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1 Introduction
Identity theft has become one of the fastest growing crimes on the Internet, leading 
to  huge  financial  losses  and  privacy  violations  [1,2].  Various  attacks  have  been 
identified  in  the  past.  A  prominent  class  of  attacks  are  those  termed as  illusion 
attacks, such as phishing and pharming, where the user is lured to a faked site and 
asked to disclose her identity credential information. Essentially, the attackers make 
use of the fact that the average Internet user is unable to distinguish a legitimate site 
from a  fake  one,  and the  underlying  security  mechanisms  and  indicators  do  not 
efficiently and effectively support her in making the right decision [26]. Hence, the 
first core security objective is to provide a strong password mechanism for the user 
while reducing the user’s intervention with the system as much as possible. Ideally, 
the user should not know the passwords. This requirement seems to be contradictory, 
however, relying on a system that knows the passwords and automatically performs 
the login on behalf of the user, including an automatic verification of the legitimacy 
of the web site, prevents the mentioned attacks.
In  addition  to  illusion attacks and the related social  engineering attacks,  a  more 
powerful class of attacks is due to malware compromising and infiltrating the user’s 
computing  platform  with  malicious  code.  Examples  include  Trojan  horses  like 
keyloggers1 or transaction generators2 [12,3]. Typical sources of malware are various 
offers on supplementary software and plug-ins that may contain malicious code. In 
this context,  commodity operating systems (OS’s) cannot appropriately prevent or 
even  reduce  the  impact  of  these  attacks  since  they  still  suffer  from  various 
conceptual  shortcomings:  beside architectural  security  problems and the inherent 
vulnerabilities  resulting  from  high  complexity,  they  require  careful  system 
administration skills which ordinary users typically do not have. Hence the second 
main security objective is to have a small Trusted Computing Base (TCB) that can 
provide the following security properties:

1. a secure execution environment for handling users’ authentication credentials, 
ideally isolated from potentially malicious programs (isolation);

2. a secure user interface to interact with trusted applications, which cannot be 
faked or eavesdropped by malicious programs (trusted path); and 

3. a secure environment for the credentials when the system is offline (secure 
storage). In particular, credentials are bound to the TCB to prevent attacks 
where an adversary tries to gain access to the data by replacing software (e.g., 
booting a different OS).

Both  the scientific  and industrial  community  have addressed many of  the  known 
attacks  on  web  authentication  and  proposed  promising  identity  management 
solutions to alleviate the threat of identity theft. On the one hand, delegated identity 
management  systems,  where  the  user  calls  a  trusted  third  party  in  form  of  a 
distributed server for hosting and providing identity information, exist but showed to 
have deficiencies [32,34,62,54]. For example, as analysed in [32], authentication tools 

1Keyloggers record all keystrokes of the user, especially during entering passwords, and 
transmit them to a phisher. 
2Transaction generators wait until the user has logged in, e.g., to her financial online 
account, and create fraudulent transactions in the background.
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such as Microsoft’s CardSpace [38] can successfully be attacked even in a weaker 
adversary model (assuming the DNS is under the control of the adversary), whereas 
our adversary model considers malware as well.
On the other  hand,  wallet-like  approaches such as  SpyBlock  [55,40,39],  Delegate 
[43], Vault [45], or Wallet-Proxy [31] have gained more attention recently and seem 
to be very promising towards secure web authentication. Those approaches use a 
password wallet as authentication agent in an isolated trusted environment (using 
virtual machines, or as with Delegate, a separate physical machine) to separate the 
handling of credentials from the normal web browsing (see also [55,70]). The wallet-
based  approach  has  the  advantage  that  the  user  owns  a  “guardian  angel”  who 
protects against disclosure of sensitive data and potentially prevents identity theft 
caused by wrong user behavior. Further, there is no need to trust a distributed server 
hosting the credentials.  Another issue is  that a wallet  can perform cryptographic 
tasks  that  cannot  be  performed by  the  user  or  provided by  the  current  browser 
implementations. In this work, we focus on password phishing. To protect against 
transaction  generators,  the  secure  wallet  could  be  extended  according  to  ideas 
presented in [40].
In this deliverable, we describe our approach to counter identity theft: the Secure 
Wallet  use  case  and  prototype.  We  present  the  requirements  and  architecture, 
analyse  the  security,  and  propose  a  prototype  implementation.  This  includes  the 
architecture for a demonstrator using Infineon's X-GOLDTM  208 (formerly called S-
GOLD3TM) mobile platform. Moreover, the relation of the Secure Wallet to current 
mobile standards, in particular the TCG Mobile Reference Architecture and OMTP 
TR1 specifications, is discussed. 
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2 The Secure Wallet Use Case and Prototype
In this section, we describe the Secure Wallet, our solution to counter identity theft 
based on the concepts from [31], and give an overview of the system architecture. We 
sketch the system architecture (based on generic security services as developed in 
OpenTC WP05) that has been used for our prototype implementation on a PC. We 
describe an architecture for a mobile platform, and propose a “hybrid” architecture 
for  a demo-prototype,  where functionalities  are split  between a PC and a  mobile 
platform.

2.1 Overview of the Secure Wallet
According to the Anti-Phishing Working Group (APWG) [1], phishing attacks are still 
on the rise. Especially crimeware attacks reached a new all-time high in December 
2006, when the APWG recorded 340 unique applications designed for phishing and 
identity theft. More than 28.000 different phishing sites were recorded during the 
same month, each with an average online time of 4 days. Although those were about 
10.000 sites less than in October and November, the number of phishing sites has 
almost  tripled since summer 2006.  In  April  2007 that  number almost  doubled to 
55.000 unique sites, whereas in the last months of 2007 it dropped to about 30.000 
sites again. Gartner [11] estimates direct financial losses due to phishing to $2.8 
billion in 2006, while indirect losses are much higher, including account replacement 
costs  and  higher  expenses  for  mitigating  damage  in  trust  and  brand  values.  As 
attacks increase in frequency and become more sophisticated with every generation, 
increasing losses can be expected as well. 
In this chapter, we describe the basic ideas underlying the secure wallet. Note that 
we focus on password phishing. To address transaction generators, ideas from [40] 
can be combined with our approach.

2.1.1 Classical phishing 
Basically, there are two types of phishing attacks. We define the first category, which 
is the oldest and still most widespread attack, as classical phishing. The normal user 
login procedure for an arbitrary web server is shown in Figure 1. The user enters her 
username and password into a web form provided by the web server and submits this 
form. 
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Figure 1: Web Server Login

In the phishing attack, the phisher tries to lure the unwary victim to a faked web site, 
which  is  designed  to  mimic  a  known  web  site  (e.g.  an  online  banking  site  of  a 
common bank), using social engineering techniques. Such a lure typically is a spoofed 
email that appears to come from the organization associated with the original web 
site, asking to fill out some web form or to log into the victim's account in order to 
prevent it from being locked down permanently. Those sites have in common that a 
user with a given technical knowledge can distinguish them from the original sites by 
comparing  the  URLs  or  other  security  indicators  (e.g.  an  SSL  certificate).  More 
sophisticated  attacks  include  DNS  poisoning  techniques  (e.g.,  see  [75]),  thereby 
using the URL of the original site and forwarding the request to the phisher's web 
server. If the phisher was able to fake the site well enough to be plausible for the 
victim, he hopes that the user enters her credential in order to use the site or to carry 
out the requested operation (e.g. confirm her account). Since the phisher controls the 
faked web site, he is in possession of the victim's credential afterwards. 
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Figure 2: Classical Phishing Overview

Websites that disclose personal information about their users, e.g. the fact whether a 
specific email address is registered with it or not, can be used by phishers to build up 
hostile profiles. Those profiles are then used by phishers to create custom phishing 
mails tailored to the respective user, increasing the likelihood that the user believes 
the mail [9]. 

2.1.2 Malware phishing 
The other type of phishing attacks we define as malware phishing. Generally, those 
attacks can be categorized as attempts to collect personal information directly at the 
client through the use of malware, i.e. malicious software like trojans or keyloggers. 
Malware can have various effects on the client system. Besides keyloggers, which 
gather keystrokes and send them to the phisher, trojans can hijack browsers and 
trick  users  by  altering  their  user  interface  or  redirecting  data  streams to  rogue 
servers.  More  sophisticated  tools  make  use  of  numerous  distributed  machines 
gathering and collecting data silently using covert channels [42].  Phishers exploit 
known  flaws  in  widely  used  software  (e.g.  buffer  overruns)  to  distribute  their 

Open_TC Deliverable D08.2 9/109

file:///swallet/final/latex/main/main.html#jakobsson05
file:///swallet/final/latex/main/main.html#personal


 

 Security Services for a Trusted Mobile Application Final

malicious code. As malware improves more and more, becoming increasingly resilient 
to detection and countering techniques, phishing through malware seems appealing 
and can be expected to increase in frequency. This is confirmed by the fact that in 
December 2006 the number of unique variants of phishing malware increased by 110 
to 340 [1]. 

 
Figure 3: Malware Phishing Overview

2.1.3 Countering phishing 
What  makes  countering  phishing  attacks  difficult  is  the  broad range  of  different 
attack vectors. On the one hand, the security engineer has to account for the unwary, 
technically inexperienced user being tricked by a convincing web site fake. On the 
other hand, credentials could also leak directly at the client without the user ever 
noticing it (at least until the phisher makes use of the stolen data). While solutions 
exist, targeting either the first or the second type of attacks in more or less detail, 
there is still no technique available that protects against both threats equally. The 
related work section provides some examples of existing solutions and illustrate why 
they do not suffice to target both kinds of attacks. 
This document takes up the idea from [31] and presents an implementation for the 
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proposed trusted wallet.  This  wallet,  hence called Secure Wallet,  will  be used to 
securely store user credentials and authenticate to remote services on behalf of the 
user without requiring specific security-related skills (i.e. as stated above, to be able 
to recognize a web site fake or detect malware on her computer). In contrast to most 
other solutions, the wallet will equally protect against classical and malware phishing 
attacks. 
The  wallet  will  be  executed on  top of  a  virtualisation  platform based  on  trusted 
computing functionality. This platform provides integrity and isolation by combining 
a security kernel and controlled access mechanisms. Running on top of this platform, 
no malicious software will be able to access or intercept the credentials stored in the 
wallet. 

2.2 Security Problem Definition 

2.2.1 Threats
Internet users are subject to the following security threats regarding their identities: 
Threat 1 (Identity Theft through Faked Web Sites)   The user U is lured to a faked 
web site A where she enters her credential for the original site P, thereby exposing 
them to the creator of the faked site.
The user may arrive at the fake site through different means, e.g., a spoofed email 
containing a link to the site, a link on some other (probably not even compromised) 
web site or through redirection by DNS poisoning. If the user disregards possible 
security warnings or does not notice that browser security indicators are missing and 
hence trusts the displayed content, she may be inclined to enter her credential  
for the original site P in order to log into the fake site A. The adversary and creator of 
the fake site A then can take  possession of the user's credential for the original site. 
Afterwards, the adversary can use them to impersonate the user in order to perform 
transactions or gain access to other data belonging to the user.
Threat 2 (Malware Identity Theft)    Malicious software installed by an adversary A 
on user U's system gathers identity data and credentials when they are entered by U 
(for various applications). The software somehow exposes that data for A to retrieve.
Malicious software (i.e. malware) can be various kinds of trojans – maybe containing 
keyloggers or other spyware – on the user's system. It could have been installed by 
intention (and perhaps the user does not notice the software contains spyware), or 
without the user ever noticing it. Depending on the type of malware, user credentials 
may leak through different means. A keylogger might log all characters entered into 
the target application, whereas a trojan might display a faked login dialog for the 
target application persuading the user that it is the real application. Note that this 
includes login forms on web sites as well,  since the trojan could have altered the 
browser's behavior. 
As soon as the malware has gathered sufficient credentials, it will somehow contact 
the adversary to send the gathered data to A, or it uses covert channels to expose the 
data at  some public place,  where A can retrieve it.  Afterwards,  A can  use those 
credentials to impersonate the user as described in Threat 1. 
Threat 3 (Wallet Credential Theft)   Malicious software reads the wallet's credential  
store directly.
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A reasonable approach for malicious software is to bypass all protection mechanisms 
supplied by the Secure Wallet during web site setup or login and read the wallet's 
credential  store  directly.  If  that  credential  store  is  not  sufficiently  protected, 
attackers can gain access to all credentials that U has already stored. 
Threat  4 (Configuration  Modification)    Malicious  software  modifies  the  wallet's 
configuration in order to somehow intercept unprotected credentials.
If a malicious program cannot overcome the wallet's defences while interacting with 
a remote server or cannot read its credential store directly, it could try to change the 
wallet's configuration to weaken its security or disable it completely. If the wallet's 
configuration files are not protected from unauthorized access, malicious code could 
alter them in any possible way. 
Threat 5 (Fake Dialog Attack)   Malicious software displays faked dialogs resembling 
the wallet's user interface and lures the user to enter credentials into those faked 
dialogs.
Instead of disguising as some other application where the user could possibly enter 
credentials, malware could also try to disguise as the wallet itself. If the user has 
learned  to  enter  credentials  only  into  the  wallet,  this  approach  would  be  more 
promising than faking another application. Once the user is convinced that she uses 
the original wallet, the malicious program can intercept any credentials entered. 
An  additional  threat,  not  directly  addressed  by  this  work,  comprises  the  use  of 
Transaction  Generators  [40]  to  generate  an  arbitrary  amount  of  unauthorized 
transactions once the user has  successfully logged into a specific web site.  This 
threat  is  not  introduced  by  the  wallet  concept  though,  but  is  a  general  threat 
regarding web sites allowing for commercial transactions. Therefore, it will (briefly) 
be discussed in the security analysis below. 

2.2.2 Assumptions 
As outlined in [31], the wallet solution is based on the following three assumptions: 
Assumption 1 (Honest Provider)    We assume that the service provider P and his  
services used by the user U are not compromised.
If the service provider P did not reliably protect his services, malicious users are able 
to steal identities directly from the provider's database. Therefore, P must enforce 
that  his  services  cannot  be  exploited.  This  especially  holds  true  for  certifying 
services. We assume that appropriate protection of the services includes the use of 
secure communication protocols such as SSL/TLS.
Assumption  2 (Genuine  Internet)    We  assume  that  U  uses  a  genuine  internet 
connection, i.e. an adversary A cannot spoof the whole web.
Web spoofing attacks were first described by Felten et al. [28,71], and comprise an 
attack where A is able to fake the whole internet and any associated service for a 
user U. If such attacks were taken into account, the user would already disclose her 
credentials to the adversary when signing up for a service. Therefore, it is assumed in 
the following that U always signs up at an honest provider P using an unspoofed 
internet connection. 
Assumption 3 (Ordinary User)   We assume that the user U is an ordinary Internet 
user unable to properly authenticate a service provider P.
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In order to authenticate a web site provided by P, the user has to verify the service 
identifiers . Such identifiers are the domain name, the 'https' protocol specifier in 
the URL, and the SSL server certificate. However, studies show that most Internet 
users cannot distinguish legitimate web sites from faked ones and do not understand 
indicators, which signal trustworthiness, or where to look for those [36,37]. 
Assumption  4 (Trustworthy  Public  Key  Infrastructure)    We  assume  that   a 
trustworthy PKI exists, whose Certificate Authorities (CA) issue certificates for a web 
site P only to individuals associated with P.
The  whole  point  of  a  public  key  infrastructure  lies  in  trusting  some  distinct 
Certificate  Authorities  to  issue  certificates  only  to  authorized  individuals,  e.g.  a 
certificate for www.ebay.com should only be issued to eBay Inc. or another entity 
explicitly authorized by eBay Inc. If a CA does not conform to secure practices for the 
verification of an applicant's identity, an arbitrary individual could, in theory, acquire 
a certificate for any web site he desires, thus being able to impersonate that site in a 
man-in-the-middle attack. Such an attack has been effective in the past at least once 
for a prominent victim, when an attacker managed to disguise himself as a Microsoft 
employee and acquired two certificates issued to Microsoft from Verisign [6]. 
Assumption  5 (Private  Key  Protection)    We assume  that  the  service  providers 
protect the private keys of their  certificates sufficiently and revoke them as soon as  
they are compromised or not used anymore.
If a service provider does not sufficiently protect his private keys, an adversary who 
manages to steal  them can impersonate the service provider and trick users into 
disclosing  their  credentials.  This  kind  of  attack  cannot  be  countered  by  any 
mechanisms on the client-side.
Assumption 6 (Single Credential Storage Mechanism)    We assume that the user 
enters all credentials into the wallet exclusively.
The wallet can only work to its maximum effect if the user uses it exclusively to store 
her credentials for web sites. When she still attempts to enter credentials into web 
sites directly or into other applications not associated with the wallet, no assumptions 
can  be  made about  the  credentials'  security  since  the  wallet  cannot  cover  those 
external  factors.  This  also  includes  “recovery  options”  for  forgotten  passwords 
offered by many websites. If the user uses such an option to get an email containing 
the password, the adversary might obtain the password from this email, hence we 
have to assume that the user does not use such options (which are not necessary in 
any  case,  because  passwords  are  stored  by  the  secure  wallet).  In  practice,  this 
assumption  is  more  realistic  and thus  weaker  than the  assumption  that  the  user 
always verifies the results of SSL certificate verifications provided by the browser. 
Assupmtion 7 (Feasability of Secure Software Development)  We assume that it is 
possible to develop secure software components of limited complexity and to verify  
their correctness.
Without secure software, we cannot protect the user's credentials. However, we try 
to limit the number and complexity of trusted software components. For instance, we 
do not assume that a complete web browser or an operating system where the user 
can install software can be implemented securely. But we do assume that a basic 
“security  kernel”  and  a  simple  secure  wallet  application  can  be  implemented 
securely, and that the correctness of their implementation can be verified.
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2.2.3 Objectives
The  main  objective  is  to  preserve  the  confidentiality  of  the  user's  credentials. 
However,  this is  made difficult  by the fact that  most  service providers offer  only 
entity authentication, i.e., authentication is based on the credentials alone and does 
not  include  all  components  in  the communication  path.  This  can  be  exploited by 
compromising such an unauthorized component. Therefore, the Secure Wallet will 
attempt to achieve the following partial security objectives: 
Objective 1 (Protection against  Fake Sites)    Let  P be a web site  for  which the 
Secure Wallet stores U's credential . The wallet will change 
the password  in order to prevent U from being able to disclose it to a fake site 

. Moreover, the password generated by the wallet will be a strong password with 
high entropy, unique for each site, to protect against dictionary attacks and common 
password attacks.
The  user  may  possibly  give  away  everything  she  knows  to  a  phishing  attack, 
especially her credentials for a specific web site P. An effective way of preventing 
credential leakage is not letting the user know those credentials. Thus, even if faced 
with a faked web site  , U cannot disclose any secret information apart from the 
outdated credential  that U knew before the wallet changed it to . In order 
to prevent the adversary from computing  from  (in case he managed to 
get   from the unwary user),  the wallet  incorporates random values into the 
transformation. 
This seems to have a great impact on usability, since U cannot log into the web sites 
stored in the wallet from other computers anymore because she does not know the 
password.  While  the  question  remains  whether  it  is  wise  for  U  to  expose  her 
password to a possibly insecure or compromised computer beyond her control, there 
are certain ways to improve usability,  such as migrating the user's data to other 
platforms. Further work in this direction is needed.
Objective 2 (Secure Environment)    The system S ensures that the Secure Wallet's 
internal credential store can only be accessed if the wallet is executed in a secure 
and trusted environment.
If the user attempts to execute the wallet in an insecure environment, the system 
must  prohibit  further  access  to  the  wallet  to  prevent  leakage  of  credentials. 
Therefore, the system must ensure that no security-critical components have been 
compromised by verifying whether they have changed since the last time the wallet 
was used. 
Objective 3 (Secure Storage)   The Secure Wallet uses a secure storage that cannot 
be read by any other application.
The storage is the wallet's most important component since it contains all credentials 
stored  by  the  user.  Unauthorized  applications  that  manage  to  read  the  wallet's 
storage directly, immediately gain access to all credentials, rendering all the wallet's 
other protection mechanisms useless. Therefore, the wallet must protect its storage 
or rely on the system to sufficiently protect it. No other application than the wallet 
should have access to that storage. 
Objective 4 (Secure Configuration)   The Secure Wallet software and configuration 
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cannot be altered by unauthorized applications in such a way that an adversary may 
gain access to the user's credentials.
The configuration controls how the wallet is used or whether it is used at all.  By 
altering  the  configuration,  an  adversary  could  disable  the  wallet  completely  and 
prevent it from protecting the user's credentials during web site login. Alternatively, 
the wallet could be misconfigured to prevent affective protection of user credetials. 
By modification of untrusted software components, an adversary should only be able 
to prevent the automated login operations (i.e., denial of service) but should never 
get  access  to  the  wallet's  credentials.  To  prevent  any  further  modifications,  the 
configuration  files  must  be  stored  separately,  so  that  unauthorized  applications 
cannot reach them. Moreover, the wallet software must not contain security-critical 
implementation flaws, such as buffer overflows.
Objective  5 (Secure  Input  and  Output)    No  other  application  should  gain 
unauthorized access to input or output of the Secure Wallet .
A common attack of Trojan horse programs is to emulate password input dialogs. The 
unwary user believes to enter her credentials into the genuine password dialog she 
expects. Thus she exposes those credentials to the malicious program. Therefore, the 
user must feel confident about the integrity, authenticity and confidentiality of the 
communication path to the wallet application as well as the integrity and authenticity 
of the secure wallet itself. 

2.2.4 Security Objective Rationale 
Objective 1 (Protection against Fake Sites) counters Threat 1 (Identity Theft through 
Faked Web Sites). When the user does not know the password for a web site, she 
cannot  give  that  password  away  to  an  adversary  trying  to  fake  the  web  site. 
Therefore, faked web sites no longer pose a risk for the user's credentials. 
Objective 3  (Secure  Storage)  counters  Threat 3  (Credential  Theft),  Objective 4 
(Secure  Configuration)  counters  Threat 4  (Configuration  Modification)  and 
Objective 5 (Secure Input and Output) is meant to prevent Threat 5 (Disguising as 
the Wallet), since no malicious code can pretend to be the Secure Wallet as long as a 
trusted path to the wallet exists and is used. In addition, when the system already 
recognizes unexpected changes to security-critical  components,  protection against 
malware is  significantly  increased.  Thus,  all  three Objectives 3 to 5 together with 
Objective 2 (Secure Environment) counter Threat 2 (Malware Identity Theft). 

Table 1: Threats and the objectives addressing them
 Objective

Threat Fake 
Site Env. Storage Config Input

Fake Sites X     
Malware  X X X X
Credential Store   X   
Config Modification    X  
Fake Dialog     X
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By ensuring a secure authentication process and preventing insecure communication 
channels, both faked web sites and malicious programs lose their ability to disguise 
as a trusted entity. Thus, the overall security objective, being the preservation of the 
confidentiality of the user's credentials, is achieved if the partial objectives can be 
achieved. The following table provides a compact overview of the discussed relations 
between objectives and threats. 

Assumption 1 (Honest Provider) is important to exclude the service provider system 
from all security considerations. If the adversary can steal identities directly at the 
provider, no action taken on the client can prevent that. Even if the adversary can 
“only” compromise the provider instead of stealing the identities at once, the client 
won't  presumably  detect  that.  Thus,  Assumption 1  is  crucial  for  all  following 
considerations. 
As already described in Assumption 2 (Genuine Internet), if an adversary was able to 
spoof the whole internet, the user U would already disclose her credentials when 
signing up for a service. In this case, no protections on the client side would have an 
effect either. 
On the other hand, if Assumption 3 (Ordinary User) is not taken into account, the 
proposed solution will also work for a skilled user who knows how to distinguish a 
phishing site from an original site (in the case of Threat 1). Regarding Threat 1, a 
skilled user will probably refuse to install any kind of suspicious software in the first 
place or recognize faked login dialogs displayed on her system. The assumption is 
reasonable, though, because studies show that most Internet users do not possess 
such knowledge and therefore it helps to prevent phishing attacks for a larger user 
base. 
The importance of  Assumption 4 (Trustworthy Public  Key Infrastructure)  becomes 
immediately  clear  when  dealing  with  certificates  that  have  been  issued  without 
authorization.  Certificates  represent  the  primary  source  of  trust  in  a  public  key 
infrastructure. If there exists a certificate that seems to belong to a certain web site P 
but was issued to an adversary A instead, A can impersonate P for arbitrary users 
without them noticing. 
If  an  adversary  manages  to  steal  a  private  key  from  a  service  provider  and 
impersonates him in a form of redirection attack, there is nothing that the client 
could do to detect that apart from verifying the actual  web site content.  Without 
Assumption 5,  a  client  cannot  trust  a  single  certificate  since  it  could  possibly  be 
stolen. 

