Key Certificate Standard
PKI Public Key Infrastructure
PSS Probabilistic Signature Scheme
RSA Rivest Shamir Adlemann
RW Read/Write
SKAE Subject Key Attestation Evidence
SSCD Secure Signature Creation Device
TC Trusted Computing
TCB Trusted Computing Base
TCG Trusted Computing Group
TOE Target of Evaluation
TPM Trusted Platform Module
VM Virtual Machine
VMM Virtual Machine Monitor
XML eXtensible Mark-up Language
XSL eXtensible Stylesheet Language
WORM Write Once Read Many
WYSIWYS What You See Is What You Sign

Open_TC Deliverable 06c.2 79/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 12 Acknowledgements
The authors want to thank Ahmad-Reza Sadeghi from Ruhr University Bochum and
Chris Stüble from Sirrix AG for providing the template used for the first part of this
document about the requirements and examples on how to use it. The authors want
also to thank Francesco Sartorio for the substantial contribution to the original
requirements analysis.

Open_TC Deliverable 06c.2 80/81

 SWP06c WYSIWYS application design specification FINAL 1.10

 13 References
[1] Hanno Langweg. With Gaming Technology towards Secure User Interfaces. In
ACSAC ’02: Proceedings of the 18th Annual Computer Security Applications
Conference, page 44, Washington, DC, USA, 2002. IEEE Computer Society.
[2] R. Shirey. Internet Security Glossary, Version 2. RFC 4949 (Informational), August
2007.
[3] Burton S. Kaliski. PKCS #7: Cryptographic Message Syntax Version 1.5. RFC 2315.
 (Informational), March 1998.
[4] Secure signature creation devices, CWA14169:2004. CEN Workshop Agreement,
CEN Information Society Standardization System, 2004.
[5] TCG Infrastructure Working Group (IWG). TCG Infrastructure Workgroup Subject
Key Attestation Evidence Extension, June 2005. Specification Version 1.0 Revision 7.
[6] W3C recommendation. XSL Transformations (XSLT), 1999. Version 1.0.
[7] W3C recommendation. XML. http://www.w3.org/XML/.
[8] OpenTC deliverable: D06c.1 High level requirements specification.
[9] Directive 1999/93/EC on a Community framework for electronic signatures.
[10] ITU-T Recommendation X.509.
[11] RSA Laboratories, PKCS #1 v2.1: RSA Cryptography Standard.
[12] OpenTC deliverable: D06c.3 WYSIWYS application prototype.
[13] IAIK/OpenTC jTpmTools

(http://trustedjava.sourceforge.net/index.php?item=jtt/readme).
[14] Security requirements for signature creation applications, CWA14170:2004. CEN
Workshop Agreement, CEN Information Society Standardization System, 2004.
[15] TCG TPM Main Specification (parts 1,2,3), July 9, 2007, Version 1.2 Level 2
Revision 103.
[16] TCG Software Stack (TSS) Specification, March 7, 2007, Version 1.2, Level 1,
Errata A.

Open_TC Deliverable 06c.2 81/81

http://trustedjava.sourceforge.net/index.php?item=jtt/readme
http://www.w3.org/XML/

	D06b.5-MEITC_Use_case.pdf
	D06b.5-MEITC_Use_case.pdf
	1 Introduction
	2 Description
	3 Use Cases
	4 Abbreviations

	D06c.2_WYSIWYS_application_design_final.pdf
	 1 Motivation and problem description
	 2 Security Environment
	 2.1 Assumptions
	 2.2 Threats

	 3 Functional Requirements (Use Case Model)
	 3.1 Goal
	 3.2 Target Groups
	 3.3 Roles and Actors
	 3.4 Overview
	 3.5 Use Cases (Detailed Description)
	 3.5.1 Sign a document
	 3.5.2 Verify a signed document
	 3.5.3 Basic operations

	 4 Security Objectives & Security Requirements
	 4.1 Security Objectives
	 4.2 Security Requirements

	 5 Supplementary Requirements
	 5.1 Preconditions
	 5.2 Required Criteria
	 5.3 Desired Criteria
	 5.4 Distinguishing Criteria
	 5.5 Execution Environment
	 5.5.1 Software
	 5.5.2 Hardware

	 5.6 Development Environment
	 5.6.1 Software
	 5.6.2 Hardware

	 6 Architecture for WYSIWYS: Trusted Computing and Virtualization
	 6.1 Compartments and integrity measures
	 6.2 Solutions for integrity binding
	 6.2.1 Keys and data structures
	 6.2.2 Three phases bind
	 6.2.3 Conditions
	 6.2.4 Initialization phase
	 6.2.5 Discussion on other types of binding

	 6.3 Proving the WYSIWYS requirement

	 7 High-Level Software Architecture
	 7.1 Introduction
	 7.2 Logical views
	 7.2.1 Packages
	 7.2.2 Use case realisation

	 8 Design
	 8.1 Communication between modules
	 8.1.1 wys_commlib library
	 8.1.2 Interactions between modules

	 8.2 Modules
	 8.2.1 WYSIWYS Control Service (CS)
	 8.2.2 Signing Device Interface (SDI)
	 8.2.3 Trusted Integrity Service (TIS)
	 8.2.4 Trusted Storage Service (TS)
	 8.2.5 Trusted User Interface (TUI)
	 8.2.6 Trusted Viewer Service (TVS)
	 8.2.7 Trusted Window Service (TWS)
	 8.2.8 Untrusted User Interface (UUI)

	 9 Implementation details
	 9.1 Three phase bind
	 9.1.1 Key Registration
	 9.1.2 Signature process
	 9.1.3 WYSIWYS Application startup
	 9.1.4 Drivers

	 10 Security requirements for signature creation applications
	 11 List of Abbreviations
	 12 Acknowledgements
	 13 References