2.2.5 Requirements 

In order to achieve the security objectives introduced above, both the system  (i.e., 
the platform together with the operating system) and the wallet must meet several 
requirements. Those requirements are as follows: 
Requirement 1 (System Integrity)   The integrity of security-critical components in 
S should not be compromised.
If malicious software infects critical system components in  , the system is rendered 
incapable of providing protection against attacks and cannot meet the other security 
requirements. Thus, security-critical components of  have to be isolated from non-

Open_TC Deliverable D08.2 16/109



 

 Security Services for a Trusted Mobile Application Final

critical  components.  While  this  preserves  system  integrity  at  runtime,  additional 
measures  must  be  taken  to  protect  against  offline-attacks,  e.g.  when  a  different 
operation  system  is  booted.  A  secure  boot  mechanism  is  required  to  prevent 
modification of initial system components. 
Requirement 2 (Isolation)   Runtime and offline protection of application code and 
data in S must be assured.
The internal state or persistently stored state of processes must not be accessible by 
malicious processes. Since malware may try to log the user's key strokes or modify 
the  system  configuration,  applications  for  different  tasks  of  the  user  should  be 
separated, such that they cannot interfere with each other. The Secure Wallet should 
store the user's credentials securely. Thus, having a clearly security-related task, the 
wallet's internal credential store should never be read by applications unrelated to 
security tasks, e.g. a web browser or active scripts running therein. 
Requirement 3 (Information Flow)    Credentials should be relayed to authorized 
applications only.
Credentials  must  enter  and  leave  the  wallet  in  order  to  be  used  effectively.  If 
credentials could not be passed on to other applications (e.g. in order to log into a 
web site), the wallet has no other use than storing them. Only trusted components 
known by the wallet or components that can identify and authorize themselves (e.g. a 
remote web server using a valid SSL certificate) should gain access to any of the 
stored  credentials.  The  wallet  should  warn  the  user  when  she  attempts  to  send 
credentials over an insecure communication channel (e.g. to a web site without SSL 
encryption).  Moreover,  inter-process  communication  should  only  be  performed 
through  strictly  controlled  communication  interfaces,  i.e.  no  bypassing  of  those 
interfaces should be possible. 
Requirement  4 (Trusted  Path)    No other  application  should  gain  unauthorized 
access to input or output of the application in S used by U to enter her credentials  
(i.e., the secure wallet).
To  ensure  that  the  user  enters  credentials  only  into  the  wallet  and  no  other 
applications can access the user's input, the system must provide a mechanism which 
allows separation of input channels. While the user enters her credentials, she must 
feel confident that those credentials are sent over a secure communication channel. A 
visual proof of the current channel's security state should be displayed to the user at 
all times. 
Requirement  5 (Robustness)    Wrong  configuration  or  setup  of  security-critical 
components of S should not have adverse effects on the security features provided.
As pointed out in Assumption 3 (Ordinary User), this deliverable assumes an ordinary 
user  without  any technical  knowledge to configure or  understand security-critical 
applications or indicators.  Thus,  any configuration necessary to  fulfil  the security 
objective must be easy to understand and tolerate mistakes. In the context of the 
wallet this implies that the user should preferably only enter user credentials without 
having to worry about any inner workings. Because of assumption 3 (ordinary user), 
this requirement does not only address usability: in order to protect the credentials of 
unskilled users, the secure wallet must be easy to setup ad configure. 
Requirement 6 (Authentication)    Unauthorized individuals should not be able to 
access the wallet's data stored by other users.
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On a multi-user system or in a multi-user environment (e.g. an open-plan office) the 
system must ensure that credentials stored by one user are not accessible by other 
users. A user has to authenticate herself before she can use the wallet and her stored 
credentials. The system must provide a method to let the user authenticate herself. 
This can either happen as part of a general user authentication or it can be specific to 
the wallet. Moreover, the system's security policy may define that the user has to 
reauthenticate herself after a specific timespan. 

2.3 Related Work 

2.3.1 Client-based Phishing Countermeasures 
Several existing solutions add security toolbars to the browser's user interface that 
should warn the user of fraudulent sites by checking certain indicators like a valid 
SSL certificate or by maintaining a blacklist of known phishing sites. Examples of 
such toolbars are TrustBar [37], Netcraft Toolbar [7] or SpoofGuard [22]. While those 
solutions tend to lessen the success of phishing attacks, they are not sufficient to 
counter them completely, as a recent study shows [69]. Users fail to continuously 
check the displayed security indicators, since their primary goal is not security but to 
finish the task that led them to the phishing site. Even when the toolbars showed 
suspicious signs, users often did not know how to interpret them. They tend to trust 
the actual web site content more than the security indicators that were installed. This 
is especially harmful if a phishing site displays real web site content in a man-in-the-
middle attack or in a picture-in-picture attack, where a picture of a browser window 
containing the image of a legitimate site is shown as the content of a fraudulent site 
[41]. 
Dynamic  Security  Skins  [25]  offer  a  better  alternative  in  requiring  the  user  to 
recognize only an image and a low-entropy password while freeing them from the 
burden of checking all  browser security indicators,  but they have two drawbacks. 
First, this approach is not resistant to malware attacks, since a trojan altering the 
browser's behavior or user interface could fake the images by generating a matching 
set  of  images  itself.  Second,  they  require  a  change  to  the  web  server,  which 
significantly lowers the chance for this technique to be deployed. 
A related approach was taken with Synchronized Random Dynamic Boundaries [73]. 
In  an attempt  to  separate  status  information  from web site  content,  the  authors 
implemented a protection scheme that changed the border colours of the browser 
and its associated windows in random intervals, thereby exposing spoofed windows 
generated by malicious code. While this technique does not require a change to the 
web  server,  it  still  suffers  from similar  drawbacks  as  the  dynamic  security  skin 
approach, e.g., it is vulnerable to malware attacks.

Password Managers 
Password managers are readily available for many different operating systems and 
desktop  environments.  A  familiar  example  is  KWallet  [59]  included  in  the  KDE 
Project.  Passwords  are  encrypted  and  stored  on  the  user's  system  and  can  be 
automatically retrieved, e.g. by the Konqueror browser, whenever the user enters a 
web site that the wallet has a password for. Such wallet approaches neither provide 
Isolation nor a Trusted Path, though. 
The Web Wallet [70] separates the input of credentials and the usage of a web site by 
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locking the HTML forms requiring credentials. After the user presses a predefined 
security key, the Web Wallet verifies the security properties of the target web site 
and displays a dialog to the user where she has to explicitly choose the destination 
site  the  credentials  should  be  sent  to,  instead  of  displaying  simple  confirmation 
dialogs. The user can choose from a list of web sites previously stored by the wallet. 
While this is quite effective in countering classical phishing attacks, no protection 
against malware attacks is provided. 
Yee and Sitaker proposed the PassPet browser extension [72] which addresses the 
issue of re-used passwords across multiple different web sites. It lets the user assign 
a pet name for each of her used sites and generates a new password incorporating 
the domain name. When the user wants to log into one of her sites, she enters the pet 
name into the extension and it copies her password into the designated password 
fields. Similar to other password manager solutions, this is effective against classical 
phishing but lacks resistance to certain kinds of malware attacks. 

Platforms & Operating Systems 

Virtualisation 
To prevent malware attacks, a secure operating system is vital, and for the solution 
proposed in this deliverable, virtualisation is an important building block. Because of 
the abundance of literature on this topic, we do not provide a review of recent work 
here, but refer the reader to previous work, such as [33,46,57].
Cox et al.  [24] introduced the Tahoma Web browsing system which added a new 
separate  trusted software layer  called  browser  operating system (BOS)  on  which 
browsers  execute.  They  separated  several  browser  instances  running  in  the  Xen 
virtual machine monitor [18], thereby isolating different web applications from each 
other. While this approach proved to counter 87% of the browser flaws and malware 
attacks presented in their paper, no protection against classical phishing is available. 
This is due to the fact that Tahoma can only provide an isolated browser instance 
when the user enters a phishing site but does not prevent her from actually entering 
her  credentials.  Moreover,  offline  modification  of  critical  system  components  is 
possible. Thus, malware attacks targeting the BOS itself are still feasible. 
While  not  exactly  related to  protection  of  credentials,  the  SpyBlock [40]  browser 
extension employs a similar approach by using VMWare to set up a virtual machine 
running an isolated web browser. While this defends against certain malware attacks, 
it  suffers  from the  same problem as  Tahoma,  i.e.  no  protection  against  classical 
phishing attacks is provided. 

Secure User Interfaces 
The  security  of  user  interfaces  was  examined  by  several  papers.  Epstein  et  al. 
introduced the Trusted X system [27] which aimed to replace the X windows system 
found on UNIX systems with a security-enhanced version. In the course of creating 
the  EROS operating  system,  a  secure  GUI  called  EROS Trusted  Window System 
(EWS)  was also  developed [58].  A  minimum-complexity  secure  user  interface was 
introduced  with  Nitpicker [29],  which  is  an  implementation  based  on  an  L4-
microkernel [5] that adds floating labels to active views while dimming out inactive 
views. This allows users to authenticate the application they are currently using. 
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Trusted Computing 
Other  more  general  work  on  preventing  malware  attacks  focuses  on  integrity 
preservation  and  verification.  The  authors  of  [16]  construct  a  chain  of  integrity 
checks during the bootstrap process in an attempt to provide a  Secure Boot. Their 
AEGIS  system compares  computed  cryptographic  hash  values  with  stored  digital 
signatures previously associated with each bootstrap component utilizing a special 
hardware component for reference. An implementation of this approach using a TPM 
was shown in [48]. 
A similar attempt in secure booting was realized with TrustedGRUB [10], which is an 
extension of the GNU GRUB bootloader. It allows detection of available TPMs and 
measurement of arbitrary files during the boot process. 
In [56]  an  integrity  measurement  system  for  Linux  is  presented.  The  system 
measures all executable content that is loaded into the Linux system and protects 
those measurements using a TPM. The loaded software stack can be proved to a third 
party by using the TCG  attestation mechanisms. 

2.3.2 Server-based Phishing Countermeasures 
Several server-based countermeasures attempt to extend the SSL protocol in order to 
effectively thwart man-in-the-middle attacks [21]. For such attacks, the man-in-the-
middle creates two SSL connections, one with the server and one with the client. To 
prevent such attacks, the authors of [60] propose a password-based extension, while 
[52] utilizes trusted mobile devices for automatic verification of web sites instead of 
using the web browser for that task. By linking passwords to SSL sessions, Oppliger 
et  al.  [51]  successfully  counter  man-in-the-middle  attacks  since  passwords  now 
contain information about the parties involved in the communication. 
While  these  approaches  are  effective  to  counter  classical  phishing  attacks,  they 
provide no mechanisms for countering malware phishing attacks, since malware on 
the user's system can still modify the communication. 
A rather different anti-phishing approach was proposed by Birk et al. In their work 
the authors fill collection servers of phishers with fingerprinted credentials and lure 
them to virtual accounts.  As a result,  they attempt to profile phishers to prevent 
future  misuse  of  stolen  credentials.  Since  this  approach does  nothing to  prevent 
current phishing attacks, it can be rather classified as a supporting measure [20]. 

2.3.3 Proxy Components 
In 1997, Gabber et al. proposed the Janus Personalized Web Anonymizer [30] which 
was an HTTP proxy that filtered incoming and outgoing traffic to anonymize the user. 
It  was  executed locally  and set  up as  the  browser's  HTTP proxy.  Since  the  SSL 
protocol  had not been widely  adopted yet,  it  provided no support for  the HTTPS 
protocol. 
The PwdHash browser extension [55] discussed the idea of an SSL-capable proxy that 
is able to forge SSL certificates on the fly to enable inspection and filtering of SSL-
protected traffic. A related implementation approach is examined in [15]. 
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2.4 The General Secure Wallet Architecture 
To  prevent  the  user  from disclosing  her  credentials  to  any  phishing  site,  a  new 
trusted component is introduced. This component, hence called Secure Wallet, will 
store all of the user's credentials for web sites and will be used as a proxy for the web 
browser. 

 
Figure 4: The Secure Wallet

The user will utilize her web browser for viewing web pages as before but will enter 
her passwords only into the wallet. In order to access the wallet, she needs to request 
a secure input path (i.e. a trusted path) from the system to ensure that only the wallet 
receives her password inputs. Whenever she attempts to log into a web site with the 
browser, the wallet will handle those login operations automatically by modifying the 
browser's requests.  Thus,  she never needs to enter passwords into the untrusted 
browser again. In fact, password fields in the browser are locked to remind her that 
passwords are not to be entered into the browser anymore. 
By strengthening the user's passwords with random values and binding them to the 
domain  they  belong  to,  the  wallet  also  prevents  common  password  attacks  and 
dictionary  attacks.  Protection  against  malware  attacks  is  provided  by  taking 
advantage of  trusted computing functionality  and strong isolation properties  of  a 
suitable system platform. 

2.4.1 Wallet Behavior 
This  section  describes  the  general  behavior  of  the  wallet  system  from  a  user's 
perspective. 

 General Use 
The user opens her web browser and attempts to use a web site that requires a login. 

1. The user enters the web page containing the login form for the web site. The 
login form's password fields are disabled,  i.e.  the user  can only  enter non-
sensitive values directly into the browser (see also Figure 5). 

2. After entering all required non-sensitive values into the login form, the user 
clicks on the Submit button. 

3. The browser receives the next site-specific web page indicating a successful 
login and displays it. 

Open_TC Deliverable D08.2 21/109



 

 Security Services for a Trusted Mobile Application Final

4. The user can now use the web site as usual. 

 
Figure 5: Password fields are disabled automatically

 Web Site Setup 
To enable the automatic login described above, the user must set up a web site in the 
wallet. Setup for an existing account occurs the first time the user attempts to use it. 

1. The user enters a value for each non-sensitive field in the login form (e.g. the 
username) and clicks on the Submit button afterwards. 

2. The  wallet  displays  a  notification  message  indicating  that  the  user  should 
initiate the trusted path to the wallet. 

3. The user initiates the trusted path to the wallet and sees a dialog containing all 
password fields of the login form (see Figure 6). 

4. The user enters her credentials and clicks on the OK button afterwards. 
5. The  wallet  displays  a  security  message  requesting  the  user  to  initiate  the 

password changing process for  the web site  as soon as she  returns to  the 
browser. 

6. The user leaves the trusted path to the wallet and returns to her browser. 
7. The browser displays the site-specific web page indicating a successful login. 
8. The user changes her password for the web site (see below). 
9. The user can now use the web site as usual and any further login attempts are 

carried out as described above.
Note that registering a new account for a web site works in a similar way. The user 
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can set up the page in the wallet  whether or  not the registration form allows to 
choose the user password. If the registration form contains no password fields, some 
providers pre-generate the password and send it by email, i.e. web site setup occurs 
when the user first submits the login form and proceeds as described above. The 
setup process for a registration form with password fields is slightly different from 
the one shown above.

 
Figure 6: Setup dialog for a web site

 Password Change 
Changing of the user's password occurs in a similar way to setting up a web site in 
the wallet. 

1. The user enters the web page containing the form for changing her password 
for the web site. The form's password fields have been disabled just like the 
password fields in the login form had been before. 

2. If any non-sensitive values are required, the user enters them and then clicks 
on the Submit button. 

3. The wallet displays a notification message, indicating that she should initiate 
the trusted path to the wallet. 

4. The user initiates the trusted path to the wallet and sees a dialog containing all 
password fields of  the password changing form. A password changing form 
usually  contains  fields  for  entering  the  old  password  and  the  new desired 
password. 

5. For each field, the user chooses between the two options “Fill in old password” 
and “Generate new password” without entering passwords herself. 

6. The user clicks on the OK button, leaves the trusted path to the wallet and 
returns to her browser. 

 Registration Forms 
If  the  registration  form contains  fields  for  an  initial  password  choice,  the  setup 
executes as described above. But when the user first submits the login form after 
registration, a setup dialog will be displayed once again. This dialog works just like 
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the password change dialog, i.e. the user has to choose whether to use the stored 
password for the password field in the login form (which is the obvious choice in this 
case) or a newly generated password. After that, each subsequent login attempt will 
execute as described above.

2.4.2 Design and Architecture 
The design and architecture presented in the following was developped to address 
the issues detailed in Section 2.2. Many of the general design decisions described in 
this section have already been discussed in [31]. The purpose of this actual work was 
to find a concrete approach to implement the wallet as a demo application while still 
adding new ideas. In the process, some original ideas were refined or adapted to 
accommodate the actual implementation.

Protection against Classical Phishing Attacks 
This  section  provides  a  short  overview of  the  general  design  decisions  and their 
impact on usability. 

Deny credential input into the browser 
An ordinary user is susceptible to all kinds of classical phishing attacks. For example, 
a faked web site could trick her to enter her credentials for her home bank. Letting 
the user  enter  credentials  directly  into  the browser  makes  it  hard to  counter  all 
various attacks. Thus, the first major design choice for the wallet was to deny the 
user the ability to enter credentials directly into web forms. Instead, the user should 
enter those credentials only into the wallet. 
The most efficient way of preventing the user to enter credentials into the browser is 
to simply lock all web forms by modifying the HTML source code and setting the 
disabled flag on all contained  <input type=”password”> tags. The default behavior 
for  logging  into  a  web site  is  now equivalent  to  entering non-sensitive  data  and 
clicking on the Submit button, i.e. the user is trained to just express her intent of 
logging in without entering her password into the browser. All further steps required 
for  logging  in  are  then  executed  by  the  wallet  internally.  Usually  that  means 
replacing the empty web form variables for the password with the previously stored 
user credentials and forwarding the modified login request to the web server. Note 
that locking the password fields alone does not provide sufficient security since that 
mechanism can be countered quite easily. The next section discusses this attack more 
detailed. 
To allow the wallet access to received web pages, it needs to be able to read and 
modify the communication between the browser and the remote web server. Thus, 
the wallet is realized as a web proxy and set up as the browser's HTTP and HTTPS 
proxy. To free the user of the burden to verify the browser's security indicators of 
web pages, the wallet will also verify those indicators automatically, e.g. by verifying 
the remote server's SSL certificate and rejecting invalid connections. Furthermore, 
the wallet will issue a warning when the user attempts to set up credentials for a site 
unprotected by SSL since those credentials could be stolen by an eavesdropper. 
Whenever the user clicks on the Submit button of a locked login form for a web site 
that has not been set up in the wallet yet, the user has to enter her credentials into 
the wallet. Data fields required for a successful login are extracted from the submit 
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request and compared to previously encountered login forms, i.e. the user enters a 
value for  all  fields of the login form. This is  the only time when the user should 
actually type in her password. After the site has been set up, the password should not 
have to be entered again. 

Change the user's passwords 
Locking the login  forms is  just  a  visual  support  mechanism and not  foolproof  to 
prevent  the user from entering credentials.  An adversary could embed JavaScript 
code into his fake site that automatically unlocks all locked forms. Or the user could 
be  tricked  by  cleverly  designed  malware  to  enter  her  credentials  into  other 
applications than the browser or the wallet (also confer to the next section for a 
discussion of malware protection). The paradigm that users should not know their 
own passwords prevents such attacks to succeed. Furthermore, users tend to re-use 
passwords  for  several  (or  even  all)  web  sites  because  it  is  tedious  or  even 
unmanageable to memorize a new password for  each new site  the user registers 
with.  This way an adversary could gain access to  a whole range of  web sites by 
phishing the password of just one site (i.e. a common password attack). In practice, 
those passwords also tend to be quite weak, mostly consisting of common words or 
phrases, which makes them susceptible to dictionary attacks. 
Thus,  the  second  major  design  choice  for  the  wallet  was  to  replace  the  user's 
passwords with new passwords that are, on the one hand, unique to each web site 
and, on the other hand, stronger than the usual user passwords. While changing the 
passwords automatically (as proposed in [31])  would be desirable from a security 
perspective (this way the user could not omit the password changing process), this 
approach fails due to the diversity of web site structures and technologies. 
In  practice,  the  user  has  to  initiate  the  password  changing  process  herself. 
Consequently, the user could decide not to change her password but let the wallet 
only handle her known password. A common reason could be the inability to perform 
a  login  from  other  computers  without  the  wallet  (at  least  in  the  current 
implementation).  Secure  migration  of  wallet  data  could  improve  this  situation, 
however, even in this case, a secure wallet is needed on all platforms from which the 
user wants to log in. While user-initiated password change is conceptually less secure 
than letting the wallet change the passwords, the wallet still provides a great deal of 
protection against a wide range of attacks (also see the security analysis below). It 
should be possible to enforce the decision to let the wallet change the passwords by a 
suitable user training, which is a point for future work, though.
The password changing process does not require the user to type any passwords into 
wallet. The previously stored password is already known to the wallet and the new 
password is generated by the wallet and should not be known to the user. Thus, the 
password changing dialog just provides two options for filling in the old and the new 
password into the corresponding fields of the web form. 

 Protection against Malware Phishing Attacks 

Providing isolation 
A conventional system model is not sufficient to protect against malware phishing 
attacks. The wallet will  use a modified architecture based on a security kernel in 
order to protect itself against malware attacks. 
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Figure 7: The Conventional System Model
Figure 7 shows the (simplified) conventional system model found in most desktop PCs 
with regard to internet access through a web browser. The user utilizes her web 
browser to connect to remote web servers and download web pages which can be 
viewed or modified in the browser. Everything done inside the browser could possibly 
affect  the  user's  system,  e.g.  the  user  could  download  and  execute  malicious 
applications  or  active  content.  Such  applications  could  launch  malware  phishing 
attacks against the user and log all her inputs to the browser or modify the browser's 
appearance to deceive her. Whenever the user enters confidential information, such 
malware could intercept it.

 
Figure 8: The Secure Wallet System Model

In order to counter those threats and achieve the security objectives described above, 
a modified system model will  be employed as shown in  Figure 8. The user PC in 
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Figure 7 corresponds to the red box in Figure 8 which is marked as Untrusted. This 
box, hence called  compartment,  represents a separated part of the user's system, 
isolated  from other  such  compartments.  Inside   that  untrusted  compartment,  all 
security-uncritical applications are executed, including the web browser. Applications 
that  have  an  impact  on  security  will  be  executed  in  other  isolated,  trusted 
compartments. No malicious software executed in the untrusted compartment should 
have any access to security critical applications running in other compartments. To 
achieve this, a security kernel is used to coordinate access between compartments 
and provide basic security services.
To prevent malware from gaining access to the wallet's data, i.e. to prevent malware 
phishing attacks, it will run in such a trusted compartment, thereby being completely 
isolated  from  the  untrusted  user  compartment.  In  contrast  to  existing  solutions 
implementing  a  password  manager  as  a  browser  plugin,  this  approach  restricts 
communication  between  the  browser  and  the  wallet  to  a  single  communication 
channel controlled by the security kernel. The wallet is set up as the browser's proxy 
server and effectively becomes the new communication endpoint, i.e. the browser is 
reset to its role as a graphical user interface, while the wallet handles all credentials 
and login operations. Thus, credentials never pass into or out of the browser and no 
malicious code running in the untrusted compartment can intercept them. To prevent 
malicious code from using the user's credentials, the secure wallet might be extended 
with transaction confirmation [40].

Trusted Path 
In order to access the wallet directly for entering or retrieving credentials, the user 
has  to  initiate  a  trusted path  which  is  also  supplied  by  the  security  kernel.  The 
trusted path ensures that all input and output is handled by the wallet compartment 
and cannot be intercepted by malicious software in other compartments. Note that 
this is not possible with a legacy system (e.g. Windows or Linux).  Malware could 
forge  input  dialogs  to  imitate  the  wallet's  user  interface  and  trick  the  user  into 
entering her  credentials.  Windows or  Linux provide no inherent  way to  set  up a 
trusted path to prevent such attacks. 
We use a secure graphical user interface, called mGUI (as developped within OpenTC 
workpackage 5), to provide a trusted path between the user and the secure wallet. A 
secure attention key – in the current implementation F12 – can be used to switch 
between compartments. No compartment or application other than the mGUI can 
intercept this key. Moreover, the topmost part of the screen is used by the mGUI to 
display the compartment the user is interacting with (in our case, either the user 
Linux  or  the  Secure  Wallet  compartment).  No  application  or  compartment  can 
overwrite this section of the screen.

Trusted Computing 
Virtualisation and a security kernel  alone do not protect against malware attacks 
sufficiently.  An  attacker  could  still  mount  offline  attacks  against  the  wallet 
compartment  or  the  security  kernel  itself  (e.g.  by  booting  a  different  operating 
system from CD-ROM) and try to install malicious code. 
To prevent this kind of attacks, the security kernel is executed on top of hardware 
supporting Trusted Computing functionality  based on a Trusted Platform Module. 
Such hardware is already shipped by several manufacturers and can be assumed to 
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be available. User credentials are encrypted with a sealed key that never leaves the 
TPM and which is  bound to  the  platform configuration  at  the  time of  sealing.  If 
malicious software alters binaries in the chain of trust, the TPM will refuse to unseal 
the credentials that were stored using the original trustworthy system configuration. 
This  way,  the  wallet  can  only  access  the  credentials  if  the  integrity  of  its 
compartment is preserved and the environment is secure (cf. Objective 2).

Realization 
An important  requirement  for  realizing  the  wallet  is  the  preservation  of  existing 
service  providers  and  infrastructures,  i.e.  they  should  not  require  changes  to 
accommodate  the  wallet.  Without  this  requirement,  the  wallet's  chance  of  being 
deployed and commercially used would be very low. Where changes to the user's 
system have to be made, they should not require high costs for the provider and the 
client. 
The wallet itself is written in Java and is as such platform-independent. In order to 
filter HTML web pages and HTTP requests, the Paros web proxy [8] is used, which is 
also a Java application. Both components in conjunction provide protection against 
classical phishing attacks and can be used on an arbitrary platform supporting Java. 
To protect against malware phishing attacks, the system architecture in Figure 8 is 
realized by using the system developped within OpenTC workpackages 4 and 5. The 
framework  uses  virtualisation  techniques  to  provide  several  instances  of  legacy 
operating  systems  running  concurrently  but  each  with  its  own  set  of  virtual 
resources.  Each  instance  will  represent  a  single  compartment,  although  a 
compartment  generally  does  not  need to include a complete  operating system to 
work.  The  ability  to  use  existing  operating  systems  supports  the  preservation  of 
existing infrastructures. Thus, the untrusted user compartment will contain a legacy 
operating system (i.e. L4Linux [4] in the case of this work). 

2.5 Security Analysis 
This chapter discusses all attacks that might be mounted against the Secure Wallet 
or  any  of  its  associated  components  or  procedures.  It  will  show that  all  threats 
introduced in Section 2.1 can be countered effectively with the wallet.  As already 
pointed out before, there are two categories of phishing attacks: classical phishing 
attacks and malware phishing attacks. Both categories will  be handled separately 
since they require different protection mechanisms. 
Figure 9 shows an abstract overview of the system model employed by the wallet. 
The four involved entities are the user U, her system S, a remote web server P that U 
wants to communicate with and a phishing server A set up by an adversary to gain 
access  to  U's  credentials.  Several  communication  channels  exist  between  those 
entities.  The channel   is  the user's  input channel  into S while  she receives 
output over the channel  .  is used by S to send HTTP requests to P and 
returned HTML pages are received over  . The adversary uses  to send 
fake messages or emails to S and receives HTTP requests from S on  . 
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Figure 9: Simplified system model for the Secure Wallet 

2.5.1 Attacks 
The adversary can either directly target one of the entities or mount an attack on one 
of the communication channels. He can especially eavesdrop on and modify all of the 
network channels but  cannot directly attack the user channels   and  . 
Attacks on an entity always use one or more of the illustrated channels to send and 
receive messages. Furthermore, the phishing server A can be an arbitrary machine 
on the internet except S and P and is just noted as a single machine for convenience. 
Above, a list of potential threats for the user's credentials was given. Each of those 
threats corresponds to a specific class of attacks in the system model shown above. 
Threat 1 (Identity Theft through Faked Web Sites) is an attack directly on U. Threat 2 
(Malware Identity Theft) can target the entities U (e.g., by showing a message that 
tricks  the  user  into  revealing  her  credentials)  and  S,  the  network  channels  and 
indirectly  the user  channels  as well.  Thus,  it  is  the most  extensive  threat  in  the 
system model. Threats 3 (Credential Theft) and 4 (Configuration Modification) only 
target the entity S, while Threat 5 (Fake Dialog Attack) targets both entities U and S. 
To show that those threats are ineffective and the security objectives have been met, 
it is sufficient to show that attacks on each channel or entity are countered by the 
wallet. 

Attacks on U 
Attacks  on  U  in  the  scope  of  Threat 1  can  be  categorized  as  classical  phishing 
attacks,  which  are  a  subclass  of  social  engineering  attacks  where  A  sends  fake 
messages to U in order to trick her to disclose credentials. For example, A creates a 
fake email that imitates a mail originating from P but contains a link to A and uses 

 to deliver it to S. The user receives and reads that email using the channel 
 and (if deceived by it) acts upon the email using the channel  to access 

A,  i.e.  S  uses   for  an  HTTP request  instead of   .  Other  attacks  on  U 
involving the entity S as well  are discussed in the next paragraph. An analysis of 
classical phishing attacks is provided below.
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Attacks on S 
Attacks on S attempt to gather or steal credentials on the user's system instead of 
trying to trick U to disclose credentials to a phishing site directly. Such an attack 
might either occur offline, e.g. by attempting to modify the system or to read the 
credential store directly. Or it might occur online, i.e. by actively installing malicious 
software on S while the system is running. Installation of such malware can occur by 
exploiting a known security weakness of an application running on S or the adversary 
might employ additional social engineering attacks to trick U to install the malware 
willingly. 
Depending on the kind of malicious software, it might attack the channel   to 
eavesdrop on  credentials  entered by  the  user  (keylogger),  or  it  might  attack the 
entity U and the channel  by displaying a fake dialog where the user enters her 
credentials, thereby redirecting  as well (fake dialog attack). Alternatively, the 
malware  can  target  a  specific  system  component  or  a  communication  channel 
between two of those components. Those online attacks, and also offline attacks, will 
be discussed in detail below. 

Attacks on P 
The adversary can also mount an attack on the remote web server P by breaking into 
the system in order to steal credentials directly from P's database. Since this work 
focuses on client-side defence against phishing attacks, this kind of attacks is out of 
scope and will not be discussed further. 
An even stronger attack is setting up an own web server (independent of P) and 
letting the user register to it. This way the adversary either receives the original user 
password (possibly  re-used at  P  as well)  or  at  least  a  wallet-generated password 
derived from this original password. With that information, A can mount a dictionary 
attack against the user's password and attempt to guess the password used for P. 
Attacks against the user's passwords are discussed below. 

 Attacks on the channels 
The channels  and  cannot be attacked directly by the adversary. He can 
only  attack  them  indirectly  through  attacks  on  one  of  the  endpoints  of  those 
channels, i.e. by attacking U or S. Those attacks have already been described above. 
In  contrast,  A  can  attack  the  channels   and   directly  since  A can  by 
definition be any machine on the internet apart from S and P. The adversary might 
either  try  to  eavesdrop on those  channels  in  order  to  passively  read transmitted 
credentials, or he could modify the communication. In addition, he could redirect the 
channels so that  is replaced by  and  by  without S noticing 
the redirection. 
Eavesdropping on and modification of an SSL-protected channel can be assumed to 
be  unfeasible  as  long  as  the  SSL  protocol  and  its  implementation  are  secure. 
Unprotected channels could be tapped at any point during the transport, though, and 
thus they are inherently insecure. As a result, if the user transmits credentials over a 
plain HTTP connection, the adversary can eavesdrop on those credentials, regardless 
of whether she uses the wallet or not. But even if the adversary gains the credentials 
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for P in this way, the wallet helps to confine the loss of credentials because each web 
site has its own unique password generated by the wallet previously. A cannot gain 
access to other servers than P with the stolen credential even if the user initially used 
the same passwords for different web sites. 
A  redirection  of  the channels  can be  seen as a  form of  classical  phishing attack 
because even if the user does not notice that the channel has been redirected (e.g. 
she enters the URL of P into her browser), she still expects to see the familiar web 
pages of the original web server P, i.e. the adversary needs to fake the web site just 
like in a normal classical attack. Therefore, redirection attacks are discussed as part 
of the classical phishing attacks below. 

2.5.2 Assumptions 
Besides  the  assumptions  introduced  above,  the  security  analysis  suggests  two 
additional  assumptions.  On the  one  hand,  we assume that  the user  is  trained to 
recognize the system's trusted path indicator (e.g. a red or green bar at the top of the 
screen)  and  acts  upon  it  accordingly,  i.e.  she  does  not  enter  any  confidential 
information if the trusted path indicator is red. On the other hand, we assume that 
the user always changes the password for a web site after she has set it up in the 
wallet, i.e. she does not know the password thereafter. 

2.5.3 Protection against Classical Phishing Attacks 
Classical phishing attacks are based on the user U attempting to access a web site on 
web server P but instead arriving at a rogue web server A created by an adversary. U 
may arrive in one of two ways at A. Either she enters the address of the fake site 
directly into her browser or she enters the address of P and is redirected to the 
phishing server A by a redirection attack. In both cases she is presented a faked web 
site and might be persuaded to enter her credentials for the original site that has 
been  faked.  The  difference  between  those  two  attacks  is  in  the  way  the  wallet 
handles them. In order to  meet Requirement 3 (Information Flow)  with  regard to 
classical  phishing attacks,  it  is  sufficient  to  show that  the adversary cannot  gain 
access to the user's credentials if she uses the wallet. 

Fake Site Attack 
If  the adversary uses a faked SSL certificate,  the attack is  detected because the 
wallet  verifies all  received SSL certificates and rejects sites with invalid or faked 
certificates.  If  he uses a  legitimate SSL certificate   issued to the fake host 
address or uses no SSL at all, the web site is handed over to the browser for display 
but the password fields of the login form are disabled. According to Assumption 3 
(Ordinary User), we assume that U does not detect the phishing attempt by verifying 
the browser's security indicators. Thus, the user clicks on the submit button to log in. 
Now the attack is also detected because the wallet has stored credentials   for 
the host address of P and not   for the host address of A. Therefore, the wallet 
now runs the setup for A instead of using the credentials of P to log in. 
Even if U decides to run the setup for A using the credentials , the adversary will 
still not gain the credentials  because the wallet updates the entered credentials 
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to  .  The  hash  function  used  to  generate   is  a  one-way 
function  and  thus,  a  computationally  bounded  adversary  is  not  able  to  deduce 

. 

 Unlocked Password Forms 
The wallet  locks the password fields of  each web form by  inserting the  disabled 
attribute into the corresponding  <input> tags. Thus, the user can no longer enter 
values and cannot  submit the form with valid content.  Yet,  it  is  also easy for  an 
adversary to counter this. Each element of an HTML form is exposed through the 
Document Object Model and has a disabled property. This property can be accessed 
with JavaScript  and edited while  the page is  displayed.  Thus,  an attacker who is 
aware of the wallet and wants to counter the wallet's locking mechanism after it has 
locked the password fields for his phishing site, could include a script that unlocks all 
login form elements either in the  OnLoad event or after some arbitrary timespan. 
Since there is an almost endless number of possibilities for the attacker to execute 
this  JavaScript  code,  it  cannot  be  countered  effectively.  Basically  every 
transformation the wallet applies to the login form could be reversed with JavaScript 
code. Even if the wallet removed the form elements completely, they could be added 
dynamically  at  runtime  again,  provided  that  the  attacker  knows  the  wallet's 
transformation algorithm. Besides using JavaScript, the adversary could also employ 
malware installed in the browser compartment to unlock locked password forms, i.e. 
this attack is not confined to a JavaScript attack. An adversary targeting users with 
security knowledge far below the average could even decide to include simple text 
fields instead of password fields into his login forms so that the wallet would not lock 
them in the first place. 
As a result of all those considerations, the locking of password forms is not a security 
enhancement since there is no way to guarantee that a form will stay locked. The 
mechanism merely serves as a reminder for the user to use the Secure Wallet and not 
the web form itself to login. If the adversary manages to unlock the password form, 
the user might be tempted to enter her credentials into it, especially if she is not yet 
accustomed to using the wallet. Because she does not know  , she enters  
into the password field and sends it to A. Thus, the adversary does not receive the 
current credentials for P but outdated ones. If U uses  for other web sites not 
protected by the wallet as well,  A might gain access to those sites,  but the main 
objective being the preservation  of  the confidentiality  of  the user's  credentials  is 
fulfilled with respect to P and other sites protected by the wallet. 

Redirection Attack 
A redirection attack in the wallet model (see Figure 9) is an attack that attempts to 
replace the channels  and  with  and , respectively. Since the 
wallet uses the host name of a web site to find the corresponding stored credentials, 
only redirection attacks that preserve the original host name of P are relevant to this 
discussion. A common example for this kind of attack is the DNS spoofing attack [19]. 
Other forms of redirection attacks targeting lower layers of the TCP stack, e.g. ARP 
spoofing [68], have the same result as far as the wallet is concerned, i.e. the traffic is 
routed to the rogue server A while the wallet receives P as the host name. Note that 
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although this attack is discussed as part of the classical phishing attacks, it can also 
appear as a form of malware phishing attack if the redirection occurs inside of the 
user's machine. The implications are the same, though. 
If the adversary uses a legitimate SSL certificate  issued to the fake host name 

A, the attack will be detected immediately because the host name in the certificate 
does not match the original host name of P. All  other cases where the adversary 
presents a certificate with the original hostname are countered by comparing the 
digital fingerprints of the stored certificate and the certificate received during the 
current SSL handshake. 
There  are  several  possible  cases  where  the  fingerprints  do  not  match.  If  the 
adversary manages to obtain a valid certificate for the host address of P in spite of 
Assumption 4  (Trustworthy  PKI),  the  attack  is  detected  as  long  as  the  received 
certificate  contains  another  public  key  than  the  stored  certificate.  Should  the 
adversary be able to steal the private key of the stored certificate, the attack will not 
be detected. It can only be detected if the key has been revoked because the wallet 
should check certificate revocation lists (CRLs) every time the fingerprints do not 
match. The case where the adversary can steal an active, unrevoked key is excluded 
by Assumption 5 (Private key protection), though. 
As already pointed out above, the client is unable to detect a redirection attack if the 
connection is unprotected. Thus, the wallet will disclose the user's credentials if the 
adversary redirects a plain HTTP connection. Protecting against this kind of attacks 
is out of scope of this work. A service provider can provide protection by using the 
SSL protocol.

2.5.4 Protection against Online Malware Phishing Attacks 
A  malware  phishing  attack  attempts  to  steal  credentials  on  the  user's  system, 
preferably without the user noticing the theft. Installation of malware can occur in 
two  different  ways.  Either  it  may  be  installed  online,  i.e.  while  the  machine  is 
running, or  offline, i.e. an adversary boots another operating system (e.g. from CD-
ROM) and installs the malware. This section deals with the online attacks. Offline 
attacks are discussed in Section 2.7.5. 

Confinement to the Untrusted Compartment 
Most of the user's work takes place in the untrusted compartment. This untrusted 
compartment represents the legacy system, i.e. a system without the security kernel 
and the wallet. Thus, malware can be installed in this compartment in the same way 
as on a legacy system. To meet Requirement 1 (System Integrity), it must be shown 
that online malware attacks can only affect the untrusted compartment and cannot 
be installed outside of this compartment. 
The  security  kernel  and  all  other  compartments  are  not  designed  to  offer  any 
mechanisms to install software at runtime. They are installed once and need not to be 
changed  afterwards.  Ideally,  the  security  kernel  has  been  formally  verified  and 
contains no security vulnerabilities. Since the kernel is based on a microkernel, it has 
a very small size, which makes it easier to formally verify any security properties. 
Moreover, it was developed with special care and focused on the security tasks it 
provides. Thus,  it  will  statistically  have less security vulnerabilities and a smaller 
attack surface than legacy systems and hence, it is reasonable to assume that no 
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malware can successfully target the kernel itself.
Assuming that the security kernel provides isolation for the different compartments 
(i.e.  it  meets  Requirement 2  (Isolation)),  malware  installed  in  one  compartment 
cannot  affect  another  compartment  in  any  way.  If  the  untrusted  compartment 
contains  any malware,  it  has  no  effect  on the  wallet  compartment  or  the virtual 
network  compartment.  Although  the  current  implementations  for  those  trusted 
compartments use a full Linux system including the kernel and numerous libraries 
and  are  as  such  vulnerable  to  various  attacks,  they  are  just  prototype 
implementations.  A  release  implementation  could  realize  those  compartments  as 
native  L4-services.  This  would  reduce  their  size  and  lower  their  attack  surface 
significantly and we can assume that they cannot be direct malware targets just as 
the security kernel itself.As a consequence, we can assume that the proposed system 
architecture  only  allows  installation  of  malicious  software  in  the  untrusted 
compartment and thus meets Requirement 1 (System Integrity). The concrete attacks 
against the untrusted compartment are discussed in the next section. 

 Attacks against the Untrusted Compartment 
Numerous malware attacks against the untrusted compartment are imaginable, since 
this  compartment  represents  a  legacy  system.  Therefore,  all  attacks  targeting  a 
legacy system could be mounted against the untrusted compartment as well. In fact, 
we can assume that the whole compartment can be modified by an adversary in any 
way.  Figure  10 shows  that  the  untrusted  compartment  has  two  primary 
communication channels,   being user input  and output  and   
being the connection to the security kernel. To prove that the adversary can still not 
gain access to the user's credentials, it is sufficient to show that the credentials are 
(i) never sent over   and (ii) never entered directly into the untrusted 
compartment over . 
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Figure 10: The Internal Communication Channels

The wallet discloses the user's credentials only as part of a HTTP POST request, i.e. 
the variables contained in the request body are replaced with stored values. This 
POST request, which is completely processed in the trusted wallet compartment, is 
never sent back to the untrusted compartment but  directly to the intended remote 
server using  or to another trusted compartment dedicated to network access 
using . This also holds true if the POST request never reaches the wallet, 
e.g. if  the adversary prevents the requests from being sent to it.  In this case the 
request is never modified by the wallet and can receive no credentials. As a result, 
credentials are never sent to the untrusted compartment or even forwarded through 
it. No modification of the untrusted compartment can affect the wallet or the network 
connection in  such a way that  the adversary receives the user's  credentials  over 

. 

Nevertheless, the adversary can attempt to receive credentials from the user directly. 
Since we assume that he can modify the untrusted compartment in any way, he can 
also  fake  any  user  interfaces  and  persuade  the  user  to  enter  credentials  using 

. But even if the user is tricked by those faked user interfaces, the adversary 
still receives no current credentials because the user does not know them anymore. 
When the user set up the web site in the wallet, she also lets the wallet change her 
password afterwards, i.e. the only credentials she actually knows of are the outdated 
ones she used before. Thus, current credentials can never be sent to the untrusted 
compartment using .
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In the following paragraphs some attacks that have been effective on legacy systems 
in the past are discussed. These are (i) the installation of a key logger and (ii) the 
display of fake dialogs to trick the user to enter her credentials. A third category of 
potential attacks covers attacks on the browser to (iii) unlock forms previously locked 
by the wallet or to (iv) remove the wallet's proxy assignment completely. 

Trusted Path 
Both the installation of a key logger and the display of a fake dialog are uncritical if 
Requirement 4 (Trusted Path) is met and Assumption 6 (Single Credential Storage 
Mechanism) holds true. Thus, for both cases it is sufficient to show that the trusted 
path requirement is satisfied. 
Assuming that the user enters credentials only into the wallet she has to somehow 
access it. Since it resides in a separate compartment, in the current implementation 
the user has to press the F12 key to switch compartments. The F12 key is intercepted 
by  the  SecureGUI  and  cannot  be  received  by  any  compartment.  Therefore,  no 
malware  in  the  untrusted  compartment  can  prevent  the  user  from  switching 
compartments. After the user has switched to the trusted wallet compartment, the 
untrusted compartment  is  made inactive  and the wallet  compartment  is  now the 
active one. The SecureGUI asserts that all user input is received only by the active 
compartment,  i.e.  the malware  in  the  untrusted compartment  never  receives  any 
keyboard events as long as the untrusted compartment in inactive. As a result,  a 
keylogger never gains access to any credentials entered into the wallet. 
The display of faked dialogs, which is an attack commonly employed by trojan horse 
programs, can be constrained to dialogs resembling the wallet interface because of 
Assumption 6  (Single  Credential  Storage  Mechanism).  When  malware  displays  a 
dialog imitating the wallet in the untrusted compartment, the trusted path indicator 
still  shows a red bar at the top of  the screen and clearly indicates that entering 
credentials is  not secure. A trained user will  notice this and be suspicious of the 
unexpected dialog because she knows that she normally has to press the F12 key to 
invoke the wallet and that the wallet does not share its screen with her untrusted 
applications.  Moreover,  the  Linux  running  in  the  untrusted  compartment  has  no 
access to the trusted path indicator and therefore, no malware can paint over the 
indicator  or  even  read  its  state  because  it  resides  beyond  the  accessible  screen 
region. 

Configuration Modification 
By using the Secure Wallet, two new potential threats specific to the implementation 
arise.  Malware  can try  to  re-enable  locked password fields  after  they  have  been 
locked by the wallet and it can attempt to disable the wallet at all. The first attack 
was already discussed in the course of the fake site attack. Independently of  the 
method with which the adversary unlocks the password fields, i.e. by using JavaScript 
or by installing malware on the user's system, he cannot gain current credentials for 
the site he is phishing passwords for. 
The  second  attack  attempts  to  prevent  the  wallet  from  protecting  the  user's 
credentials by removing the browser's proxy assignment. As a result, the wallet no 
longer receives the browser's HTTP requests and can neither lock password fields 
nor  perform automatic  login  operations.  The  user  will  eventually  notice  that  the 
wallet is inactive. Assuming that she does not know how to repair this issue, she will 
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not  be able to  log into sites for  which the password change has been completed 
because she does not know the passwords. The adversary does not learn her current 
credentials but at most her outdated ones if she tries to log in with those credentials. 
An advanced implementation might even redirect traffic to the wallet compartment 
independent of the actual source. This would render a manual proxy assignment in 
the browser unnecessary and the adversary could not disable the wallet in this way. 
However, for this to work, the wallet compartment must be able to determine for all 
network traffic if it should be allowed or denied, in order to prevent the adversary 
from  circumventing  the  wallet.  Future  research  is  needed  to  decide  if  such  an 
approach  can  be  used  to  support  arbitrary  web-based  logins  without  giving  the 
adversary the possibility to disable the wallet, e.g., by tunneling web traffic through 
other protocols.

2.5.5 Protection against Offline Attacks 
Offline attacks  denote attacks  where the user's  system S is  not  running and the 
adversary has physical access to it. For offline attacks, we can assume that booting 
the  machine  himself  and  trying  to  impersonate  the  user  is  ineffective  for  the 
adversary. However, he can still try to attack the hardware or modify the system in 
order to break its security. 

General Attacks 
If the adversary has physical access to the system, he can directly attack a hardware 
component.  He  might  either  replace  or  modify  a  component  or  just  take  the 
credential store (i.e., the hard drive) with him and try to read it out on a less secure 
system. 
Replacement  or  modification  of  a  security-relevant  component  will  be  detected 
during the next boot process since the TPM will yield different hash values in its PCR 
registers  and  thus  not  be  able  to  decrypt  the  credentials  sealed to  the  previous 
hardware configuration. 
Due to the same reason, reading the credential store directly fails, e.g. by removing 
the hard disk and mounting it in another system. The credentials are sealed to the 
hardware and software configuration present at the time of storing. Thus, without 
restoring the initial configuration which in turn also restores the system's security 
properties, the credentials cannot be unsealed. 
The key used to encrypt the credentials is stored in the TPM permanently. Thus, a 
conceivable attack is to attack the TPM itself in order to read out the encryption key. 
This attack is out of scope of this work, though. The TPM has to provide built-in 
protection mechanisms against this kind of attacks. 

Offline Malware Attacks 
Besides  attacking the  hardware,  the  adversary  might  also  attempt  to  modify  the 
software configuration of the system. Due to the system's protection mechanisms this 
is only possible in very limited ways while the system is booted. Thus, it might be 
more feasible to modify critical components (e.g.  the security kernel  or  a trusted 
compartment)  while  it  is  offline.  A  simple  way  to  do  this  would  be  booting  the 
machine  from  an  alternative  medium,  e.g.  from  CD-ROM,  and  accessing  and 
modifying the hard drive afterwards. 
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Nevertheless this  attack is also detected or at  least  ineffective depending on the 
modifications applied. If the adversary modifies components inside of the untrusted 
compartment he gains nothing as described above. If he modifies components that 
are part of the trusted computing base, e.g. the security kernel, this attack will be 
detected as described in the previous section. The TPM will compute different hash 
values while booting and not be able to unseal the user's credentials since they were 
encrypted with a different system configuration. Therefore, offline attacks are also 
insufficient to gain access to the user's credentials. 

2.5.6 Attacks on the Passwords 

Common Password Attack 
Instead of attacking the user or her system directly, the adversary may also attempt 
to  guess  her  password.  Most  users  choose  weak  passwords  or  re-use  a  single 
password for several or even all web sites. The adversary can capitalize on that by 
phishing the password for a low-security site (e.g. a site without SSL protection) and 
testing this password for the user's other accounts on high-security sites. This is also 
known as a Common Password Attack. 
Without the wallet, this attack has a high chance to succeed. By using the wallet, 
however, the user can no longer re-use a single password for multiple sites because 
the wallet  changes the user's password and incorporates the domain name and a 
random value into it. Thus, even if the user still uses the same password for several 
sites,  the  wallet  will  generate  a  distinct  password  for  each  site  and  provide  an 
effective countermeasure against the common password attack. 

Dictionary attack without information 
Still,  the  adversary  can  attempt  to  mount  a  dictionary  attack  against  a  phished 
password because  each wallet-generated password is  a  hash  of  the  original  user 
password:

(2.1)

In order to perform the dictionary attack, the adversary has to guess  as well as 
 while the domain name is known to him.  is an x bit salt value and it will 

likely make guessing the password infeasible if x is large enough. The next paragraph 
discusses the recommended value for x. 

Dictionary attack with an old password 
There  are  some  scenarios  in  which  the  adversary  may  get  hold  of  an  old  user 
password  .  For  example,  the adversary might  have managed to disable  the 
wallet by removing the proxy assignment in the browser as discussed above. When 
the (unskilled) user now attempts to log into the adversary's phishing site, she might 
be tempted to enter her old password. 
If the adversary is in possession of an old user password , the dictionary attack 
becomes more  feasible  because  the  only  unknown value  in  equation (2.1)  is  now 

. Since it is a random value, the adversary has to mount a brute force attack on 
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it. To prevent him from finding the correct salt value, it must be large enough to 
make a brute force search infeasible. 
A  modern dual-core CPU is  able  to  compute  several  million  SHA-256 hashes  per 
second [44]. Assuming an average of   hashes per second, which corresponds to 
about  hashes per day and CPU, a brute force search for a salt value with 64 bits 
would take about   years on a single CPU. Even with clustered processors this 
should be sufficient to prevent dictionary attacks using a known original password. 
The time required for a dictionary attack can also be further increased by slowing the 
hash function, a technique described in [35]. 

2.5.7 Discussion 

Assumptions 
Above, two additional assumptions were made for the security analysis. In practice, it 
is not clear whether those assumptions actually hold true or whether the user acts 
against them. Still it can be argued that the assumptions are weak compared to those 
assumptions usually applied when not using the wallet. 
The first assumption, being that the user recognizes the simple trusted path indicator 
and acts upon it accordingly, is quite realistic and much weaker than the assumption 
that  the  user  is  able  to  decide  whether  input  into  an  application  is  secure,  e.g. 
whether  a  dialog displayed to  her  belongs  to  malicious  software.  Of  course,  this 
assumption has to be confirmed by a representative user study. 
The second assumption is probably less realistic in practice. Users might be tempted 
to keep possession of their passwords to be able to log into web sites from other 
machines  without  using the  wallet.  Yet,  this  decision  is  prone to  several  attacks 
described in the course of the security analysis. For example, the user might ignore 
the  trusted  path  indicator  and  enter  her  credentials  into  a  fake  dialog  or  the 
adversary removes the wallet proxy assignment and unlocks all browser forms so that 
the user is tempted to log in using the traditional way. 
All  of  those cases lead to disclosure of  the user's  credentials if  the user has not 
changed  the  passwords  before.  This  shows  the  importance  of  a  thorough  user 
training. It is important for users to realize that not letting the wallet change their 
passwords leaves room for potential phishing attacks. 

Metatag Approach 
If the assumption that users let the wallet change their passwords turns out to be too 
strong in practice, additional steps must be taken to automate the password changing 
process so that the user cannot avoid it. Providing metatags is a possible solution for 
this problem. If the wallet has enough information about a web site to trigger the 
password changing process itself, it can be integrated into the setup process and the 
user has no choice but to let the wallet change the passwords. 
While this is the optimal solution from a security standpoint, this approach has the 
significant drawback to require specialized metatags for each supported web site. 
Consequently, if the wallet has no metatags for a given web site, it cannot store the 
user's passwords for it and offers no protection at all. 
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Password Knowledge 
This work generally assumes that the user does not know the passwords for her web 
sites after the wallet has changed them. Although the wallet does not initially display 
the changed value,  the  user  could  still  use the wallet's  GUI  to  find out  the  new 
password.  Thus,  certain  classical  phishing  attacks  might  still  be  feasible  at  first 
thought. 
Yet,  it  can  be  argued  that  the  passwords  generated  by  the  wallet  are  hard  to 
remember. Most users re-use their (often simple) passwords across many different 
sites  (the  author  cannot  even  absolve  himself  from  that).  This  shows  that 
remembering many different passwords is hard for most users. Taking into account 
that the wallet makes full use of the available password length and generates pseudo-
random passwords (e.g. Xc7f3h2IK12u instead of mypassword23), it can be assumed 
that  most  users  are  not  able  to  permanently  remember  the  wallet-generated 
passwords even if they explicitly review them. However, as long as the user can still 
view the password, it is impossible to prevent the disclosure completely (e.g., apart 
from memorizing passwords, the user could also write them down).

2.5.8 Other Attacks 

Transaction Generators 
Due to the automation of login operations, the user loses a certain degree of control 
over  the  browser's  actions.  A  modified  browser,  aware  of  the  wallet,  could  take 
advantage of the fact that no user interaction is necessary to log into a specific web 
site and carry out an arbitrary amount of transactions impersonating the user without 
her  noticing  it.  Such  attacks  called  Transaction  Generators have  already  been 
described by Jackson et al. [40]. 
This kind of attacks is not specific to the Secure Wallet but rather a generic problem 
with transactions that can be committed without user interaction. A user without the 
wallet is susceptible to this attack after having logged into a web site in the same 
way  as  a  wallet  user.  Therefore,  it  is  out  of  scope  of  this  work  to  present  a 
countermeasure.  Transaction  confirmation  (as  described  in  [40])  could  be 
implemented in addition in the wallet compartment. 

2.6 Architectural Overview 
In this section, we sketch the architecture on a PC, describe an architecture for a 
mobile platform, and propose a “hybrid” architecture for a demo-prototype, where 
functionalities are split between a PC and a mobile (X-GOLDTM 208-based) platform.
Section 2.7 will then discuss the X-GOLDTM208-based demonstrator prototype in more 
detail. General information on this mobile platform can be obtained in [74].
For  the  PC-based  prototype,  the  Security  Services  developed  within  OpenTC 
Workpackage 5 could be re-used.

2.6.1 Architecture on a PC

 shows the architecture, as it is currently implemented on PC hardware.
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We use TrustedGRUB as  bootloader. TrustedGRUB measures the microkernel, L4env 
and the security services (Compartment Manager etc.), and extends the PCRs.
The Compartment Manager measures and starts the Secure Wallet  and other L4-
Linux compartments. These measurements are not written into PCRs, but stored in 
memory only. In this manner, the Compartment Manager extends the authenticated 
boot.  To  verify  the  integrity  of  a  compartment,  a  verifier  has  to  rely  on  the 
conventional TCG chain of trust to verify the basic system (up to the Compartment 
Manager), and additionally, the measurements of the compartment (as provided by 
the Compartment Manager) have to be checked.

2.6.2  Storage Manager
This section describes the implementation of the Storage Manager SM that enables 
other  compartments  to  persistently  bind  their  local  states  to  their  actual 
configuration while preserving integrity, confidentiality and freshness. A prototype of 
the Storage Manager has been implemented within OpenTC Workpackage 5, which is 
re-used here. The freshness requirement is not important for the secure wallet use 
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Figure 11: System architecture for PC hardware.
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case because replay attacks are not an issue. However, in other use cases, freshness 
may be required. Thus, it should be considered in the design of the Storage Manager 
as a generic security service. We first give an short overview and then describe the 
realisation of secure storage that will be extended by an additional freshness layer to 
provide trusted storage. At the end of this section, we briefly describe the protocols 
for the initialisation of SM, as well as for storing to and loading from trusted storage 
(using SM).

Overview: The Storage Manager is invoked by a compartment to store a data object 
persistently  preserving  confidentiality  and  integrity  –  optionally  with  additional 
restrictions  rest (e.g.,  freshness,  certain  user  id).  SM invokes  the  Compartment 
Manager to retrieve the actual configuration of the respective compartment and to 
bind  the  data  object  to  that  compartment  configuration  cmp_conf.  SM 
creates/updates a metadata entry for the corresponding data object with the data 
object  identifier  dID,  its  freshness  detection  information  f,  i.e.,  the  actual 
cryptographic hash value, and all relevant access restrictions rest3 with its index iSM. 
SM extends the data object with integrity verification information, synchronises its 
monotonic counter cSM, encrypts the data object and the updated index using the key 
kSM and writes it on untrusted persistent storage. Since iSM is the base of security for 
SM,  iSM is sealed to  SM’s configuration via the sealed key kSM. Thus only the same, 
trusted Storage Manager configuration is able to unseal and use kSM again. On a load 
request,  SM again  uses  the  Compartment  Manager  to  compare  the  invoking 
compartment  configuration  with  the  one  of  the compartment  that  has  stored the 
respective data object before. On a successful verification,  SM reads and decrypts 
the data object from the untrusted persistent storage and verifies its integrity. Before 
the  data  object  is  committed  to  the  requesting  compartment,  SM also  verifies 
possibly existing additional restrictions such as freshness or a certain user id.

Trusted Storage: SM offers trusted storage to bind the data of a compartment to 
the compartment while preserving integrity and confidentiality. Therefore, SM uses a 
cryptographic  hash  function4 to  calculate  the  data  object’s  hash  value  and  a 
symmetric  cipher5 with  its  internal  cryptographic  secret  key  kSM  bound  to  its 
configuration to encrypt data objects together with their actual hash values. Then SM 
writes  the  encrypted  blob  to  untrusted  persistent  storage  providing  at  least 
availability.  The  key  kSM  in  turn  is  sealed  to  the  configuration  of  SM, using 
functionality  of  the  TPM  so  that  only  the  same,  trusted  Storage  Manager 
configuration is able to unseal and use the key again. During a load operation, the 
data object is decrypted and verified for integrity using the appended hash value.

3 Further access restrictions can be a certain user id, group id or date of expiry.
4 Our implementation currently uses SHA-1.
5 Our implementation currently uses AES.
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Figure  12 depicts  our  trusted  storage  implementation.  Our  trusted  storage 
compartment  basically  offers  two  trusted  channels  load[] and  store[] while  the 
storage compartment itself uses two  untrusted channels namely  read[] and  write[] 
from an untrusted storage compartment to persistently write, respectively read, data 
(however, the untrusted storage should provide availability).6

If SM receives a data object d via store[d, rest], SM internally creates or updates the 
object’s metadata7 and calculates its hash value  i to verify integrity. Then the  data 
together with i is encrypted with the internal cryptographic secret key kSM using the 
function  e :=  encrypt  [d  ||  i] (to provide confidentiality). The encrypted data  e will 
afterwards be written on untrusted storage using  dID :=  write[e] that returns the 
object identifier  dID.  Conversely,  if  e is  read from the untrusted storage via  e := 
read[dID] it will be decrypted to data and i via decrypt[e] using kSM. Before returning 
d to  load[],  SM verifies  the integrity  of  d and further  access restrictions  (e.g.,  a 
certain  user  id)  based  on  the  corresponding  metadata  in  SM’s  index  using  the 
function verify[d, i] .

In order to provide fresh trusted storage, we enhance SM by an additional layer for 
managing freshness of data objects. This extension consists of a (currently abstract) 
function  f :=  memorize[d] that updates the internal data structure  FRESH with the 
freshness value f. Afterwards, data will be stored persistently ensuring confidentiality 
and  integrity  using  secure  storage.  On  load[] from  secure  storage,  the  function 

6 For the realisation of availability we suggest solutions based on high redundancy, i.e., by the 
utilisation of multiple distributed storage locations (e.g., USB sticks or online sites) assisted 
by an appropriate RAID system. In case of failure of a particular storage device, it is still 
possible to retrieve data from alternative storage mirrors.
7 More details on storage metadata are given at the end of this section.
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verify[d,  f] additionally verifies that the received data object  d is the last one being 
stored.
To provide such freshness detection,  SM uses an additional metadata field to store 
the cryptographic hash value  hash(d) that defines the last stored version of  d. On 
load[], SM calculates hash(d) again and checks if it matches the hash value of the last 
store. In order to ensure freshness of these metadata, the index of SM itself has to be 
stored fresh. We therefore analysed to what extent TPMs of version 1.1b and 1.2 can 
be used to realise a fresh index for SM.

● DI-Register:  TPMs version 1.1b provide a Data Integrity Register (DIR) that 
can persistently store a 160 bit value. Unfortunately, access to this register is 
only authorised by the TPM owner secret implying that the TPM owner can 
always  perform  replay  attacks.  The  only  solution  would  be  to  distribute 
platforms with an activated TPM and an owner authorisation secret  that is 
unknown to the user. This solution does not conform to the TCG specification 
that demands that TCG-enabled platforms have to be shipped with no owner 
installed.

● SRK Regeneration:  An  alternative  way  to  prevent  replay  attacks  based  on 
TPMs version 1.1b would be to create a new Storage Root Key (SRK) before 
the  system  is  shut  down.  Regeneration  of  the  SRK  would  prevent  that 
previously created TPM encryption keys can be used any more. Unfortunately, 
an  SRK  can  only  be  renewed  by  the  TakeOwnership function  which  itself 
requires a previously  OwnerClear that itself disables the TPM. Therefore, an 
online regeneration of the SRK seems to be impossible.

● NV-RAM: TPMs version 1.2 provide a limited amount of non-volatile (NV-) RAM 
to which access is  restricted to authorised entities.  So called NV-Attributes 
define which entities are authorised to write to and/or read from the NV-RAM. 
Thus, data integrity can be preserved by storing a hash value of the data into 
the  NV-RAM  and  ensuring  that  only  the  Storage  Manager  can  access  the 
authorisation secret.

● Secure Counter: A TPM version 1.2 supports at least four monotonic counters. 
Based on this functionality, the freshness of data can be detected by securely 
concatenating it with the actual counter value.

As a result of our previous analysis, we showed that TPMs version 1.1b cannot be 
used  to  provide  fresh  storage  as  required  to  enforce  stateful  licenses  and/or  to 
transfer  licenses,  as  it  is  needed  for  digital  rights  management,  for  example. 
Therefore, we decided to realise trusted storage based on the monotonic counter 
functionality of TPMs version 1.2. For the secure wallet, however, freshness is not 
needed, hence the functionality provided by a TPM of version 1.1b is sufficient.
A  monotonic  hardware  counter  allows  us  to  securely  maintain  versioning  of  an 
arbitrary data component, by keeping a software counter synchronised with one (of 
four guaranteed) hardware counters of the TPM.  SM manages an internal software 
counter that, every time SM updates its index, is incremented synchronously with the 
monotonic  hardware  counter.  If  both  mismatch  at  any  time,  outdated  data  is 
detected, which will be handled according to the actual security policy. However, in 
order to employ a TPM monotonic counter, SM has to be initialised correctly. On the 
initial setup SM uses the TPM to create its internal cryptographic key kSM that then 
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will be sealed to the actual platform configuration.
To enable  freshness detection and thus trusted storage,  SM  creates a monotonic 
counter cSM with  authentication data auth, e.g., a secret password. The initial setup 
finishes with the creation of SM’s internal metadata index iSM and the saving of the 
sealed key blob and the encrypted index on untrusted storage.
After a platform reboot, SM reads the key blob from the untrusted storage and asks 
the TPM to unseal its internal key. The TPM is able to unseal kSM if the platform has 
the same configuration as it was at the sealing process, thus preventing a modified 
SM to access iSM .
Then  SM uses  kSM  to decrypt its metadata index read from the untrusted storage. 
Finally,  SM verifies the freshness of  iSM by comparing the decrypted counter  of iSM 
with the actual counter value of the corresponding TPM counter cSM .
To  bind  a  compartment’s  data  object  persistently  to  its  actual  configuration  the 
following has to be done: After the mapping of compartment identifier to the actual 
compartment configuration using the Compartment Manager  CM,  SM updates  iSM 
with the corresponding metadata as well  as the incremented software counter to 
enable freshness detection for iSM. Afterwards, SM writes both, the data objects and 
the  updated  index,  on  the  untrusted  storage,  encrypted  with  kSM.  Finally,  SM 
synchronises its software counter with the TPM’s monotonic hardware counter and 
returns the data object identifier.
We complete the scenario with loading a compartment’s data object again: After the 
mapping  of  requesting  compartment  identifier  to  the  actual  compartment 
configuration using CM, SM reads the requested data object from untrusted storage 
and decrypts it using kSM. Before returning data to the corresponding compartment, 
SM verifies all access restrictions (e.g., freshness, or a certain user id) given on store 
via rest based on the corresponding metadata in iSM and verifies that the requesting 
compartment has the same configuration as it was on store[].

2.6.3 X-GOLDTM 208-Based Architecture
Ideally,  the  architecture  on  the  X-GOLDTM  208  platform  [74]  should  look  almost 
identical to the PC-based architecture. However, there are some differences:

1. The L4 microkernel, L4env, and the Security Services must be protected by the 
secure boot feature of X-GOLDTM 208, instead of the authenticated boot used by 
TCG-compliant PCs. Compartments are measured the same way as on the PC 
platform (i.e., it is not necessary to protect them by secure boot).

2. For  the  trusted  storage,  the  mobile  system  must  use  the  cryptographic 
functionality  of  the  X-GOLDTM  208  instead  of  a  hardware  TPM.  As  in  the 
demonstration architecture presented below, this can be achieved by using a 
(modified) TPM “emulator”, which is implemented on top of X-GOLDTM 208 and 
provides a TPM (or MTM) compatible interface.

2.6.4 Hybrid Architecture for Demo-Prototype
Unfortunately,  it  is  not possible to implement the entire system on the mobile X-
GOLDTM  208 platform within the scope of the OpenTC project (for instance, porting 
drivers  to  the  microkernel-based  system  is  a  substantial  effort).  However,  some 
functionalities  can  be  implemented  on  the  mobile  platform  to  demonstrate  the 
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concept.  We propose to adapt the architecture shown in  Figure 11 for  a system, 
where some parts are still running on a PC. The result is shown in Figure 13: the PC 
platform communicates with the mobile platform via a serial interface.

Communication between PC and X-GOLDTM 208 platform
We use a serial line for the communication between the PC and mobile platform. The 
functions needed by the (modified) Storage Manager for sealing will be executed on 
the X-GOLDTM 208 platform. For the communication, with the X-GOLDTM 208 board, a 
proxy is used, hence the Wallet-PC does not have to handle the serial communication 
directly. Instead, TCP sockets are used for the communication between the Wallet-PC 
and proxy (see below).
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Figure 13: Architectural overview for a demo-prototype. 
Only some core functionalities are implemented on the mobile platform, the rest has to be 
provided by the PC.
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2.7 Porting and Test Concepts of the TPM emulator on X-GOLDTM 208
In  this  section  we  will  focus  on  development  and  test  aspects  related  to  the 
implementation of the TPM emulator on the Infineon X-GOLDTM 208 (formerly called 
S-GOLD3TM) platform. The following three components were used as a starting point:

● The L4Linux port on X-GOLDTM  208 done by Technische Universität Dresden 
within the OpenTC project;

● The GNU cross-compile tool chain configured for ARM cores (GCC 4.1.2, bin-
tools 2.17);

● The Linux TPM Emulator developed by Mario Strasser [61], ETH Zürich.

In order to be able to test the target application using existing open-source TPM tools 
the following software packages were deployed:

● The TSS TrouSerS  Software Stack [13,67], developed by IBM;
● The TPM toolset on top of TrouSerS, developed by IBM;
● The TPM Manager [14], an open source GUI to configure TPMs, developed by 

Ruhr-Universität Bochum and Sirrix AG within the EMSCB project.

Furthermore, the L4 build environment from TU Dresden was deployed to generate 
code  images  executable  on  the  X-GOLDTM-208  based  platform.  The  entire 
development environment is depicted in Figure 14.

Figure 14: Development environment for TPM emulator on target
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2.7.1 Porting Concepts
The basic target architecture for the TPM emulator running on the L4 platform is 
depicted in Figure 15.

Figure 15: Basic target architecture for TPM 
emulator on L4/X-GOLDTM 208
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- Loading L4 Applications
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The L4 Microkernel

The Hardware Platform

As can be seen in the diagram, the TPM emulator is configured as a dedicated L4 
application which runs independently of Linux. The benefit of this architecture can be 
seen in the fact that it provides a fair amount of isolation which is important when 
considering various types of software attacks.

Since the TPM emulator was actually developed as a Linux kernel module, see ref.
[61], and given the limited scope of this demonstrator, it would also have been an 
option to deploy a dedicated Linux compartment instead. But the practical drawback 
of that approach is clearly given by the fact that it  requires to include the entire 
Linux kernel into the target application software build. Given the complex and time-
consuming software build procedure and taking into account the time to load a large 
software  image  via  the  Debugger  onto  the  target,  this  procedure  would  have 
significantly slowed down the development and test phase of the TPM emulator.

On  the  contrary,  the  chosen  concept  to  restrict  the  TPM  emulator  to  services 
available in the L4env environment enables to omit L4Linux from the software build 
and thus, keep the target software image footprint low. This benefit has to be paid 
with slightly increased software porting effort.
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Assumptions and development constraints

In this section we will briefly address the development constraints, mainly given by 
the limited scope of the demonstrator:

● Only minimalistic support of TPM commands required for the secure wallet 
demonstrator

It  is  not  required  to  support  the  full  scope  of  TPM  commands  in  order  to 
demonstrate the use of an embedded TPM emulator for a specific secure wallet use 
case. Instead only a subset of commands is required. Within the WP08 work group 
it was suggested that a TPM sealing procedure could be a good example. On the 
other hand, also a sealing procedure requires the TPM to be in a certain state, e.g. 
a  storage root  key  needs  to  be  present  and ownership  credentials  need to  be 
known.  Also  the  platform configuration  registers  need  to  contain  a  reasonable 
value in order to resemble a realistic scenario.

● No support of secure or authenticated boot for the software running on the 
target

We saw virtually no benefit  in implementing a procedure measuring the L4 
software image, since the mechanism as such is already known and deployed 
in  mobile  phones  (OMTP  TR0  [49]).  Also,  it  needs  to  be  taken  into 
consideration, that the target software build basically contains the L4/L4env 
and the TPM emulator application. On the other hand, the PC containing the 
software  wallet  application  runs  on  a  different  architecture  and  includes 
different  software  images.  So  the  measurement  results  on  these  platforms 
would be different which prevents a simple re-use. Furthermore, right after 
booting the target, the TPM emulator with its measuring capabilities does not 
even exist, so it would need to be preceded by other mechanisms. The results 
of these measurements would then need to be passed to the TPM emulator 
once it is started in its L4 domain. 

● No software driver available for on-board storage of non-volatile data

Whereas the memory extension module of the evaluation board features a non- 
volatile  NOR flash device,  it  was not considered realistic  to develop a suitable 
driver  within  the  L4  environment.  Flash  drivers  usually  turn  out  to  be  rather 
complex software components, taking into consideration the various requirements 
which need to be addressed: management of power-failure, wear levelling of erase 
units and so forth. It would also have been possible to provide a NOR flash driver 
in the L4Linux environment, and provide a basic file store/retrieve API towards the 
TPM emulator via L4. This would generally be a recommendable solution, as it 
avoids the problems arising from sharing peripheral ownership between different 
execution  domains  (L4Linux,  TPM  emulator).  But,  in  addition  to  the 
implementation effort,  a drawback of this approach is given by the fact that it 
requires the inclusion of L4Linux into the target software build, which we wanted 
to avoid, see previous section.
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● Only serial interface available for communication with external host

This  is  not  a  major  obstacle,  since  a  TPM  does  not  have  to  deal  with  large 
messages. The evaluation board also features connectors with higher bandwidths 
such as USB or MMC, but we saw little value in developing driver functionality for 
these devices. For that reason we stayed with using the serial interface (115 kbit/s) 
which is already used for the L4 console I/O and the L4 kernel debugger.

● No usage of GNU multi-precision library (GMP)

The standard Linux TPM emulator makes use of the GNU multi-precision library in 
order to perform big integer arithmetic. For two reasons we decided to not use this 
library for the emulator running on L4. First, the library is rather large and has 
further dependencies to other system libraries. In a realistic deployment scenario, 
the TPM emulator software footprint should be kept as small as possible in order 
to reduce weaknesses arising from complexity. Second, the X-GOLDTM 208 already 
features hardware acceleration for big integer exponentiation which enables the 
deployment of a suitable driver with a rather small memory footprint.

2.7.2 Implementation strategy
After analysing the Linux TPM emulator code structure and taking into account the 
restrictions listed in the previous section, the following decisions were taken:

● Replacing the software cryptographic functions of the Linux emulator with a 
driver using the X-GOLDTM 208 cryptographic hardware facilities. 

In  particular  this  concerns  almost  all  functions  contained  in  the  /crypto 
directory of the Linux emulator.
○ Public RSA key exponentiation
○ Private RSA key exponentiation
○ Hashing according to SHA-1
○ Generation of RSA key pairs

Whereas  in  a  realistic  scenario  the  driver  would  be  implemented in  an  event- 
driven  state,  e.g.  triggered  by  interrupts  signalling  the  completion  of  certain 
hardware procedures, it was decided to go for a simpler solution, where the driver 
basically polls status registers. The benefit of this approach is that it has no impact 
on the L4 microkernel, since no interrupt routines need to be registered. The only 
required step for the L4 task running the TPM emulator is to map the associated 
peripheral  address  range  into  its  own  memory  space  and  request  it  to  be 
configured as non-cacheable.
In  a  later  step the  microkernel  and  the  driver  may be  updated to  support  an 
interrupt-driven behavior.

● Design the TPM emulator as a dedicated L4 task communicating via a serial 
connection with the external PC running the secure wallet demonstrator

In Figure 16 a component diagram of the Linux TPM emulator is presented. In the 
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Linux user space a possible use case scenario based on the IBM TrouSerS TPM 
software stack is included.

Figure 16: Linux TPM emulator architecture

In  the  Linux  world  the  TPM  emulator  is  designed  as  a  kernel  module  which 
basically behaves as a daemon being triggered by TPM commands received via the 
/dev/tpm interface.

Whereas the Linux kernel provides a substantially richer set of services compared 
to the L4/L4env scenario, fortunately the TPM emulator core itself has only very 
few platform dependencies. For this reason the layer containing the Linux kernel 
dependent parts could be easily stripped off, so that the emulator in L4 becomes a 
simple task which is launched immediately after starting the target. Afterwards the 
emulator behaves like a server which waits for commands from the remote host.

● Deploy  dedicated serial  interface for  exchanging TPM commands and TPM 
emulator control data between target and host

The  L4  already  uses  one  Universal  Serial  Interface  (USIF)  peripheral  for 
general  console  I/O  and  kernel  debugging  purposes.  In  order  to  keep  this 
functionality independent from the TPM command/response exchange, it was 
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decided to use a second dedicated serial peripheral exclusively for the L4 task 
running  the  TPM  emulator.  As  the  X-GOLDTM  208  features  multiple  USIF 
peripherals and the evaluation board hosts a corresponding number of serial 
connectors, this was a straight-forward approach. Similar to the management 
of  the  crypto  peripheral,  the  driver  functionality  was  included  into  the 
emulator task and the peripheral address range was mapped into its address 
space. An interrupt-driven behavior may be later on added here as well.
For reliability reasons this USIF peripheral is operated using hardware flow 
control, which also needs to be configured at the host site.

● Use host to store and retrieve non-volatile TPM data

For a reasonable deployment the TPM emulator needs to be able to store its non-
volatile  data  generated  during  a  session  of  TPM commands  and  to  retrieve  it 
during initialization. In order to overcome the aforementioned problem of missing 
flash driver software for the L4 environment, we decided to deploy a thin protocol 
to  be  terminated  by  both  TPM  emulator  on  the  target  and  the  host  PC.  This 
protocol should not only carry TPM commands and their responses but as well 
some dedicated commands to be able to store and retrieve TPM data remotely 
from the host.
When it comes to storing confidential TPM data such as private key exponents or 
authentication  credentials  in  a  non-volatile  memory  device,  it  is  apparent  that 
appropriate  protection  facilities  are  required  which  address  all  relevant  threat 
scenarios. The standard Linux TPM emulator does not provide any measures for 
this, it simply streams all data into a single large byte packet and stores it in a 
kernel  file  system.  For  simplicity  reasons  we  also  did  not  apply  any  explicit 
measures. In a real deployment scenario of course a suitable protection scheme is 
required. General recommendations on a secure data storage have been defined in 
OMTP TR1 [50].

● Remove Direct Anonymous Attestation (DAA) from the emulator

After investigating the implementation of the DAA related functions we decided to 
omit the related TPM commands from the target build. The reason was that the 
porting effort for the respective big integer arithmetic operations was considered 
too high and we did not have any use case within the scope of the secure wallet 
demonstrator.

● Use Lauterbach scripting for static configuration of on-chip peripherals

From the TPM emulator perspective, most of the X-GOLDTM  208 peripherals and 
system core functions can be configured statically. For example it is not necessary 
for the prototype to apply power measurement optimizations by changing clock 
settings or voltage levels. For this reason it became apparent to assemble all static 
configurations into a single Lauterbach script, which configures all necessary chip 
functions before the target software is loaded and started.

● Use a proxy at the host site for direct communication with the target
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Instead of  communicating directly  between the  target  and the PC running the 
secure wallet application, a proxy is inserted in between. The tasks of this proxy 
are:

● Initiate the serial communication path towards the target;
● Set up a TCP server socket for exchange of TPM commands with the 

client (i.e. the secure wallet PC);
● Provide the TPM emulator non-volatile data and request its initialisation 

based on this data;
● Request the TPM emulator to transmit its current non-volatile data to 

the proxy and store it locally in a file system;
● Transparently  pass  TPM  commands  received  over  the  TCP  socket 

connection from the client via the serial link to the target and wait for 
the response; 

● Transparently  pass  TPM responses  received  over  the  serial  interface 
from the target, return it via the TCP socket to the client and wait for the 
next command from the client.

Figure 17: Basic prototyping deployment view

The benefit of this approach is that the secure wallet PC does not have to deal with 
setting up the TPM emulator, managing its non-volatile data and taking care of the 
proprietary protocol on the serial interface. From a secure wallet PC perspective, 
the proxy simply behaves as a remote TPM connected via a TCP socket.
As  the L4 target  is  loaded and started via  a  Lauterbach Debugger  application 
running under WindowsTM, and since the L4 console I/O can also be operated by a 
serial terminal running in this domain (e.g. HyperTerminal), it was a natural  step 
to also implement the proxy under this operating system.
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2.7.3 Architecture
In  this  section  we  will  present  some  architectural  details  of  the  TPM  emulator 
running under L4. A basic overview of the software components and how they are 
related to each other is given in Figure 18.

Figure 18: Component view of target software architecture

As can be seen from the diagram, the platform specific services are integrated into a 
single component (ISG3-Service-Driver). This is done in order to keep the changes to 
the original Linux TPM emulator source components as limited as possible. The ‘TPM 
Emulator Main’ component is basically a replacement of the Linux TPM daemon. It 
takes care of all communication towards the proxy, initialises the emulator with non-
volatile  data  and  passes/fetches  TPM  commands/responses  to/from  the  emulator 
core.
Note that the diagram only lists one dependency towards the L4/L4env environment, 
which reflects the memory mapping functionality in order to map two peripherals 
into  the  emulator  task  space.  This  is  apparently  a  simplification,  since  the  TPM 
emulator also makes use of a few other basic L4 services. An example is the console 
output (debug printout) which is routed via L4 kernel services to the second serial 
interface (USIF2) of the baseband processor.
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The following Figure  19 gives an overview of the functional behavior of the TPM 
emulator.

Figure 19: TPM emulator procedures on L4

The corresponding procedures of the TPM proxy running at the host site are depicted 
in Figure 20. In order to set up a complete processing chain, the following steps need 
to be executed:

1. Configure the target and load target software image via Lauterbach Debugger
2. Start of L4 kernel on target
3. Start of TPM emulator on target
4. Start of TPM proxy
5. Start of TPM client (Secure Wallet PC or patched8 TrouSerS daemon)

8 The device driver (TDDL) layer of the TrouSerS daemon needs to be patched in order to 
support communication with a remote TPM connected via a TCP socket.
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Figure 20: TPM Proxy procedures
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2.7.4 Test Architecture
The  entire  deployment  view  for  the  test  architecture  is  given  in  Figure  21.  An 
example which visualises the message exchange between the involved nodes is given 
in figures 22 and 23. In the chosen scenario the TPM owner running a TPM command 
tool requests the public endorsement key (EK) to be read from the TPM.

Figure 21: Deployment view used for target testing 
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Figure 22:Message flow until start of Trousers daemon

Figure 23: Example message exchange for a simple use case to read the public EK
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3 TCG Support for the Secure Wallet Prototype
In  this  chapter  we  examine  the  secure  wallet  with  a  view  to  specifying  what 
functionality is required of a Trusted Mobile Platform (TMP) if it  is to facilitate a 
robust  implementation  of  this  mechanism.  The numbered  list  of  functional 
requirements  accumulated  is  then  utilised  to  determine  the  architectural 
components, based on the TCG mobile reference architecture [63], and the functions, 
as specified in the TCG MTM specification [64], which meet these requirements.

3.1 Requirements for a Robust Implementation of the Secure Wallet
Section 3.1.1 describes the process by which a secure wallet application is installed 
on a device.  This  process  is  analysed in  order  to  extract  any threats  which may 
impact upon the device if the secure wallet application is not robustly implemented. 
Following this, the functionality required of a TMP in order to mitigate these threats 
is described.

Section 3.1.2 examines the fundamental steps in each of the protocols defined within 
the  secure  wallet  suite  described  in  section  2.4.  Following  each  of  the  protocol 
descriptions, the threats which may impact upon the security of the protocols, if the 
secure wallet application is not robustly implemented, are highlighted. As above, the 
functionality required of a TMP in order to mitigate these threats is also described.

Section 3.1.3 summarises the requirements extracted throughout sections 3.1.1 and 
3.1.2.

3.1.1 Secure Wallet Application Installation
Before a secure wallet application can be executed by a mobile device user, it must 
be installed on the mobile device. The following step, described in table  2, must be 
completed when installing a secure wallet application on a mobile device. 

Step Description 
1 The secure wallet application code must be installed on the device. 

Table 2: Secure wallet application installation
Unless  the  device  implementation  of  the  secure  wallet  mechanism  is  robust,  a 
number of threats may impact on the device. 

● Unauthorised modification of the secure wallet application code on installation 
into the device.

● Unauthorised  modification  of  the  secure  wallet  application  code  while  in 
storage on the device.

Using the list of threats outlined above, the following requirement can be derived for 
a TMP, if it is to facilitate the secure installation of a secure wallet application.

1. The TMP SHALL provide a mechanism so that the secure wallet application 
code  can  be  integrity-protected  on  installation  into  and  in  storage  on  the 
device.

3.1.2 Secure Wallet Protocol Suite
The secure wallet mechanism has been defined as a set of six protocols [47]:

● Starting the secure wallet;
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● Setting a user passphrase;
● Authenticating a user;
● Changing a passphrase;
● Storing sensitive data; and
● Accessing secure storage (by an application).

3.1.2.1 Starting the Secure Wallet
There are two possible ways by which a secure wallet application can be started, as 
shown in tables 3 and 4.

Step Description 
1 The user clicks on the secure wallet icon or menu item. 
2 The secure wallet is started.

Table 3: Starting the secure wallet

Step Description 
1 The secure wallet is started automatically at system boot. 

Table 4: Starting the secure wallet (alternative)

Unless the implementation of the secure wallet mechanism is robust, the following 
threat may impact upon the device.

• Unauthorised  modification  of  the  secure  wallet  application  code  while 
executing on the device.

Using the threat outlined above, the following additional requirement can be derived 
for  a  TMP,  if  it  is  to  facilitate  a  robust  implementation  of  the  secure  wallet 
mechanism. 

2. The TMP SHALL provide a mechanism so that the secure wallet application 
code can be integrity-protected while executing on the device.

3.1.2.2 Setting a User Passphrase
Once a secure wallet  application has been installed,  a user can set a passphrase 
which is used by the secure wallet application to authenticate him/her.

Step Description 
1 The user selects “passphrase”.
2 The secure wallet asks the user for a new passphrase.
3 The user enters his new passphrase twice.
4 The secure wallet stores the passphrase if both passphrases are 

identical.
Table 5: Selecting a passphrase

Step Description 
1 The user selects “passphrase”.
2 The secure wallet asks the user for a new passphrase.
3 The user enters his new passphrase twice.
4 The  secure  wallet  does  not  store  the  passphrase  if  both 

passphrases are different.
Table 6: Selecting a passphrase
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Unless the implementation of the secure wallet mechanism is robust, the following 
additional threats may impact upon the device.

● Unauthorised reading/copying of the passphrase on installation/input into the 
device.

● Unauthorised  modification  of  the  passphrase  on  installation/input  into  the 
device.

● Unauthorised  reading/copying  of  the  passphrase  while  in  storage  on  the 
device.

● Unauthorised modification of the passphrase while in storage on the device.

Using the list of threats outlined above, the following additional requirements can be 
derived for a TMP, if it is to facilitate a robust implementation of the secure wallet 
mechanism. 

3. The  TMP  SHALL  provide  a  mechanism  so  that  a  passphrase  can  be 
confidentiality-protected during its installation/input.

4. The TMP SHALL provide a mechanism so that a passphrase can be integrity-
protected during its installation/input.

5. The TMP SHALL provide an access control mechanism so that a passphrase 
can only be accessed by authorised entities.

6. The  TMP  SHALL  provide  a  mechanism  so  that  a  passphrase  can  be 
confidentiality-protected while in storage on the device.

7. The TMP SHALL provide a mechanism so that a passphrase can be integrity-
protected while in storage on the device.

3.1.2.3 Authenticating a User
The passphrase set by the user, as described in section 3.1.2.2, is subsequently used 
by the secure wallet application in order to authenticate a user attempting to gain 
access as described in tables 7 and 8.

Step Description
1 The system asks the user to authenticate him/herself. 
2 The user enters a passphrase.
3 The  secure  wallet  compares  the  passphrase  to  the  stored 

passphrase.
4 The secure wallet grants the user access.

Table 7: Authenticating a user

Step Description
1 The system asks the user to authenticate himself. 
2 The user enters a passphrase.
3 The  secure  wallet  compares  the  passphrase  to  the  stored 

passphrase.
4 The secure wallet denies the user access.

Table 8: Authenticating a user (alternative)
This protocol does not introduce any additional threats.
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3.1.2.4 Changing a Passphrase
A user passphrase may be changed using the processes described in tables 9 and 10.
 

Step Description 
1 The user selects “change passphrase”. 
2 The secure wallet asks for a new passphrase.
3 The user enters his new passphrase twice.
4 The secure wallet updates the passphrase if both passphrases are 

identical.
Table 9: Changing a passphrase

Step Description 
1 The user selects “change passphrase”. 
2 The secure wallet asks for a new passphrase.
3 The user enters his new passphrase twice.
4 If  both  new  passphrases  are  not  identical  the  secure  wallet 

displays an error message.
Table 10: Changing a passphrase (alternative)

This protocol does not introduce any additional threats.

3.1.2.5 Storing Sensitive Data
Tables  11 and  12 describe the process by which a user can store data (e.g. user 
credentials) using the secure wallet mechanism.

Step Description 
1 The user selects “enter secret data”.
2 The user enters the data.
3 The user presses “OK” to confirm data storage.
4 The secure wallet presents a list of applications.
5 The user may select an application which may access the sensitive 

data, e.g. a particular browser.
6 The sensitive data is securely stored for the chosen application.

Table 11: Storing sensitive data

Step Description 
1 The user selects “enter secret data”.
2 The user enters the data.
3 The user presses “cancel” to abort  data storage and nothing is 

stored.
Table 12: Storing sensitive data (alternative)

Unless the implementation of the secure wallet mechanism is robust, the following 
additional threats may impact upon the device.

● Unauthorised reading/copying of sensitive data on installation into the device.
● Unauthorised modification of sensitive data on installation into the device.
● Unauthorised reading/copying of sensitive data while in storage on the device.
● Unauthorised modification of sensitive data while in storage on the device.

Using the list of threats outlined above, the following additional requirements can be 
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derived for a trusted mobile platform, if it is to facilitate a robust implementation of 
the secure wallet mechanism. 

8. The  TMP  SHALL  provide  a  mechanism  so  that  sensitive  data  can  be 
confidentiality-protected during its installation.

9. The TMP SHALL provide a mechanism so that sensitive data can be integrity-
protected during its installation.

10.The TMP SHALL provide an access control mechanism so that sensitive data 
can only be accessed by authorised entities.

11.The  TMP  SHALL  provide  a  mechanism  so  that  sensitive  data  can  be 
confidentiality-protected while in storage on the device.

12.The TMP SHALL provide a mechanism so that sensitive data can be integrity-
protected while in storage on the device.

3.1.2.6 Accessing Secure Storage
Tables  13 and  14 describe  how data  may  be  accessed  by  an  application.  In  the 
current wallet implementation (which targets web logins), an http proxy that handles 
the authentication (see Sec. 2.4) is the only application using the wallet. 

Step Description 
1 An end-user works with an application. 
2 The  application  requires  sensitive  data  (for  example,  when 

connecting to a banking web server).
3 The application contacts the secure wallet.
4 The secure wallet gives the  application access to the sensitive 

data.
5 The application uses the sensitive data.

Table 13: Accessing secure storage (application)
Step Description 
1 The user works with an application. 
2 The  application  requires  sensitive  data  (for  example  when 

connecting to a banking site).
3 The application contacts the secure wallet.
4 The secure wallet denies the application access to the sensitive 

data.
Table 14: Accessing secure storage (application)(alternative)

Unless the implementation of the secure wallet mechanism is robust, the following 
additional threats may impact upon the device.

● Unauthorised reading/copying of the sensitive data while in use on the device.
● Unauthorised modification of the sensitive data while in use on the device.

Using the list of threats outlined above, the following additional requirements can be 
derived for a TMP, if it is to facilitate a robust implementation of the secure wallet 
mechanism. 

13.The  TMP  SHALL  provide  a  mechanism  so  that  the  sensitive  data  can  be 
confidentiality-protected while in use on the device.

14.The  TMP  SHALL  provide  a  mechanism  so  that  the  sensitive  data  can  be 
integrity-protected while in use on the device.

3.1.3 Summary of Requirements
This section summarises the requirements from the secure wallet use-case.
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SecureWallet1: The TMP SHALL provide a mechanism so that the secure wallet 
application code can be integrity-protected on installation into and in storage on the 
device.

SecureWallet2:  The TMP SHALL provide a mechanism so that the secure wallet 
application code can be integrity-protected while executing on the device.

SecureWallet3: The TMP SHALL provide a mechanism so that a passphrase can be 
confidentiality-protected during its installation/input.

SecureWallet4: The TMP SHALL provide a mechanism so that a passphrase can be 
integrity-protected during its installation/input.

SecureWallet5:  The TMP SHALL provide an access control mechanism so that a 
passphrase can only be accessed by authorised entities.

SecureWallet6: The TMP SHALL provide a mechanism so that a passphrase can be 
confidentiality-protected while in storage on the device.

SecureWallet7: The TMP SHALL provide a mechanism so that a passphrase can be 
integrity-protected while in storage on the device.

SecureWallet8: The TMP SHALL provide a mechanism so that the sensitive data can 
be confidentiality-protected during its installation.

SecureWallet9: The TMP SHALL provide a mechanism so that the sensitive data can 
be integrity-protected during its installation.

SecureWallet10: The TMP SHALL provide an access control mechanism so that the 
sensitive data can only be accessed by authorised entities.

SecureWallet11: The TMP SHALL provide a mechanism so that sensitive data can 
be confidentiality-protected while in storage on the device.

SecureWallet12: The TMP SHALL provide a mechanism so that sensitive data can 
be integrity-protected while in storage on the device.

SecureWallet13: The TMP SHALL provide a mechanism so that sensitive data can 
be confidentiality-protected while in use on the device.

SecureWallet14: The TMP SHALL provide a mechanism so that sensitive data can 
be integrity-protected while in use on the device.

3.2 Requirements Analysis
Requirements SecureWallet1 and SecureWallet2  necessitate that the integrity of 
software (i.e. the secure wallet application) can be checked, and, that if unauthorised 
modification is detected, that appropriate action is taken.
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In order to meet requirement  SecureWallet1 an authenticated boot mechanism in 
combination with a secure storage mechanism could be used.

● An authenticated  boot  mechanism facilitates  the  reliable  measurement  and 
storage of the software state of a TMP; and

● A secure storage mechanism ensures that security sensitive information, such 
as a user passphrase, cannot be accessed and/or utilised if a specified platform 
component,  for  example,  the  secure  wallet  code,  has  been  modified  in  an 
unauthorised way.

Alternatively, in order to meet requirements SecureWallet1 and SecureWallet2, a 
secure  boot  mechanism  could  be  deployed  to  ensure  that  only  legitimate  and 
authorised software can be loaded at boot time. Run-time integrity protection and/or 
verification  mechanisms  could  then  be  used  in  conjunction  with  a  secure  boot 
mechanism  in  order  to  ensure  that  the  software  environment  remains  in  a 
trustworthy state after boot.

● A secure boot mechanism enables the reliable measurement and verification of 
a TMP's software state at start-up. Any unauthorised, yet successful, attempt 
to modify a protected software component should result in one of the following 
three scenarios [23] at boot time.
○ The system could continue booting as normal  but  issue a warning.  This 

approach  gives  little  protection  against  attack.  Malicious  or  corrupted 
software components can still be executed.

○ The  system could  opt  not  to  execute  the  component  whose  integrity  is 
compromised. This, however, leaves the system open to denial of service 
attacks.

○ Finally, the system could attempt to recover and correct the inconsistency 
using a trusted source before executing or using the component.

● A runtime integrity-checking mechanism facilitates the accurate measurement 
and  verification  a  TMP's  software  state  while  it  is  in  operation.  Any 
unauthorised  yet  successful  attempt  to  modify  a  protected  software 
component, for example, the secure wallet application code, during runtime, 
should result in one of the following two scenarios.
● The system could continue as normal but issue a warning. This approach, 

however,  gives  little  protection  against  attack.  Attacks  may  still  be 
successfully  executed  against  software  components  running  on  the 
platform.

● The  system  could  make  the  majority  of  its  services  unavailable  if  the 
integrity of a software component is compromised. The platform would then 
have to be rebooted in order to transition back into a trusted state. This, 
however, leaves the system open to denial of service attacks.

● Alternatively, a mechanism, such as software isolation, which aims to prevent 
an attack impacting the runtime integrity of the platform could be adopted.

Requirements SecureWallet3 to SecureWallet14 can be summarised as follows.
● A mechanism is required so that data may be input into the TMP, where either 

its: 
o Integrity; or
o Integrity  and confidentiality  must  be protected (i.e.  a  trusted path is 

required).
• A mechanism is required so that data stored on the TMP is protected with 

respect to its: 
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o Integrity; or
o Integrity and confidentiality.

• A mechanism is required so that confidentiality and integrity-protected data 
can only  be accessed by authorised entities,  for  example the secure wallet 
mechanism running as expected.

• A mechanism is required so that data in use on the TMP is protected with 
respect to its: 

o Integrity; or
o Integrity and confidentiality.

Protected storage functionality,  which enables data to be protected on input into, 
while in storage on and while in use on a device is necessary so that requirements 
SecureWallet3 to SecureWallet14 can be met.

3.3 TCG Mappings
In this section we consider whether and how the functional requirements summarised 
in section 3.1.3 can be met assuming a TMP as defined by the TCG Mobile Phone 
Working Group (MPWG) in [63] and [64] which also incorporates an isolation layer 
(namely, an L4 microkernel).

In section 3.3.1 the model defined in section 2.4.2 is re-examined and modified to 
support a TMP. This section also describes the properties of a TMP, as defined in the 
previous paragraph,  and assumed for the remainder of this section. Section 3.3.2 
explores the fundamental command runs which need to be completed on any TCG 
compliant MTM before its security mechanisms can be utilised. Sections 3.3.3 and 
3.3.4 examine authenticated and secure boot mechanisms. Section 3.3.5 examines 
runtime integrity protection and verification mechanisms. Section 3.3.6 shows how 
secure storage can be provided.  Section 3.3.7 describes the process by which an 
entity can demonstrate knowledge of an authorisation value/secret bound to a key 
object, data object, or an 'owner authorised command' so that access to the object or 
use of an 'owner authorised command' can be permitted by an MTM. We conclude in 
section 3.3.8.

3.3.1 Revised Architectural Model
We now revisit the secure wallet use-case architectural model  described in section 
2.4.2. We require the addition of a new functional  component,  namely a TMP, in 
place of the mobile device shown in figure 24.
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Figure 24: Secure wallet architecture

A TMP, as defined by the TCG [63,64] is comprised of a set of engines, whereby an 
engine is described as a construct capable of manipulating data, providing evidence 
that it can be trusted to report the current state of the host platform and providing 
evidence  about  the  host  platform's  current  state.  Each  trusted  mobile  platform 
stakeholder has its own engine, where the principal stakeholders in a mobile phone 
include  the  device  manufacturer,  network  operator,  service  providers  and  users. 
Each  engine  provides  platform  services  on  behalf  of  its  stakeholder  and  also 
incorporates functionality similar in many ways to a traditional  TCG PC platform. 
Each engine [63]:

● has protected capabilities and shielded locations such that trusted services, 
which must not be subverted, can be implemented;

● can  use  attestation  identities  to  prove  that  information  originated  from  a 
trusted platform;

● has access to a set of 'roots-of trust' such that 'normal services' provided by the 
engine can be measured and those measurements reported;

● has access to protected storage functionality, with a Storage Root Key and its 
subsequent hierarchy; and

● may implement other TCG functions depending on the intended functionality of 
the engine's 'measured normal services' (see bullet three above).

TMP engines may be categorised as either mandatory or discretionary.
● A  mandatory  engine  provides  the  prerequisite  functionality  of  a  TMP,  for 

example that required to comply with regulations which govern the operation 
of  mobile  platforms  in  cellular  radio  systems.  Mandatory  engines  must  be 
supported by a Mobile Remote owner Trusted Module (MRTM), which supports 
secure boot and does not permit a local operator to remove the stakeholder 
from the engine.

● A discretionary  engine  provides  services  that  may be  added,  removed  and 
turned  on/of  without  the  consent  of  any  external  service  provider. 
Discretionary engines must  be supported by a Mobile  Local  owner Trusted 
Module (MLTM), which is not required to support secure boot and permits a 
local operator to remove the stakeholder from the engine.

The device manufacturer and device owner define the mandatory engines which may 
exist  on  their  platforms.  A  device  owner  may  also  list  the  discretionary  engines 
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permitted.

An engine may be implemented using trusted and/or measured resources. In order to 
construct a trusted resource, namely a 'root of trust', a trusted entity must vouch for 
a specific instantiation of that resource [63]. Alternatively, in the case of a measured 
resource,  a  reliable  entity  measures  an  instantiation  of  a  resource and a  second 
reliable entity provides a trustworthy reference measurement for comparison [63]. A 
TMP, as defined here, is also assumed to enable isolated execution of software.

There are numerous scenarios which may result in the implementation of a secure 
wallet mechanism as described in section 2.1. The secure wallet may, for example, be 
provided by a third party service provider and implemented by a TMP end-user who 
may be the device owner. Such a service is non-essential and therefore provided on 
the device by a service provider discretionary engine. This particular service provider 
engine would be listed in the DeviceOwner_discretionaryEngineList and is supported 
by  an  MLTM.  In  this  case,  the  local  operator/end  user  of  the  device  would  be 
permitted to remove the service provider from the engine at any stage.

Alternatively, we can envisage a scenario in which a corporate entity is the device 
owner and requires all device operators (namely employees) to use the secure wallet 
mechanism. In this case, the device owner may list the agent installer engine which 
provides the secure wallet functionality in the DeviceOwner_mandatoryEngineList. 
This implies that the engine would be supported by an MRTM and would not permit a 
local operator to remove the stakeholder from the engine.

In short, we can imagine scenarios in which the engine providing the secure wallet 
mechanism is discretionary and supported by an MLTM and, equally, scenarios in 
which the engine is mandatory and therefore supported by an MRTM.

In  the  remainder  of  this  chapter,  we  investigate  whether  the  trusted  computing 
mechanisms  provided  by  discretionary  and  mandatory  TMP  engines  meet  the 
requirements described in section 3.1.3. If a particular mechanism is provided by a 
TMP, we examine the architecture components and commands required to leverage 
it.

3.3.2 Fundamental MTM command runs
Before we examine the MTM commands, which can be used to fulfil authenticated 
boot, secure boot and secure storage requirements, as described in section 3.2, we 
review a number of MTM commands which need to be executed in order to initialise 
an MTM for use.

3.3.2.1 MTM Permanent Flags
Firstly, in table 15, we define a number of MTM permanent flags the use of which is 
discussed  in  this  chapter.  MTM  permanent  flags  are  used  to  maintain  the  state 
information for the MTM [65]. The values of these commands are not affected by the 
TPM_Startup command.

Name Description
TPM_PF_READPUBEK This flag may be set to TRUE or FALSE. It indicates whether the 

public endorsement key can be read with or without owner 
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Name Description
authorisation. The default value is TRUE.

TPM_PF_DISABLE This flag may be set to TRUE or FALSE and indicates whether 
MTM is disabled or enabled. The default value is TRUE.

TPM_PF_OWNERSHIP This flag may be set to TRUE or FALSE and indicates whether or 
not an entity can be take ownership of the MTM. The default 
value is TRUE.

TPM_PF_DEACTIVATED This flag may be set to TRUE or FALSE and indicates whether 
the MTM is deactivated or activated. The default value is TRUE.

Table 15: MTM permanent flags

3.3.2.2 MTM Initialisation
The MTM must be first be initialised. TPM_Init is a physical method of initialising the 
MTM. This command puts the MTM into a state where it waits for  TPM_Startup, a 
command  which  specifies  the  type  of  the  initialisation  required.  The  MTM 
initialisation command is shown in table 16. This command must be implemented in 
both an MRTM and an MLTM.

TPM_Init
Table 16: MTM initialisation

3.3.2.3 MTM Start-up
After MTM initialisation the MTM must be started up. The TPM_Startup command is 
always preceded by TPM_Init. This command must be implemented in both an MRTM 
and an MLTM. An MTM can startup in one of three possible modes. The chosen mode 
depends on the event that caused the reset and the operations on the MTM that need 
to be completed in response to the event. The 3 modes include: clear start, save start 
and deactivated state. For an initial engine start up, a clear start would normally be 
used, where all variables go to their default or non-volatile values. During a save start 
the MTM recovers and restores variable  values saved on a prior  TPM_SaveState. 
During a  deactivated start an MTM turns itself off and requires another  TPM_Init 
before the MTM will execute in a fully operational state. A clear start is permitted by 
an  MRTM  and  an  MLTM.  A  save start  is  dependent  on  the  implementation  of 
TPM_SaveState, which is an optional command on both an MRTM and an MLTM. A 
deactivated start  must  not  be  supported  by  an  MRTM  and  may  be  optionally 
supported by an MLTM.  The  TPM_Startup command is shown in table  17 and the 
TPM_SaveState is shown in table 18.

TPM_Startup
Table 17: MTM start-up

TPM_SaveState
Table 18: MTM save state
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3.3.2.4 MTM Self-testing
During the initialisation process, there are a minimal set of self tests completed by 
the MTM. In order to ensure a more thorough self test the commands shown in table 
19 may be executed. Results of self tests are held in the MTM and can be retrieved 
using the command described in table  20. These three commands are required in 
both an MRTM and an MLTM.

Continue self-test process:

TPM ContinueSelfTest This command causes the MTM to test 
the MTM internal functions not tested 
at initialisation.

Complete a full self-test:

TPM_SelfTestFull Requests  that  the  MTM  completes  a 
full self test.

Table 19: Self testing

TPM_GetTestResult
Table 20: Retrieving self test results

3.3.2.5 Endorsement Key Generation
The endorsement key pair is defined as optional in a TMP MRTM and mandatory in a 
TMP MLTM. If an endorsement key pair is used however, the command set which 
enables  its  handling  must  be  implemented.  An  endorsement  key  pair  may  be 
generated using an external key generator. Alternatively, an endorsement key pair 
may  be  generated  using  either  of  the  commands  shown  in  table  21.  The 
TPM_CreateEndorsementKeyPair command  may  be  optionally  implemented  in  an 
MRTM but is required in an MLTM. The TPM_CreateRevokableEK command, which 
causes a revocable endorsement key pair to be generated, may also be implemented 
on an MRTM and an MLTM as it is considered optional for both.

Before  generating  an  endorsement  key  pair, calls  may  be  made  to  the 
TPM_GetCapability to determine whether or not an endorsement key already exists.

TPM_CreateEndorsementKeyPair

TPM_CreateRevokableEK
Table 21: Creating an endorsement key pair

3.3.2.6 Accessing a Public Endorsement Key
Table 22 shows how a public endorsement key can be accessed. Access to the public 
endorsement key is necessary before an entity can take ownership of an MTM as it is 
used during the take ownership process in order to input data into the MTM securely. 
TPM_ReadPubek is  required  in  an  MRTM  if  indeed  the 
TPM_CreateEndorsementKeyPair has been implemented. Otherwise, the command is 
unnecessary.  The  TPM_ReadPubek  command  is  required  in  an  MLTM.  The 
TPM_OwnerReadInternalPub  is  optional  in  an  MRTM  (as  was  the  case  for 

Open_TC Deliverable D08.2 70/109



 

 Security Services for a Trusted Mobile Application Final

RPM_ReadPubek;  its  implementation  will  be  dependent  on  the  implementation  of 
TPM_CreateEndorsementKeyPair) and required in an MLTM.

Open access to the public endorsement key:

TPM_ReadPubek

Disable the public read of public endorsement key:

Often  by  default,  once  the  MTM  has  acquired  an  owner,  the  flag  which 
indicates whether or not open access to the public endorsement key is allowed, 
TPM_PF_READPUBEK, is set to FALSE so that the public endorsement key can 
only be read by the MTM owner. This flag may however be changed using the 
optional TPM_SetCapability command which requires owner authorisation.

TPM_SetCapability

MTM owner read of public endorsement key:

TPM_OwnerReadInternalPub

Table 22: Accessing the public endorsement key

3.3.2.7 Enabling an MTM
The MTM must be enabled; that is the PM_PF_DISABLE flag must be set to FALSE. It 
is assumed that an MRTM is always enabled. In the case of an MLTM, this may be 
achieved using the required commands shown in table 23.

TPM_PhysicalEnable The MTM owner must enable the platform before any 
MTM commands can be utilised.

Table 23: Physically enabling an MTM
In  order  to  physically  disable  the  MLTM  before  it  has  acquired  an  owner,  the 
commands shown in table 24 can be executed.

TPM_PhysicalDisable
Table 24: Physically disabling an MTM

Once an MLTM has acquired an owner, he or she may also enable or disable the 
MTM using the required TPM_OwnerSetDisable command which changes the state of 
the TPM_PF_DISABLE flag to either TRUE or FALSE. This command is shown in table 
25. 

TPM_OwnerSetDisable Used to change the status of the  TPM_PF_DISABLE 
flag.

Table 25: Enabling/Disabling an MTM

3.3.2.8 The Ownership Flag
In  order  for  a  user  to  take  ownership  of  an  MTM,  the  ownership  flag, 
TPM_PF_OWNERSHIP flag must be set to TRUE using the commands shown in table 
26. In an MRTM the default value for this flag is TRUE, so this command is excluded 
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and in an MLTM this command is required.

 TPM_SetOwnerInstall Used to set the value of the  TPM_PF_OWNERSHIP 
flag to TRUE so that an entity can take ownership of 
an MTM.

Table 26: Setting the state of the 'TPM_PF_OWNERSHIP' flag

3.3.2.9 Taking Ownership of an MTM
In an MRTM the TPM_TakeOwnership command is optional. This command may not 
be necessary if there is no endorsement key pair and an AIK and SRK have been pre-
installed. In order for an entity to take ownership of an MLTM, the following steps 
must be completed.

1. The public endorsement key must be accessed, as described in table 22.
2. MTM owner authorisation data must be input into the MTM. 
3. An SRK must be generated inside the MTM.
4. The authorisation data for the SRK must be input (if required) into the MTM.
5. A tpmproof must be generated. A tmpProof is a 160-bit secret that is generated 

by the MTM when the TPM_TakeOwnership command is executed. This secret 
is  associated with non-migratable  objects  so  that  an MTM can identify  the 
objects which it has created.

Steps 2 to 5 can be completed using the take ownership command shown in table 27.

TPM_TakeOwnership
Table 27: Taking ownership of an MTM

3.3.2.10 MTM Activation
Finally, an MTM must be activated; this will result in the TPM_PF_ACTIVATED flag 
being set to FALSE. It is assumed that an MRTM is always activated. In the case of an 
MLTM, this may be achieved using the required command shown in table 28.

TPM_PhysicalSetDeactivated
Table 28: Activating an MTM

3.3.3 Authenticated Boot Process
SecureWallet1 to  SecureWallet14,  as described in section 3.2, may be partially 
met  through  the  deployment  of  an  authenticated  boot  mechanism,  where  an 
authenticated boot is defined as the process by which the state of a platform engine 
can be reliably measured and stored.

An authenticated boot is supported by both a mandatory and a discretionary TMP 
engine as defined in  [63].  In order to support such a mechanism an engine must 
comprise of a Root of Trust for Measurement (RTM) and a Root of Trust for Storage 
(RTS).

● A RTM is required to accurately measure at least one integrity measurement in 
an engine,  and report  the  integrity  measurement  to  the RTS.  This  may be 
accomplished using the MTM PCR extension command, TPM_Extend.
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● A RTS is required to accept integrity measurements and record them. Both an 
MRTM  and  an  MLTM,  which  incorporate  the  RTS  in  a  mandatory  and  a 
discretionary  engine  respectively,  are  required  to  have  a  set  of  Platform 
Configuration Registers.

It  is  envisaged that  an authenticated boot  process for  a TMP engine  will  closely 
resemble that  of  a  PC platform.  Very basically,  an engine RTM may for  example 
measure  its  own  configuration  and  the  configuration  of  img1  (the  next  software 
component  to  be  loaded  and  executed  on  the  platform  engine),  saving  the 
measurement to an MTM PCR and a summary of the measurement to a log file stored 
on  the  engine.  Measurement  functionality  integrated  into  img1  continues  the 
measurement  process,  saving  the  measurement  of  img2  (the  next  software 
component to be loaded and executed on the platform engine), to an MTM PCR and a 
summary to the log file. It then passes control to img2. This process continues until 
all the specified software in the engine has been reliably measured. Measurements 
stored during the authenticated boot process may be utilised in secure storage and 
attestation mechanisms.  The exact process by which a trusted mobile  platform is 
booted, its integrity measured and its integrity measurements stored, needs to be 
specified for each TMP architecture, just as for the PC client in [66].

3.3.4 Secure Boot Process
SecureWallet1 and SecureWallet2 as defined in section 3.2, may be met through 
the deployment of a secure boot mechanism, where a secure boot is defined as the 
process  by  which  the  state  of  an  engine  can  be  reliably  measured,  verified  and 
stored. 
A secure boot mechanism must be supported by a mandatory device manufacturer 
engine, should be supported by all other mandatory engines and may be supported by 
discretionary  engines.  In  order  to  support  such  a  mechanism  an  engine  must 
incorporate a RTM, a RTS and a Root of Trust for Verification (RTV).

● A RTM is required to accurately measure at least one integrity measurement in 
an engine, and report the integrity measurement to the RTV.

● A RTV is required to accept an integrity measurement from the RTM and verify 
it against the corresponding reference integrity measurement before reporting 
it to the RTS. This is accomplished using the MTM_VerifyRIMCertAndExtend.

● A RTS is required to accept integrity measurements from the RTV and record 
them.  Both  an  MRTM  and  an  MLTM,  which  incorporate  the  RTS  for  a 
mandatory and a discretionary engine respectively, are required to have a set 
of PCRs.

Before an engine can be securely booted, it must be provisioned with an asymmetric 
public key called a Root Verification Authority Identifier (RVAI). The RVAI must be 
integrity-protected  within  an  MTM.  For  example,  an  integrity  check  sum for  the 
asymmetric public key may be stored in an MTM shielded location. Alternatively, the 
asymmetric public key may be signed using a private key associated with the MTM.

The corresponding RVAI private key is securely stored by the engine's stakeholder. 
The root verification authority, i.e. the engine's stakeholder, may use the private key 
to either sign:

● a certificate which contains a reference integrity measurement for a particular 
software component, namely a RIM_Cert; or 

● a Rim_Auth_Cert,  in  which the public  key  of  another  authority  (a  so-called 
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RIM_Auth) is authorised to create/sign RIM_Certs.

A  RIM_Cert  may  be  classified  as  external  or  internal.  External  RIM_Certs  are 
generated outside the MTM, may be valid for a number of platforms and are signed 
by  RIM_Auths.  Internal  RIM_Certs  are  generated  from  external  RIM_Certs  and 
authorised by the engine itself. Internal RIM_Certs are integrity protected using an 
engine's internal verification key, a secret unique to the engine's MTM.

An MTM which enables a secure boot must also support two monotonic counters:
● counterBootstrap,  which  is  used  in  order  to  verify  the  validity  of  the  first 

executable image; and
● counterRIMProtect, which is used to protect internal RIM_Certs from re-flash 

attacks.

To summarise, in table  29, we define the MTM permanent data associated with an 
engine's secure boot mechanism.

Name Description
counterBootstrap This field contains the current value of the counterBootstrap 

monotonic counter. 
counterRimProtectId This field contains the current value of the counterRIMProtect 

monotonic counter. 
integrityCheckRootSize This field indicates the length of the data held in the 

integrityCheckRootData field in bytes.
integrityCheckRootData This field contains an immutable cryptographic binding of a 

single MRTM instance to (a) RVAI(s) in the case of a mandatory 
engine or an immutable cryptographic binding of a single MLTM 
instance to (a) RVAI(s) in the case of a discretionary engine.

internalVerificationKey This field contains a secret unique to an MTM used in the 
creation (i.e. authorisation and integrity protection) of internal 
RIM_Certs from external RIM_certs.

Table 29: MTM permanent flags

A  RVAI  and  a  Rim_Auth_Cert  are  represented  in  an  MTM  by  the 
TPM_VERIFICATION_KEY structure which is composed of the parameters defined in 
table 30.

Name Description
tag This  field  contains  the  value 

'TPM_TAG_VERIFICATION_KEY'.
usageFlags This field define the capabilities associated 

with the key.
parentId This field contains an identifier for the key's 

parent key, if indeed one exists.
myId This field contains an identifier for the key 

defined in the structure.
referenceCounter This field defines the name and the value of 
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the counter to which the key structure is 
bound.

keyAlgorithm This field contains an algorithm identifier for 
the key.

keyScheme This field defines the manner by which the 
integrityCheckData field can be validated 
using the keyData.

extensionDigestSize The length in bytes of the extensionDigest 
field

extensionDigest A buffer containing a hash of the proprietary 
extension data.

keySize The length of the keyData field.
keyData The verification key, be it a RVAI or indeed a 

RIM_Auth key.
integrityCheckSize The length of the integrityCheckData field.
integrityCheckData An integrity check of the 

TPM_VERIFICATION_KEY.

Table 30: TPM_VERIFICATION_KEY structure
A Rim_Cert takes the form of a TPM_RIM_CERTIFICATE structure which is composed 
of the parameters defined in table 31.

Name Description
tag Must be set to TPM_TAG_RIM_CERTIFICATE
label A proprietary label.
rimVersion A version number for the RIM certificate.
referenceCounter This field defines the name and the value of 

the counter to which the key structure is 
bound.

state This field contains the expected values of the 
engine's PCRs at the time of certificate use. 
Unless the value in this field matches that of 
the engine's PCRs the certificate will not be 
accepted.

measurementPcrIndex This field specifies the PCR that is to be 
extended with measurementValue using the 
TPM_VerifyRIMCertAndExtend command.

measurementValue This field contains the value to be extended 
into the PCR – 'measurementPcrIndex'.

parentId The identity of the key of the 
TPM_VERIFICATION_KEY used to verify the 
structure.

extensionDigestSize The length in bytes of the extensionDigest.
extensionDigest This field contains a hash of the proprietary 

extension data.
integrityCheckSize The length of the data in the 
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'integrityCheckData' field.
integrityCheckData An integrity check on the 

TPM_RIM_CERTIFICATE.

Table 31: TPM_RIM_CERTIFICATE structure
In order to enable a secure boot process, RIM_Certs must initially be installed in an 
engine. The command used for RIM installation is shown in table 32. This command 
is used to generate internal RIM certificates from external RIM certificates.  During 
this conversion:

● all fields of the external RIM_Cert input are written to the structure for an 
internal RIM_Cert.

● the  counterReference ->  counterSelection field  is  set  to 
MTM_COUNTER_SELECT_RIMPROTECT.

● the value of the permanent data field counterRIMProtectId +1 is inserted into 
the counterReference -> counterValue field. 

● the  integrityCheckdata for  the  internal  RIM_Cert  is  generated  using  the 
TPM_Internal_Verification_Key as a HMAC key and written to  rimCertOut -> 
integrityCheckData.

● The  size  of  the  integrityCheckData is  written  into  the  rimCertOut -> 
integrityCheckDataSize.

TPM_InstallRIM
Table 32: RIM installation

The resultant internal RIM_Certs can be checked using TPM_VerifyRIMCert as shown 
in table 33.

TPM_VerifyRIMCert When  this  command  is  called  the  RIM_Cert 
syntax,  verification  key,  counter  value  and 
integrityCheckData are validated.

Table 33: RIM_Cert verification

The  TPM_LoadVerificationKey command,  shown  in  table  34,  is  used  to  load 
verification keys into an MTM (including the RVAI). Verification key loading can be 
authorised using one of the following means.

1. The  key  may  be  loaded  into  the  MTM before  integrity  checking  has  been 
enabled,  i.e.  the  MTM_STANY_FLAG ->  loadVerificationrootKeyEnabled = 
TRUE.
This enables a verification root key (namely a RVAI) to be loaded when the 

MTM is first manufactured or customised for a particular engine.
2. A  cryptographic  hash  or  equivalent  may  be  embedded  in 

MTM_PERMANANT_DATA -> integrityCheckRootData in the MTM.
3. The loading may be authorised by the MTM owner.
4. The key to be loaded may be signed by an authentic, authorised and already 

loaded TPM_VERIFICATION_KEY.

TPM_LoadVerificationKey
Table 34: Loading a verification key
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The TPM_LoadVerificationRootKeyDisable  command, as shown in table  35, disables 
the functionality to load a verification root key as described in step 1 above.

TPM_LoadVerificationRootKeyDisable This  command  sets 
loadVerificationrootKeyEnabled = FALSE

Table 35: Disabling the loading of a root verification key
The TPM_IncrementBootstrapCounter command increments MTM_Permanent_Data –
>  CounterBootstrap. In order to execute this command a RIM_Cert containing the 
incremented  counter  value  and  signed  using  as  TPM_VERIFICATION_KEY whose 
usage  flags  have  TPM_VERIFICATION_KEY_USAGE_SIGN_RIM_CERT and 
TPM_VERIFICATION _KEY_USAGE_INCREMENT_BOOTSTRAP set must be input.

TPM_IncrementBootstrapCounter
Table 36: Incrementing a bootstrap counter

The  TPM_SetVerifiedPCRSelection command  is  used  to  set 
MTM_PERMANANT_DATA -> verifiedPCRs. This field lists the PCRs into which only 
verified  measurement  values  can  be  written.  This  command may be  called  when 
MTM_STANY_FLAG ->  loadVerificationrootKeyEnabled =  TRUE, else  it  requires 
MTM owner authorisation.

TPM_SetVerifiedPCRSelection
Table 37: Setting verified PCRs

As stated above,  the  TPM_VerifiyRIMCertAndExtend command is  used to  verify a 
measurement against a RIM contained in the corresponding RIM_Cert and, given a 
successful  validation,  to  extend  the  PCR  listed  in  the  RIM_Cert  with  the 
measurement.

TPM_ VerifiyRIMCertAndExtend
Table 38: Measurement verification and PCR extension

Given the scenario in which a corporate entity is the device owner who requires all 
device  operators  (namely  employees)  to  use  the  secure  wallet  mechanism  and 
assuming therefore  that  the  device  owner  has  listed  the  service  provider  engine 
which  provides  the  secure  wallet  functionality  in  the 
DeviceOwner_mandatoryEngineList,  and  that  the  service  provider  engine  is 
supported by an MRTM, the secure boot of this engine may proceed as follows.

Prior to a secure boot:
1. A service provider RVAI must be loaded using MTM_LoadVerificationKey.
2. Once the RVAI has been loaded, the flag which enables a 

TPM_VERIFICATION_KEY to be loaded without the completion of any integrity 
checks, must be set to false, MTM_STANY_FLAGS -> 
loadVerificationrootKeyEnabled = FALSE, using the 
MTM_LoadVerificationRootKeyDisable command.

3. MTM permanent data must be set:
MTM_PERMANENT_DATA ->
counterBootstrap = the current value of the Bootstrap counter
counterRIMProtectId = the current value of the RIMProtect counter
integrityCheckRootSize = the size of an integrity value for the RVAI
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integrityCheckRootData = the value of an integrity value for the RVAI
internalVerificationData = the engine's internal verification key
verificationAuth = the verificationAuth used to authorise MTM_InstallRIM and 
updates of the counterRIMProtect.

4. While  the  RVAI  may  be  used  either  to  sign  a  RIM_Auth_Certs  or  sign  a 
RIM_Cert  it  is  considered  best  policy  to  use  the  RVAI  for  signing 
RIM_Auth_Certs only. 
For this use-case we therefore require the generation and upload of a second 
public key pair which is then used in order to protect secure wallet data using 
MTM_LoadVerificationKey.

5. The  private  key  from this  newly  loaded RIM_Auth  key  is  then used by the 
service provider to sign an external RIM_Cert for the secure wallet application.
This RIM_Cert must  then be installed on the service provider engine using 
MTM_InstallRIM.

6. Once an internal  RIM_Cert  has  been created it  may be  verified  within  the 
engine using the MTM_VerifyRIMCert command.

7. Finally, the MTM owner must specify the PCR which is to be extended with a 
verified  secure  wallet  application  measurement  using  the 
MTM_SetVerifiedPCRSelection command.

Following this the RTM, i.e. the first measurement agent running within an engine, 
can retrieve a list of components to be measured (for simplicity sake, we assume that 
the  secure  wallet  is  the  only  component  within  this  engine  to  be  measured  and 
verified) and measures the first component. The RTV, i.e. the first verification engine 
agent running within an engine, then retrieves the expected value of the measured 
component and calls MTM_VerifyRIMCertAndExtend which results in the comparison 
of  the  calculated  measurement  against  the  expected  software  component's 
measurement. The measurement is then stored to an MTM PCR by the RTS and a 
summary of the measurement stored to a log file in the engine. If at any point the 
expected value of a software component cannot be located or indeed an expected 
value does not match the measured value then the boot process is aborted.

The exact process by which a trusted mobile platform is securely booted, its integrity 
measured, verified and its integrity measurements stored, needs to be specified for 
each TMP architecture, just as for the PC client in [66].

3.3.5 Maintaining Integrity

As stated in the previous section, TMP engines (with the exception of the device 
manufacturer  engine)  are  not  required to  support  a  RTV.  An engine  which  does 
support  a  RTV,  and  therefore  a  secure  boot  mechanism,  may  also  support  a 
mechanism which enables the integrity of an engine to be maintained after boot.
Within  the  mobile  reference  architecture  [63] three engine  states  are  described, 
namely initialisation, success and failed:

● An  initialisation state indicates that the RTS is not fully operational and that 
since start-up no software measurements have yet been verified. 

● A success state represents the state of an engine when the RTS is operational 
and all software measurements which require verification have been matched 
to their corresponding RIMs. 

● A failed state indicates that the RTS is not operational (and cannot become so) 
or that, since start-up, some integrity measurement which required verification 
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has failed to a match its expected RIM.
Ideally,  a  platform would  remain in  a  success state  during run-time.  In  order  to 
achieve this a preventative approach is required to run-time integrity maintenance. 
Suggested mechanisms which enable an engine to remain in a success state include 
but are not limited to the following.

● The protection of critical functions using hardware. In this case program code 
or  critical  data  could  be  stored  in  Read  Only  Memory  (ROM)  or  one-time 
programmable memory, for example.

● Software may be isolated using hardware mechanisms (whereby critical MTM 
functionality  is  implemented  on  a  separate  chip  for  example)  or,  indeed, 
software mechanisms (through the use of a trusted execution environment or 
full virtualisation).

● Software may be simplified. By reducing the complexity and size of software it 
becomes easier to make it error free and verify it as such.

● The installation of particular types of software may be heavily restricted. For 
example,  the  installation  of  native  software  may  not  be  permitted. 
Alternatively, an operating system may enforce strong access controls which 
restrict the installation of certain software. 

● Certain  security  checks  may  be  completed  on  software  at  installation,  for 
example,  verification  of  integrity  checks,  public  key  certificates,  digital 
signatures  and  the  code  itself.  Given  a  failed  integrity  check,  certificate 
revocation, a failed digital signature verification or indeed if on examination 
code contains  the  signature of  known malware,  the application  will  not  be 
loaded onto the device.

Alternatively, a platform may transition from a success state to a failed state. In this 
case,  the  transition  must  be  detected and the consequences  of  such  a  transition 
limited. A reactive approach to run-time integrity is comprised of two elements: a 
detection element and a reaction element.

The  detection  element  described  within  the  mobile  reference  architecture  is 
essentially an extension of the secure boot mechanism. It requires a Primary Run-
time  Measurement/Verification  Agent  (PRMVA)  which  must  reliably  measure  and 
verify  at  least  one  software  component  running on the host  engine.  A secondary 
RMVA, which is measured and verified by the PRMVA may also exist if the PRMVA is 
unable to perform all the necessary checks alone.
The expected runtime RIM of a software component may be different to the expected 
boot time RIM. Therefore, run-time measurements are verified against run-time RIMs 
contained within RIM_run Certs. A RIM_run Cert may be classified as external or 
internal and may be in the form of a RIM_Cert or indeed in a proprietary format. An 
external RIM_run Cert may be created by the engine's stakeholder and input into the 
device.  Alternatively,  RIM_run  Certs  may  be  generated  by  the  engine  itself  by 
measuring each code image just after it has been launched. It is pivotal, however, 
that every effort is made to ensure that false negatives between run-time software 
component measurements and RIM_run Certs are avoided. In order to achieve this a 
software image may be loaded into the same memory location each time, for example, 
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or the static part of a software component may be measured as opposed to the entire 
component.

An engine's stakeholder specifies how often and/or under what conditions runtime 
measurement  and  verification  occurs.  Policies  for  run-time  measurement  and 
verification  essentially  fall  into  one  of  two  classes,  time-based  checks  which  are 
completed at regular intervals or alternatively, event-based checks.

3.3.6 Secure Storage
Requirements SecureWallet3 to SecureWallet14 can be partially met through the 
deployment of a secure storage mechanism.

3.3.6.1 Key Hierarchy
Each TMP stakeholder can incorporate his own key hierarchy. Here the focus is on 
the secure wallet provider. A sample key hierarchy from a secure wallet provider 
engine is represented in figure 25.

Figure 25: A sample key hierarchy from a secure wallet provider engine

3.3.6.2 Installing Integrity and Confidentiality Sensitive Data
In  order  to  import  sensitive  data  into  a  secure  wallet  for  protection,  a  secure 
transport session can be set up with the engine's MTM so that all input parameters 
into the secure storage commands described below can be protected while being 
communicated to the MTM.

Transport security enables the establishment of a secure channel between the MTM 
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and secure processes, offering confidentiality and integrity protection of commands 
sent to the MTM. It also provides a logging function such that all commands sent to 
the MTM during a transport session can be recorded.

Session establishment involves the generation of 20 bytes of transport authorisation 
data  by  the  caller,  for  use  between  the  caller  and  the  MTM.  This  transport 
authorisation data has two purposes:

● It is used to generate a secret key for use in encrypting commands from the 
application to the MTM; and

● It is also used to generate a secret HMAC key to provide origin authentication 
and integrity protection for the TPM_ExecuteTransport command.

The authorisation data is generated by the caller and encrypted under a public key 
whose  corresponding  private  key  is  available  only  to  the  MTM.  The  key  used  is 
pointed to in the encHandle field of the TPM_EstablishTransport command.

A transport session is established, used and terminated using the commands shown 
in table 39.

Establish transport session:

TPM_EstablishTransport

Execute transport session:

TPM_ExecuteTransport

Close transport session:

This command completes the transport session, and if logging is switched on, a 
signed hash of all operations completed during the session is output. In order to 
complete  this  command run,  a  signing  key  must  have been created  for  this 
purpose and its handle communicated as input to the:

TPM_ReleaseTransportSigned

Table 39: A transport session
If an inherent confidentiality-protected channel exists between the MTM and its RTM 
and RTV transport session functionality is considered optional on both an MRTM and 
an MLTM. Else this functionality is required in both cases.

3.3.6.3 Secure Storage of and Access Control to Sensitive Data
Data which needs to be both integrity and confidentiality protected, may be MACed 
and encrypted using cryptographic functionality provided for by a TCG independent 
Cryptographic Infrastructure (CI)  implemented on the platform. This CI may then 
utilise the MTM so that a TPM_Seal can be called and the MAC and encryption keys 
stored  securely,  where  the  sealing  mechanism  can  confidentiality  protect  the 
symmetric  keys  and  ensure  that  they  are  only  accessible  by  the  legitimate 
application, namely the secure wallet application.

Alternatively,  sensitive  data  which  needs  to  be  both  integrity  and  confidentiality 
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protected, may be directly sealed by the MTM such that it is only accessible to a 
particular legitimate secure wallet application.

Integrity protection is not explicitly provided by the sealing mechanism. In order to 
integrity protect sealed data, 20 bytes of authorisation data needs to be associated 
with it. This authorisation data then needs to be sealed to a particular application (or 
PCR values which represent a trustworthy platform environment in which a correctly 
functioning version of the particular application is running).  In this way, only the 
correctly functioning application can unseal the authorisation data and then unseal 
the protected data. Data protected in this way can only be unsealed if knowledge of 
the correct authorisation data is demonstrated and the current platform environment 
is represented by the PCR values bound to the data when it was sealed.

In order to protect data input to the secure wallet,  a key hierarchy as described 
above must initially be set-up and then the data sealed to the appropriate PCRs using 
the 'Secure Wallet Storage Key (SWSK)' (a non-migratable storage key) such that it 
can only be accessed by the secure wallet application. 

1. Load the secure wallet provider SRK and obtain a handle to the SRK. 
2. The secure wallet storage key needs to be created under the secure wallet 

SRK, as shown in table 40.

TPM_CreateWrapKey
Table 40: Creating a wrap key

3. Load the SWSK, as shown in table 41.

TPM_LoadKey2
Table 41: Loading a key

4. Finally, seal the secure wallet sensitive data or, indeed, the symmetric keys 
used to confidentiality and integrity-protect the secure wallet sensitive data, 
using the SWSK, as shown in table 42.

TPM_Seal
Table 42: Sealing data using a storage key

Secure  storage  functionality,  as  described  by  the  TCG,  cannot  prevent  the 
unauthorised deletion of stored data. Both an MRTM and an MLTM are required to 
implement the commands shown in table 40, 41 and 42. 

3.3.6.4 Security of the Secure Wallet Sensitive Data While in Use
The PCRs which represent the execution environment into which the secure wallet 
data  can  be  released  are  presumed  to  represent  be  a  secure  and  trustworthy 
environment.  Isolation  techniques  described in  chapter  2  can  be  used  to  protect 
sensitive secure wallet data while in use on the platform.

3.3.7 Demonstrating Privilege
In  order  to  demonstrate  the  level  of  privilege  required  to  execute  various  MTM 
commands:
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● An entity may demonstrate physical presence at the platform; or, alternatively,
● An entity may demonstrate knowledge of the required authorisation data.

There are three particular occasions where demonstration of physical presence at the 
platform may be necessary in order to execute particular MLTM commands. These 
occasions include the operation of commands that control the MLTM when the MLTM 
owner  has  lost  cryptographic  authorisation  information;  to  authorise  an  MLTM 
command in a way that can not be subverted by rogue software; or to temporarily 
deactivate an MLTM.

Physical presence must not, however, be supported in an MRTM as the entity who is 
in control of the engine is assumed to be absent and the operator of the phone is not 
considered to be in control of the phone. In conjunction with this, owner authorised 
commands may not be implemented on a mandatory engine and if owner authorised 
commands  are  implemented  it  is  assumed  that  the  owner-authorisation  data  is 
backed-up remotely.

As an alternative to physical presence, cryptographic authorisation mechanisms may 
be used to authenticate an owner to their MTM, or to authorise the release and use of 
MTM protected objects. An authorisation value must be 20 bytes long, for example, a 
hashed password or 20 bytes from a smartcard. It must always be treated as shielded 
data and only ever used in the authorisation process.

Many of  the  MTM commands  described  throughout  this  chapter  (specifically  the 
MTM  owner  authorised  commands)  may  require  knowledge  of  the  required 
authorisation  data  to  be  demonstrated  before  access  to  either  an  MTM  owner 
authorised  command,  a  key  or  even  a  data  object  is  permitted.  A  variety  of 
authorisation data is held by an MTM, including:

● Unique MTM owner authorisation data, input of which is required before any 
'owner-authorised MTM command' may be executed;

● MTM object usage authorisation data,  input of which is required before an 
object protected by the MTM may be accessed; and

● MTM object migration authorisation data, input of which is required before an 
MTM key object can be migrated.

In order to demonstrate knowledge of the relevant authorisation data to the MTM, an 
entity  may  deploy  one  of  two  challenge-response  protocols,  namely  the  Object 
Independent  Authorisation  Protocol  (OIAP)  or  the  Object  Specific  Authorisation 
Protocol (OSAP).

OIAP is the more flexible and efficient of the two challenge-response authorisation 
protocols. Once an OIAP session has been established, it can be used to demonstrate 
knowledge of the authorisation data associated with a particular MTM object or MTM 
command.

For  example,  if  the  MTM  owner  wishes  to  read  the  public  endorsement  key 
knowledge of the owner authorisation data must be initially demonstrated, in order to 
gain access to the public endorsement key, as shown in table 43.

TPM_OIAP
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TPM_OwnerReadInternalPub

Table 43: Authorising an MTM owner read of the public endorsement key
The second protocol defined in the TCG specifications is OSAP. This protocol allows 
for the establishment of a session to prove knowledge of the authorisation data for a 
single MTM object, and minimises the exposure of long-term authorisation values. It 
may  be  used  to  authorise  multiple  commands  without  additional  session 
establishment but,  as  we discuss below,  the  TPM_OSAP handle  specifies  a single 
object to which all authorisations are bound.

During this protocol an ephemeral secret is generated (via the HMAC of the session 
nonces exchanged at the beginning of the protocol,  with the target MTM object's 
authorisation data used as the HMAC key) by the MTM and the caller, which is used 
to prove knowledge of the MTM object authorisation data.

This  particular  protocol  must  also  be  used  with  operations  that  set  or  reset 
authorisation data, e.g. sealing or creating a wrap key. In order to input the required 
authorisation data a number of steps must be followed:

1. The TPM_OSAP command must be called. TPM_OSAP creates the authorization 
handle, the shared secret and generates nonceEven and nonceEvenOSAP.

2. The required MTM command is called.
3. The shared secret which is generated can be used not only to authorise use of 

the parent object but also to input the authorisation data for a newly created 
child object, for example a new key or sealed data object.

4. Once this has been completed, the OSAP session can be kept open in order to 
authorise another command which is bound to the same parent object.

We will  now re-examine the load key command run shown in table  41, where we 
assume that the key, SWSK, is to be loaded by the input of a wrapped key blob. It is 
also assumed that the engine's SRK is loaded and its handle is available, and that the 
parent key, the engine's SRK, requires authorisation.

In  order  to  load  the  SWSK,  knowledge  of  the  SRK  authorisation  data  must  be 
demonstrated. When the SWSK has been loaded, a seal command, as described in 
table 42, is called. Use of the SWSK must also be authorised.

In this case, the user can demonstrate knowledge of the parent wrapping key (the 
SRK) authorisation data when loading the non-migratable key, SWSK, using an OIAP, 
for example. When sealing the secure wallet data using the SWSK, knowledge of the 
SWSK authorisation data can be demonstrated and the authorisation data for the 
sealed data inserted using the shared key established during the initial steps of the 
OSAP. This process is shown in table 44.

Assume we have the handle of the engine's SRK

TPM_OIAP

TPM_LoadKey2
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Now we have the handle to SWSK seal data:

TPM_OSAP

TPM_Seal

Table 44: Authorising a load key and an object seal

3.3.8 Conclusions
We have utilised the requirements extracted in section 3.2 from the analysis of the 
secure wallet  use-case designed by RUB in  order  to  examine which architectural 
components, based on TCG mobile reference architecture [63], and which functions, 
as specified in the TCG MTM specification [64], could be used to facilitate its robust 
implementation. The components and functionality required in order to implement 
the secure wallet mechanism will be used in specifying and analysing the methods by 
which  a  subset  of  MTM functionality  can  be  provided  given  an  X-GOLDTM  208/a 
generic OMTP TR1 device.

Table  45 summaries the subset of MTM commands required in order to enable this 
use-case. Regardless of whether the secure wallet mechanism is implemented on a 
mandatory or a discretionary engine, an authenticated boot mechanism is required. 
In order to implement an authenticated boot mechanism, the TMP must incorporate:

● A RTM; and
● A RTS (including PCRs).

If the secure wallet mechanism is implemented on a mandatory engine, a secure boot 
mechanism may be leveraged. In order to implement a secure boot mechanism, the 
TMP must incorporate:

● A RTM;
● A RTV;
● A RTS (incorporating PCRs).
● A RVAI;
● A list of keys authorised to sign RIM_Certs;
● An internal verification key;
● Two monotonic counters:

○ counterRIMProtect
○ counterBootstrap

● Platform component RIM_Certs;
● A policy for platform recovery; and
● Policies for RIM certificate revocation and update.

In  order  to  maintain  integrity  after  boot,  a  number  of  preventative  and reactive 
approaches may be deployed. We assume the use of software isolation through the 
deployment of virtualisation technology (namely, an L4 microkernel).

In order to implement this use-cases, it is also required that the TMP engine can be 
taken ownership of. In conjunction with this, basic functionality, such as self testing, 
is  also  needed.  Secure  storage  and  command  authorisation  functionality  is  also 
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mandatory in order to robustly implement the secure wallet mechanism.

Table 45: MTM commands required in an MLTM and an MRTM in order to implement 
the secure wallet mechanism

MLTM MRTM device TPM
TPM_Init TPM_Init
TPM_Startup TPM_Startup
TPM_SelfTestFull TPM_SelfTestFull
TPM_ContinueSelfTest TPM_ContinueSelfTest 
TPM_GetTestResult TPM_GetTestResult
TPM_SetOwnerInstall This command may not be required in an MRTM as it 

may be pre-installed with an SRK and an AIK.
TPM_OwnerSetDisable An MRTM can never be disabled.
TPM_PhysicalEnable An MRTM is always enabled so this command is not 

required.
TPM_PhysicalDisable An MRTM can never be disabled.
TPM_PhysicalSetDeactivated An MRTM can never be deactivated.
TPM_TakeOwnership This command may not be required in an MRTM as it 

may be pre-installed with an SRK and an AIK.
TPM_Seal TPM_Seal
TPM_CreateWrapKey TPM_CreateWrapKey 
TPM_LoadKey2 TPM_LoadKey2 
TPM CreateEndorsementKeyPair An MRTM may not contain an endorsement key pair so 

this command is considered optional.
TPM_ReadPubek An MRTM may not contain an endorsement key pair so 

this command is considered optional.
TPM_OwnerReadInternalPub (optional) An MRTM may not contain an endorsement key pair so 

this command is considered optional.
TPM_Extend TPM_Extend 
TPM_OIAP TPM_OIAP 
TPM_OSAP TPM_OSAP 
TPM_EstablishTransport (required if no inherent 
confidentiality-protected channel exists between the 
MTM and the RTM/RTV)

TPM_EstablishTransport (required if no inherent 
confidentiality-protected channel exists between the 
MTM and the RTM/RTV)

TPM_ExecuteTransport (required if no inherent 
confidentiality-protected channel exists between the 
MTM and the RTM/RTV)

TPM_ExecuteTransport (required if no inherent 
confidentiality-protected channel exists between the 
MTM and the RTM/RTV)

TPM_ReleaseTransportSigned (required if no inherent 
confidentiality-protected channel exists between the 
MTM and the RTM/RTV)

TPM_ReleaseTransportSigned (required if no inherent 
confidentiality-protected channel exists between the 
MTM and the RTM/RTV)

TPM_ReadCounter TPM_ReadCounter 
- TPM_InstallRIM
- TPM_VerifyRIMCert
- TPM_LoadVerificationKey
- TPM_LoadVerificationRootKeyDisable
- TPM_IncrementBootstrapCounter
- TPM_SetVerifiedPCRSelection
- TPM_VerifyRIMCertAndExtend
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4 OMTP TR1 and the Secure Wallet Prototype
In this section we consider the secure wallet prototype in the context of the recently 
published  OMTP  (Open  Mobile  Terminal  Platform)  TR1  Advanced  Trusted 
Environment recommendations document [50]. We will consider a final architecture 
where the secure wallet has been completely ported to the X-GOLDTM 208.

First of all we briefly summarize the main features of the OMTP TR1 document. For 
details, the reader is advised to consult the original document.

4.1 OMTP TR1 Summary

OMTP TR1 is a successor to the OMTP TR0 Trusted Environment document [49]. 
OMTP  TR1  has  been  aligned  with  current  threats  and  business  requirements. 
Although  TR1  is  concerned  with  mobile  equipment  security,  which  means  the 
handset, it also acknowledges that a UICC (Universal Integrated Circuit Card) would 
in  many  cases  meet,  and  exceeds  the  security  requirements  defined  in  the  TR1 
recommendations document. The UICC is the chip card used in mobile phones on 
GSM and UMTS networks. It is best known as the location of the SIM application. It 
can  also  host  other  applications.  Many  of  the  OMTP  TR1  Security  Enabler 
requirements and the TR1 use cases make reference to the UICC.

Where as OMTP TR0 defines a basic threat model, TR1 has a much more detailed 
threat model, and all requirements reference the threat model where relevant. Two 
security profiles called profile 1 and profile 2 are defined. Profile 1 is a subset of 
profile 2, and these profiles define which threats have to be defended against. Profile 
1  assets  must  mostly  be  only  defended  against  software  attacks  and  some basic 
hardware attacks. Profile 2 assets must be defended against software attacks and 
more advanced hardware attacks.

The document is partitioned into two parts. Part 1 consists of security enablers. Part 
2 consists of some example use cases.

4.1.1 Security Enablers
In this section we summarize the security enablers defined in the TR1 document.

● Trusted Execution Environment (TEE)

This is an execution environment for executing security sensitive programs. It meets 
a defined set of security requirements, resists a defined set of threats, and within this 
scope ensures that a program executes as it was designed to execute.

● Secure Storage (SST)

The secure storage facility  helps  the TEE to  handle  security  sensitive  objects.  It 
stores the sensitive objects in a way that the security properties of the objects are 
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maintained within the scope of a defined set of threats.

● Flexible Secure Boot (FSB)

FSB requirements ensure the integrity of the ME (Mobile Equipment) code base at 
boot time, and also defines requirements for securely updating the code image via an 
external connection to the ME. Again these requirements are within the scope of a 
defined set of threats.

● Generic Bootstrap Architecture (GBA)

3GPP GBA is a generic method which can be used by arbitrary application functions 
in the mobile network to authenticate users and establish a shared secret. It is based 
on the fact that both network and USIM share a 128-bit secret key Ki.  The MNO 
(Mobile  Network  Operator)  stores  the  secret  keys  for  all  subscribers  in  a 
Authentication Center (AUC), which is connected to the Home Location Register. The 
secret keys never leave the AUC and SIM domain.

An AKA (Authentication and Key Agreement) protocol is executed between the USIM/
ISIM and the mobile network in order to generate a confidentiality session key (CK) 
and integrity session key (IK). An ISIM is a further application which can run on the 
UICC. It  is  part  of the IMS (Internet Protocol Multimedia Subsystem), which is a 
framework for delivering IP Multimedia over GSM/UMTS mobile networks. In the 
case  of  ME  based  GBA  ,  upon  successful  network  verification,  the  USIM/ISIM 
delivers the confidentiality and integrity keys CK and IK to the mobile station, where 
they  are used to  generate the shared secret  with  the  target  network application 
function.

The GBA requirements are concerned with which level  of  TEE the sensitive GBA 
software should run on the ME. There are also requirements regarding protection of 
the confidentiality and integrity of the CK and IK if delivered to the ME. There are 
also further requirements regarding access restriction for applications running on 
the UE (User Equipment) which request access to the GBA functions on the USIM. 
These access controls are not specifically supported by any additional cryptographic 
mechanisms,  and  would  therefore  need  to  be  by  supported  access  control 
mechanisms  built  into  the  software  architecture  of  the  ME.  Most  of  the  OMTP 
requirements are based on references to the relevant 3GPP specifications.

● Run-Time Integrity Checking (RIC)

TR0  was  mostly  concerned  with  boot  time  security  when  considering  platform 
integrity. Where as TR0 did make references to run-time checking, there were no 
detailed requirements. The purpose of RIC is to check system integrity, post of boot. 
The RIC requirements do not define what must be checked by the RIC, but rather the 
robustness rules for the RIC mechanisms.

Some important principles are laid out. For example the RIC may be a hardware 
mechanism or could also be software mechanism in a TEE. The RIC cannot be used to 
check resources upon which it relies. For example, if the RIC is executed within a 
TEE, it cannot be used to check the integrity of that TEE. Also, it must not be possible 
for  less  trusted  software  to  manipulate  this  TEE  or  other  RIC  assets.  All  the 
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requirements are made with reference to the threat model.

What is actually checked depends on the system. This could be the main OS. Access 
Control  Lists  or  other  sensitive  system assets.  The  specification  also  considers  a 
primary and secondary RIC. The secondary RIC could be a software mechanism used 
by the main OS. TR1 states that the primary RIC must verify the integrity of the 
secondary RIC.

● Secure Access to User Input/Output Facility (SUIO)

The SUIO requirements are concerned with the input and output of data between the 
user and the TEE where a trusted application is executing.  SUIO assets are only 
required to be defending against software attacks. The IO facilities here could be a 
keyboard, touch-screen, display etc.

● Secure Interaction of UICC with Mobile Equipment (SUM)

The  SUM  requirements  are  concerned  with  creating  and  maintaining  a  secure 
channel between the ME and the UICC. The required function is that the UICC can 
authenticate the ME, or perhaps a specific TEE running in the ME, and a secure 
channel can be created between the ME (or TEE) and the UICC. This allows a secure 
application to be partitioned between the ME and the UICC.

4.1.2 Threat Model
As already mentioned TR1 has a much more detailed threat model than TR0. Seven 
threat groups have been defined.

4.1.2.1 Group 1 (Hardware Modules used for Accessing Memories)

These are threats which are based on misuse of on chip bus master modules, other 
than the main CPU, which could be used to access security sensitive memory ranges 
for example. These types of attacks are considered, especially since master modules 
usually do not have any MMU type hardware built into them.

4.1.2.2 Group 2 (CLCD (Color  LCD Controller)  used for displaying memories  and 
interfering with displayed data)

These threats are similar to group 1, but allow any accessed sensitive data to be 
displayed.

4.1.2.3 Group  3  (Bypass  security  by  removal  of  battery  power  or  removal  of 
external memory card)
These threats are concerned with putting the ME in an unknown state, or preventing 
it from completing a sensitive operation by power removal. Memory card is included 
as if sensitive information were stored on it, it may be possible to manipulate the 
handset behavior with respect to these sensitive objects by removing the memory 
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card.

4.1.2.4 Group 4 (Attack by replacement of flash when power is off (pre-boot))
A secured handset which does not allow the code image in flash to be altered could 
still be attacked by de-soldering the flash and replacing it with hacked code.

4.1.2.5 Group 5 (Extract secret via bus monitoring)
Confidential  data  could  be  extracted from the ME if  it  passes  between the  main 
processor and external flash or DRAM, by probing the connections between these 
components.

4.1.2.6 Group 6 (Mod chip attacks on data in external RAM)
These are quite  advanced threats.  They are concerned with the use of  additional 
hardware built into the ME which can be used to manipulate data or code at runtime, 
as it is in transit between the main CPU and external memory. This could alter the 
behaviour of the ME.

4.1.2.7 Group 7 (Attack by replacement of flash when power is on (post-boot))
This threat is based on a physical attack on the handset. The handset is modified with 
additional  logic  (and perhaps memory components)  so that  the memory image is 
swapped post boot, with modified code.

4.1.2.8 Software Threats
Software threats are handled as a set of best practices.

Software Quality Measures
Improving  the  quality  of  the  software  is  concerned  with  removing  security 
vulnerabilities which could be exploited. The types of measures which are advised 
include special attention to validation of security code, external review, reduce size of 
the security code, and use of an execution environment with reduced instruction set 
(Java for example).

Definition of API Related Coding Techniques
Techniques are described which avoid problems due to poorly designed APIs. These 
include separation of security APIs from other APIs, isolation of security code from 
other code so that a different boundary is crossed when calling security APIs than 
when calling standard APIs, and use type safe APIs on the security boundary.

Definition of buffer overflow techniques
Buffer overflow attacks are a common method used to attack systems. TR1 describes 
some techniques to counter such attacks. They include use of type safe API (which 
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keep track of buffer sizes), and using verification tools which analyse source code for 
buffer overflow vulnerabilities, prevent areas used for stacks and heaps from being 
executable.

Definition of execution isolation techniques to address software attacks
These techniques are concerned with isolating the scope of an attack. This means 
that if a vulnerability is found, it does not mean that the whole system is vulnerable. 
Methods including hardware isolation, and use of microkernel architectures, can be 
used to achieve this security goal.

Definition of concurrent processing threats
This is concerned with vulnerabilities due to race conditions in the operating system. 
Possible ways to combat these types of attacks is to use a simple thread model in the 
the security software domain.

4.1.3 TR1 Core Requirements
TR1 has a set of requirements which are valid throughout the whole document for all 
Security Enabler and use case requirements. It  starts by defining asset grouping. 
These are split into sensitive TR1 code assets, data assets, hardware assets, and key 
assets.

TR1  then  defines  some  base  requirements  for  software  threats,  and  hardware 
threats,  and specifies  which for  profile  1  and 2 which threats  must  be defended 
against.

4.1.3.1 Requirements to protect against software threats
For both profile 1 and profile 2,  TR1 requires use of  the techniques proposed in 
‘Definition  of  software  Quality  Measures’,  ‘Definition  of  API  Related  Coding 
Techniques, ‘Definition of Buffer Overflow Protection Mechanisms’.

Only profile 2 is required to defend the TR1 asset’s security properties against the 
threats  described in  ‘Hardware Modules  used for  Accessing Memory’  and ‘CLCD 
used for Displaying Memories and Interfering with Displayed Data’.

Further,  only  profile  2  is  recommended  to  make  use  of  methods  described  in 
‘Definition of Concurrent Processing Threats’, and ‘Definition of Execution Isolation 
Techniques to Address Software Attacks’.

4.1.3.2 Requirements to protect against hardware threats
The security properties of TR1 profile 1 and 2 code, data, and key assets are required 
to be protected against attacks based on battery or card removal (threat group 3), 
and attacks based on the removal of flash when the mobile phone is not powered 
(threat group 4).
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Only  profile  2  TR1  confidential  assets  are  required  to  be  defended  against  bus 
probing threats (threat group 5), and only profile 2 TR1 Key Assets are required to be 
protected against ‘Mod chip attacks on data in external memory’ (threat group 6), 
and ‘Attack by replacement of flash when power is on’ (threat group 7).

4.1.3.3 Debug Requirements
The debug requirements refer to the TR0 debug requirements, but are a little more 
specific regarding threat profile. The most important point is that debug assets which 
are used to debug a profile 2 TEE must also be of profile 2.

4.1.3.4 Cryptographic Requirements
TR1 also defines a set of cryptographic requirements. These are quite similar to TR0 
HUK (Hardware Unique Key)  requirements.  Some changes  are that  the  RSA key 
length was increased from 1024 to 2048 bit, and the SHA digest length was also 
increased from SHA1 (160 bit) to SHA-256 for protecting authenticity.

4.1.4 Asset Protection
Each TR1 enabler or Use Case description has an asset table. Each asset has its type 
defined (data, code, keys etc.), and the security property required for this property is 
defined. All the TR1 enablers and Use Cases specifically refer to an HUK as an asset. 
The security properties which are defined are integrity, confidentiality, authenticity, 
and non-replay. Often the requirement for defending a property is very specific to the 
use case.

4.1.5 Trusted Execution Environment
In this section we look at the TEE is a little more detail since this is one of the most 
important security enablers for TR1. TR1 begins by introducing the concept of an 
Execution Environment (EE), being a set of hardware/software components.

Further,  TR1  describes  a  typical  set  of  core  components  for  the  execution 
environment itself. These are a processing unit which define the EE Instruction Set 
Architecture (ISA),  a set  of connections (buses for example),  physical memory for 
storing data and code,  a mechanism for initializing the boot process,  and the EE 
code, data and keys.

The EE has a set of facilities which it makes available to Applications.
The applications need some form of interface. This could be an API or an ISA.

EEs will vary in complexity, they may provide dynamic management of code (thread 
management,  task switching,  the possibility  to  load and unload applications etc.). 
Further, the code may be natively executed or interpreted.

The  environment  may  also  provide  memory  management.  This  allows  areas  of 
memory to be allocated/de-allocated, and control  access to memory depending on 
what application is currently running in the environment.  Other facilities such as 
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storage and retrieval of data in non volatile memory may also be provided.

The EE may also offer facilities which allow an application to communicate with the 
external world. This could be to something local such as keyboard and display, or 
something remote such as a network connection.

As already mentioned more than one application may execute in an EE. The EE may 
provide facilities to allow the applications to communicate with each other. The EE 
may also provide facilities to install, upgrade and generally manage applications. This 
may  include  identifying  users  and  processes,  and  assign  them  credentials  and 
permissions so that access control policies may be enforced.

A  system  may  contain  multiple  Execution  Environments,  and  they  may  share 
resources, or have resources allocated to a particular EE. In this case, the resource 
must  be protected from other  EEs.  TR1 assumes that  some of  the EEs will  have 
access to a Hardware Unique Key as defined in TR0. TR1 also assumes that a TEE 
will always have access to secure storage facilities.

Applications running in an EE could be a service to a user, or to another application. 
An application running in an EE could be another EE. Example of EEs are a CPU, an 
Operating System, a Virtual Machine or a UICC.

TR1 considers two sets of security requirements (profile 1 and profile 2) as already 
mentioned. If an EE meets these security requirements of a particular profile, it can 
then be referred to as a TEE of this profile.

4.1.5.1 Open Trusted Execution Environment
TR1 also defines an Open Trusted Execution Environment. This type of TEE is quite 
specific to operator requirements. An Open TEE is a TEE which allow the MNO to 
install applications into it ‘post manufacturing’. Further, an Open TEE must support a 
UICC secure channel, the Generic Bootstrap Architecture, and secure user IO.

4.1.5.2 Trusted Execution Environment Requirements
The TR1 TEE requirements are partitioned into groups. These are:

● TEE Core Requirements

These are generally concerned with TEE HUK requirements

● TEE Cryptographic Requirements

These are concerned the level of cryptographic support required by a TEE

● TEE Keys

This is a set of requirements concerned with key handling within the TEE.
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● TEE Facilities

These requirements are concerned with the facilities required for the different types 
of TEE. Examples of required facilities are SUIO, SST and SUM.

● TEE Application Lifecycle

These requirements are concerned with the rules for installing applications within a 
TEE.

● TEE Application Requirements

The requirements are mostly concerned with isolation of applications within a TEE, 
and also checking the authenticity/integrity of applications before letting them run.

● TEE Self Protection Requirements

These requirements are mostly concerned with securely booting the TEE, and make 
references to the FSB facility.

● TEE Isolation Requirements

These requirements are mostly concerned with protecting the TEE and its resources 
from others EEs.

● Inter-Execution Environment Communications

This  is  a  set  of  requirements  which  are  concerned  with  how TEEs  and EEs can 
securely communicate with each other.

One of the basic TEE requirements is access to a Secure Storage facility. We will look 
at the OMTP T1 Secure Storage structures and requirements when we analyse the 
Secure Wallet prototype architecture.

4.1.6 Use Case Overview
TR1  includes  three  use  cases.  These  are  Broadcast  Service  Protection,  Trusted 
Device Management, and Mobile Commerce. We will briefly look at them here, and 
summarize which of the TR1 security enablers are made use of for each of them.

4.1.6.1 Broadcast Service Protection
The broadcast service protection use case concentrates on the Open Mobile Alliance 
(OMA) BCAST Smart Card Profile. OMA BCAST is concerned with content broadcast 
services which are encrypted in order to control the consumption of these services.

In the Smart Card profile much of the security is centered on the use of a UICC. As 
TR1 points out, the UICC has a Trusted Execution Environment like facility with on 
chip card secure storage. The UICCs are generally designed to defend against threats 
which are often out of scope for a mobile phone baseband controller. OMA BCAST 
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Smart Card Profile defines that the long term keys are stored on the UICC.

The TR1 Broadcast requirements mostly deal with the protection of the keys which 
are in the ME. These are short terms keys, such as traffic keys, or binding keys for 
binding the UICC to  the  ME.  The requirements  reference the  TR1 SUM (Secure 
Interaction  of  UICC  with  Mobile  Equipment).  The  Broadcast  Service  Protection 
requirements  also  define  the  use  of  TEEs  and  SSTs  in  order  to  protect  the  key 
objects. This also means that the FSB requirements must be met for this use case.

OMA  BCAST  also  makes  use  of  GBA  for  key  distribution,  so  the  TR1  GBA 
requirements are also relevant.

4.1.6.2 Trusted Device Management
The Trusted Device Management use case is concerned with the requirements for a 
secure  TR1  implementation  of  the  Open  Mobile  Alliance  Device  Management 
protocol.  This use case is divided into two sub use cases.

These are:

● Trusted Firmware Management (Update)

Firmware refers here top the basic software of the ME including device drivers.

● Trusted Software Management

This refers to any software other than the firmware. The types of functions required 
are installation, update, removal, activation and deactivation.

In OMA Device Management, the firmware/software on a device is managed by a 
management server.

The Access Control List is one of the most security sensitive assets. This defines for 
each management server what types of management commands can be executed on 
the  device.  If  the  Access  Control  List  is  manipulated,  then  the  device  can  be 
compromised by an attacker.

The actual requirements are centred on the protection of a device management key. 
This is classified as a sensitive object which must be handled by an SST facility. The 
requirements also define that the security properties of the device management keys 
shall be protected, and that the key is only accessible by the appropriate firmware or 
software management code.

The download and update management code must be verified before execution. This 
could be at boot, in which case this can be managed by the secure boot. The Trusted 
Device Management use case also has some optional requirements for Secure User 
IO. TR1 does not go into this in detail, but one possible reason would be so that the 
end user can safely make a decision on whether to carry out a software update based 
on the information displayed on the screen.

Requirements for handling of a download package are handled by referring to the 
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Flexible Secure Boot security enabler. Further, if the downloaded application is to be 
installed  into  a  TEE,  then  the installation  process  must  follow the  TEE Lifecycle 
Requirements.

4.1.6.3 Mobile Commerce
The mobile commerce use case referred to by TR1 is quite specific. It focuses on 
proximity payment where the most sensitive part of the application is in the UICC. 
The ME provides a User Interface (UI) to the payment application.

The ME has a browser which communicates with a web server situated on the UICC 
via  an  HTTP  connection.  This  partitioning  is  based  on  the  proximity  payment 
architecture  as  recommended  in  the  GSM  Association  NFC  (Near  Field 
Communication) technical guidelines.

The use case is broken up into two parts

1. The user has an application activated in her UICC by holding it close to a Point 
of  Sale.  The  mobile  commerce  application  indicates  to  the  user  that  a 
transaction  is  pending.  The  user  enters  a  PIN so  that  the  transaction  can 
complete.

2. The user has an application activated in her UICC by holding it close to a Point 
of  Sale.  The  mobile  commerce  application  indicates  to  the  user  that  a 
transaction is pending. The user is only required to enter a PIN if the amount 
of money involved is above a certain limit. 

The main assets involved in this use case are:

● a  mobile  application  certificate  used  to  allow  the  mobile  application  to 
authenticate itself to the UICC, and a root certificate for authenticating the 
mobile application certificate.
○ Each with the security properties integrity and authenticity

● The mobile application code, data, and keys.
○ All with security properties integrity and authenticity plus confidentiality 

for the keys.
● Data exchanged between the user and the mobile application via the keyboard 

and display.
○ With  security  properties  integrity,  authenticity,  non-replay  plus 

confidentiality for the keypad interface.
● A session key for creating a secure channel between the mobile application 

and the UICC.
○ With security properties integrity and confidentiality.

● A PIN for activating the payment service
○ With security properties integrity, confidentiality and non-replay.

Threats to the Mobile Commerce Application
The mobile commerce application code, data, and certificates need to be protected 
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from
 

● Bypass security by removal of battery power or removal of external memory 
card

● Attack by replacement of flash when power is off (pre-boot)

This is for profile 1 and profile 2 applications.

To recap,  only profile 2 mobile commerce application code,  data,  and certificates 
need to be protected against threats

● Hardware Modules used for Accessing Memories
● CLCD used for displaying memories and interfering with displayed data
● Extract secret via bus monitoring 
● Mod chip attacks on data in external RAM
● Attack by replacement of flash when power is on(post-boot)

Further, only profile 2 mobile commerce application keys need to be protected from

● Extract secret via bus monitoring
● Mod chip attacks on data in external RAM

The mobile commerce use case also specifically has requirements for secure user IO 
for keyboard and display for both profile 1 and profile 2. But it must be noted that 
TR1 only defines a profile 1 SUIO.

There are also requirements for a secure storage utility if PIN and session key data 
are to survive for more than one session.

The certificates that are used must also be integrity protected. Although not stated in 
the TR1 requirements document, this could be managed by including them in the 
secure boot, or secure application loading mechanisms and then isolating them in a 
TEE.

The mobile commerce application must be checked at installation. It is advised to 
check it prior to execution, and optionally it can be checked at run time using a RIC.

Although not specifically stated, the mobile commerce use case could make good use 
of a TEE, SST, FSB.

4.2 Secure Wallet Architecture in the context of TR1
In  order  to  understand  the  secure  wallet  architecture  in  the  scope  of  the  TR1 
recommendations  document,  we will  briefly  compare  it  with  one  of  the  TR1 use 
cases. The mobile TV and the device management use cases are too dissimilar to the 
secure  wallet  use  case,  and  we  will  not  discuss  them  further.  The  TR1  mobile 
commerce example is the closest use case to the secure wallet mobile application, so 
we will now contrast and compare them.
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Both  use  cases  are  concerned  with  a  form  of  payment,  but  they  are  still  quite 
different. The TR1 mobile commerce use case is very UICC centric, where as the 
secure wallet, in its final form would be completely implemented on the baseband 
controller.

Although the TR1 use case makes intensive use of the UICC security capabilities it 
also does place security requirements on the baseband controller, as does the secure 
wallet.

The TR1 mobile commerce application makes use of the security enablers Secure 
User IO, Trusted Execution Environment, Secure Storage, and the basic trust in the 
platform is established by a secure boot. In the following sections we show that the 
Secure  Wallet  also  has  these  requirements,  and  we  will  map  the  the  basic 
architecture of the secure wallet to TR1 security enablers. The TR1 security enablers, 
Generic Bootstrap Architecture and Secure Interaction of the UICC with the Mobile 
Equipment are not relevant to the secure wallet use case, and will not be considered 
further.

Before we begin this it should be stated that the secure wallet is defined to defend 
against software attacks. For this reason we consider the architecture in terms of a 
TR1 profile 1 requirements.

4.3 Proposal of the final porting of the secure wallet to the X-GOLD 208
In the current prototype, a TPM emulator, which makes use of the X-GOLDTM  208 
cryptographic hardware, has been ported to the X-GOLDTM 208, see section 2.7. In a 
final architecture, the complete secure wallet prototype would be ported to the X-
GOLDTM 208.

In this final prototype, the L4 microkernel and L4 environment would run on top of 
the X-GOLDTM 208 hardware. There would be seven L4 applications running in the L4 
environment.  These  would  be  the  secure  GUI,  the  Compartment  Manager,  the 
Storage Manager, the Network Manager, the TPM emulator, the wallet application, 
and the legacy browser.

The TPM emulator would make use of the X-GOLDTM 208 hardware as it currently 
does, but in addition, the Storage Manager could also make use of the X-GOLDTM 208 
hardware. The X-GOLDTM 208 has a hardware key which can be used by the AES 
hardware in order to encrypt and decrypt sensitive objects.

The L4 microkernel would also provide isolation between the L4 applications. Some 
form of policy manager would be required so that only authorized communication 
between the L4 applications would be possible.

As in the current prototype, two versions of the L4 Linux could be ported. One would 
contain the secure wallet application, and the other would be the legacy OS in which 
all the ‘non-secure’ software could run. This scenario is depicted in Figure 26.

4.4 Platform Integrity and Authenticity
One  of  OMTP  TR0  and  TR1’s  most  basic  requirements  is  the  establishment  of 
platform integrity through a secure boot. Platform integrity and authenticity can be 
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provided by the X-GOLDTM 208 secure boot.

Figure 26: Proposed architecture for final secure wallet prototype 

In this architecture, the X-GOLD 208 secure boot would be used as the first stage of a 
boot process which securely instantiates an 'immutable'  Root Trust of Enforcement 
(RTE), as defined in the Trusted Computing Group Mobile Reference Architecture. 
This RTE would then build further Roots of Trusts in the platform. These Roots of 
Trust  would  then  be  used  to  establish  the  integrity  and  authenticity  of  the  L4 
microkernel,  the  L4  environment,  and  the  L4  applications  including  the  TPM 
emulator. Although not shown here, a measurement agent could then make use of the 
TPM in order to verify the integrity of the the rest of the software as it was loaded. 
This would possibly be handled by the compartment manager.
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4.4.1 Trusted Execution Environments
The secure wallet prototype is actually a set of communicating Trusted Execution 
Environments.

We list the TEEs in the architecture below.

● L4 microkernel: This is the most basic TEE in the system. All other TEEs run 
on top of this TEE.

● L4 environment:  This is the TEE in which all the L4 applications run. The L4 
microkernel provides the isolation between these TEE applications.

● L4 Linux for secure wallet: The L4 Linux is also a TEE since it is isolated from 
the legacy Linux which would be open to untrusted applications.

● JVM running in trusted L4 Linux:  The JVM is also a TEE. In this application 
only the single secure wallet application runs in the JVM, but the JVM could 
offer isolation for other secure applications.

Authorized  Communication  between  the  TEEs  can  be  provided  by  the  L4 
Environment as long as a policy manager is implemented. In this architecture, if we 
consider the secure application to be running in the JVM, then it would have access 
to  secure  storage,  and  cryptographic  services  (possibly  provided  by  the  TPM 
emulator) via the L4 environment.

4.4.2 Secure Storage
In this section we look at the secure storage utility of the secure wallet prototype. We 
also briefly look at some OMTP TR1 Secure Storage requirements.

The Secure Wallet prototype architecture makes use of two types of secure storage.

● Secure storage as part of the TPM emulator
○ Hardware support provided by the X-GOLDTM 208 cryptographic hardware
○ The TPM emulator only offers asymmetric cryptographic operations as TPM 

commands
● Secure storage used by the storage manager

○ This would also make use of the X-GOLDTM  208 cryptographic hardware, 
and  could  make  direct  use  of  the  symmetric  encryption/decryption 
hardware.

We  consider  the  storage  manager  first.  The  storage  manager  runs  in  its  own 
compartment. Its purpose is to store components whilst preserving their integrity 
and confidentiality.

We briefly review the operation of the Storage Manager before we look at out it mpas 
to the TR1 definition of SST. When the Storage Manager is invoked to store data by a 
compartment, the storage manager calls the compartment manager in order to get 
the configuration data of the invoking compartment. The Storage Manager stores a 
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data object with an index value, which contains the meta data belonging to the data 
object.  This  includes  a  hash  of  the  invoking  compartment,  and  possibly  access 
restriction rules for this data object.

The index value is critical to the security properties of the stored object. The stored 
object and its index value are encrypted using the storage manager symmetric key 
kSM. We will consider the kSM later.

If a compartment makes a request to the Storage Manager to retrieve an object, the 
Storage Manager checks that this particular compartment has the rights to retrieve 
this object. It does this by invoking the compartment manager to compare the index 
value  of  the  calling  compartment  (which  will  have been measured and stored at 
system boot),  with  the  index  value  stored  with  the  retrieved object.  The  storage 
manager may also check the user id  of  the calling entity from within the calling 
compartment. The retrieved object is only delivered to the calling compartment if the 
index check passes, and if the user requesting the object is authorized to receive the 
retrieved object.

The retrieved object and index value are decrypted using the kSM. kSM is sealed to the 
storage  manager.  This  is  done  using  the  TPM sealing  function.  kSM can  only  be 
unsealed by the TPM if the configuration of the storage manager matches that of the 
storage manager which sealed it in the first place. A modified storage manager would 
therefore not be able to access the kSM.

We consider now how the secure wallet Storage Manager maps to the structures 
defined in the OMTP TR1 Secure Store requirements. OMTP TR1 SST defines a key 
manager which is responsible for handling secure storage keys. In the case of the 
secure wallet prototype, the key manager is partitioned between the TPM emulator 
and the Secure Storage compartment. The Secure Storage root key is protected by 
the TPM emulator. TR1 refers to this key as the SST key manager key. It should be 
noted that  even in  a profile  1 system,  the key manager key has to  be protected 
against all of the defined hardware threats, as well as the profile 1 software threats. 
Care would have to taken with the final implementation, if these requirements were 
to be met. Further, the storage manager key needs to be securely passed from the 
TPM emulator to the storage manager compartment. OMTP TR1 places requirements 
on inter TEE secure communication when sensitive objects need to passed between 
TEEs.

OMTP TR1 SST also defines an Applications Assets Manager. The Application Asset 
Manager is the heart of the SST utility. It is the Application Asset Manager which 
calls  the  SST  Key  Manager.  OMTP  TR1  defines  that  only  the  Application  Asset 
Manager must have access to the SST Key Manager. In the Secure Wallet Prototype, 
the Application Asset Manager roughly maps to the secure wallet prototype's Storage 
Manager. As the key manager runs inside the storage manager compartment, access 
to  the  key  manager  can  be  controlled  by  the  storage  manager.  The  TR1  SST 
requirements can then be met as long as the compartment manager ensures that only 
the key manager has access to the Secure Storage root key.

In the OMTP TR1 Secure Storage requirements, it is suggested that the Application 
Assets Manager could store the security properties and access policies for a sensitive 
object. The secure wallet prototype's Storage Manager implements these functions 
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through the use of the index value which is stored with the sensitive object.

OMTP TR1 places additional requirements on the Application Asset Manager. Two of 
the fundamental requirements are

1. The  Application  Asset  Manager  must  be  able  to  bind  the  identity  of  an 
application supplied by a TEE or EE to a sensitive object, and limit access to 
the sensitive object to this particular application. 

2. The Application Asset Manager must also maintain an access control policy for 
the sensitive objects under its control. 

The secure wallet prototype can meet these requirements. It achieves this through 
the process of binding objects to the configuration of the compartments which use 
the secure storage utility. This functionality is not concentrated in the secure wallet 
prototype storage manger. The storage manager provides this functionality through 
the use of the compartment manager.

TR1 SST also has requirements which state that an application should not be able to 
compute the storage key of another application. Again this is achieved in the secure 
wallet  prototype through the use of the configuration checking capabilities of the 
compartment manager.

4.4.3 Secure User IO
As previously mentioned, the SUIO requirements are concerned with the input and 
output  of  data  between  the  user  and  the  TEE  where  a  trusted  application  is 
executing.
This fits quite well with the secure wallet architecture.

The architecture defines a trusted path between the secure GUI, the keyboard and 
the secure wallet application, which is running in a TEE. The secure wallet prototype 
provides  such  a  trusted  path.  The  security  and  isolation  of  the  trusted  path  is 
enforced by the L4 environment.

4.4.4 Software Threats
We already mentioned that the secure wallet  has been defined to be resistant to 
software threats. This generally aligned to a TR1 profile 1 security level. TR1 Secure 
Storage  key  management  requirements  are  an  exception  and  TR1  still  require 
protection from hardware threats.

The  profile  1  software  required  software  measures  are  covered  by  ‘Definition  of 
software Quality Measures’, ‘Definition of API Related Coding Techniques, ‘Definition 
of Buffer Overflow Protection Mechanisms’.

These can only be met by careful coding, code reviews, and especially careful design 
of TEE interfaces. The secure wallet architecture assists in the implementation of 
these measures by concentrating the security facilities in isolated Trusted Execution 
Environments.
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In fact, the secure wallet prototype architecture implements the security measure 
proposed in  TR1 by  the  ‘Definition  of  Execution  Isolation  Techniques  to  Address 
Software Attacks’. This is a profile 2 requirement, but the secure wallet architecture 
makes extensive use of these techniques. This locates the TR1 security classification 
of the secure wallet prototype software architecture somewhere between a profile 1 
and profile 2.

4.5 Summary
In Section 4, we first summarized the OMTP TR1 recommendations. We selected the 
OMTP TR1 security enablers and use cases which were most relevant to the secure 
wallet prototype architecture. These were the security enablers Trusted Execution 
Environment, Secure Storage, Secure Access the User Input/Output facility, Flexible 
Secure  Boot/Secure  Boot,  and  Runtime  Integrity  Checking.  Generic  Bootstrap 
Architecture and Secure Interaction of the UICC and Mobile Equipment were not 
considered as these UICC centric security enablers were not relevant to the secure 
wallet prototype.

We compared the Secure Wallet use case with the OMTP TR1 mobile commerce use 
case, and although we found some similarities, there were also many differences. The 
security enablers were seen as more promising for our work.

An initial  and non-exhaustive analysis was carried out in order to judge how the 
secure  wallet  prototype  architecture  mapped  to  the  TR1  requirements.  The 
implemented  prototype  was  not  used  for  the  analysis.  Instead  we  considered  a 
theoretical successor to the secure wallet prototype, where the complete system had 
been ported to the X-GOLDTM 208.

We found that the basic platform security for OMTP TR0 and TR1 are based on a 
secure boot. The X-GOLDTM  208 can also provide general platform integrity through 
its secure boot feature. One of the most important security enablers of TR1 is the 
TEE. We saw that the secure wallet prototype architecture can be viewed as a set of 
communicating Trusted Execution  Engines.  The  prototype  also  provides  a  Secure 
Storage and Secure Access to User Input/Output facility generally in line with an 
OMTP TR1 profile 1 classification. The secure storage was made possible due to the 
hardware cryptographic  functions  and unique key provided by the X-GOLDTM  208 
hardware.

The major security strength of the prototype was due to the strong isolation provided 
by  the compartment manager.  This  isolation is  generally  only  found in  an OMTP 
profile 2 architecture. The prototype would not meet all profile 2 requirements, as it 
was not defined to protect against all of the OMTP TR1 physical threats.

Areas  for  further  work  would  be  a  more  detailed  analysis  of  the  secure  wallet 
prototype and the OMTP TR1 requirements.
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5 Conclusions
In  this  deliverable,  we  proposed  the  Secure  Wallet as  a  countermeasure  against 
identity theft and examined the use case from different points of view. In particular, 
the  realization  of  such  a  solution  on  a  mobile  platform and its  deployment  with 
respect to relevant mobile standards have been considered.

A  PC-based  prototype  of  the  Secure  Wallet  has  been  implemented,  whereas  the 
realization of the demonstrator described in Section 2.7 is still ongoing. Given that 
the TCG Mobile Trusted Module (MTM) specification was published when much of 
the  work  for  our  prototype  was  already  in  progress,  and  since  the  sealing 
functionality  (which is  the major  Trusted Computing functionality  needed for  the 
Secure Wallet) provided by MTMs does not deviate from the TPM 1.2 specification, it 
seems reasonable  to  use  a  modified  TPM emulator  –  equipped  with  a  driver  for 
accessing the existing security chip – to provide Trusted Computing functionality for 
the demonstrator. However, it is anticipated that in the future MTMs (possibly based 
on a similar mechanism to access vendor-specific mobile hardware) will be employed 
instead.

In  our  theoretical  work,  we  addressed  the  most  relevant  and  recent  standards 
relating to  the implementation of  a  trusted mobile  platform.  We examined which 
architectural components, based on the TCG mobile reference architecture [63], and 
which functions, as specified in the TCG MTM specification [64], could be used to 
facilitate a robust implementation of the secure wallet mechanism. The components 
and functionality required in order to implement the secure wallet will be used in 
specifying and analysing the methods by which a subset of MTM functionality can be 
provided given an X-GOLDTM 208/a generic OMTP TR1 device. We also examined the 
secure wallet use case in light of OMTP TR1.

Open_TC Deliverable D08.2 104/109



 

 Security Services for a Trusted Mobile Application Final

Bibliography
[1]  Anti  Phishing  Working  Group.  Phishing  Activity  Trends  Report(s),  2005-2007. 
http://www.antiphishing.org.

[2] ID theft ring hits 50 banks, security firm says, 2005. 
http://news.cnet.com/2100-7349_3-5823591.html.

[3] New Trojans plunder bank accounts, 2006. 
http://news.cnet.com/2100-7349_3-6041173.html.
[4] L4 linux. http://os.inf.tu-dresden.de/L4/LinuxOnL4/.
[5] The l4 μ-kernel. http://os.inf.tu-dresden.de/L4/.
[6] Microsoft warns of hijacked certificates. 
http://www.news.com/2100-1001-254586.html.
[7] Netcraft toolbar. 2004. http://toolbar.netcraft.com.
[8] Paros Java Proxy. http://www.parosproxy.org/.
[9] Phishers get personal. 
http://news.com.com/Phishers+get+personal/2100-7349_3-5720672.html.
[10] TrustedGRUB. Http://www.trust.rub.de/home/concluded-projects/trustedgrub/.
[11] Gartner Press Releases 2006. http://www.gartner.com/it/page.jsp?id=498245.

[12] Pop-up program reads keystrokes, steals passwords, 2004. http://news.cnet.com/
2100-7349_3-5251981.html.

[13] TrouSerS – the Open-Source TCG Software Stack, 
http://trousers.sourceforge.net/

[14] TPM Manager v0.5, April 2008, http://sourceforge.net/projects/tpmmanager
[15] Andre Adelsbach, Sebastian Gajek, and Joerg Schwenk. Visual Spoofing of SSL- 
Protected Web Sites and Effective Countermeasures. In Information Security Practice 
and Experience, First International Conference, ISPEC 2005, Singapore, April 11-14, 
2005, Proceedings, pages 204-216. Springer, 2005.
[16] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap 
architecture. In S&P ‘97: Proceedings of the 1997 IEEE Symposium on Security and 
Privacy, page 65, Washington, DC, USA, 1997. IEEE Computer Society.

[17]  B.  Balacheff,  L.  Chen,  S.  Pearson,  D.  Plaquin,  and  G.  Proudler.  Trusted 
Computing  Platforms:  TCPA Technology  in  Context.  Prentice  Hall,  Upper  Saddle 
River, New Jersey, USA, 2003.
[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, 
Rolf Neugebauer, Ian Pratt, and Andrew Wareld. Xen and the art of virtualization. In 
SOSP ‘03:  Proceedings  of  the  nineteenth  ACM symposium on Operating  systems 
principles, pages 164-177, New York, NY, USA, 2003. ACM.
[19]  Steven  M.  Bellovin.  Using the  domain  name system for  system breakins.  In 

Open_TC Deliverable D08.2 105/109

http://sourceforge.net/projects/tpmmanager
http://trousers.sourceforge.net/
http://news.cnet.com/2100-7349_3-5251981.html
http://news.cnet.com/2100-7349_3-5251981.html
http://www.gartner.com/it/page.jsp?id=498245
http://www.trust.rub.de/home/concluded-projects/trustedgrub/
http://news.com.com/Phishers+get+personal/2100-7349_3-5720672.html
http://www.parosproxy.org/
http://toolbar.netcraft.com/
http://www.news.com/2100-1001-254586.html
http://os.inf.tu-dresden.de/L4/
http://os.inf.tu-dresden.de/L4/LinuxOnL4/
http://news.cnet.com/2100-7349_3-6041173.html
http://news.cnet.com/2100-7349_3-5823591.html
http://www.antiphishing.org/


 

 Security Services for a Trusted Mobile Application Final

SSYM’95: Proceedings of the 5th conference on USENIX UNIX Security Symposium, 
Berkeley, CA, USA, 1995. USENIX Association.
[20]  Dominik  Birk,  Sebastian  Gajek,  Felix  Grobert,  and  Ahmad-Reza  Sadeghi. 
Phishing  phishers  –  observing  and  tracing  organized  cybercrime.  In  ICIMP  ‘07: 
Proceedings  of  the  Second  International  Conference  on  Internet  Monitoring  and 
Protection, page 3, Washington, DC, USA, 2007. IEEE Computer Society.
[21] Peter Burkholder. SSL Man-in-the-Middle Attacks.
http://www.sans.org/rr/papers/60/480.pdf.
[22] Neil Chou, Robert Ledesma, Yuka Teraguchi, and John C. Mitchell. Client-side 
defense  against  web-based  identity  theft.  In  Proceedings  of  the  Network  and 
Distributed System Security Symposium, NDSS 2004, San Diego,  California, USA, 
2004.

[23] P.C. Clark and L.J. Hoffman. BITS: A Smartcard Protected Operating System. 
Communications of the ACM, 37(11): 66-94, November, 1994.
[24] Richard S. Cox, Steven D. Gribble, Henry M. Levy, and Jacob Gorm Hansen. A 
safety-oriented platform for web applications.  In  SP ‘06: Proceedings of the 2006 
IEEE Symposium on Security and Privacy (S&P’06), pages 350-364, Washington, DC, 
USA, 2006. IEEE Computer Society.
[25] Rachna Dhamija and J. D. Tygar. The battle against phishing: Dynamic security 
skins.  In  SOUPS ‘05:  Proceedings of  the 2005 symposium on Usable  privacy and 
security, pages 77-88, New York, NY, USA, 2005. ACM.

[26] R. Dhamija, J. D. Tygar, and M. Hearst. Why Phishing Works. In Proceedings of 
the Conference on Human Factors in Computing Systems (CHI2006), 2006.
[27] Jeremy Epstein, John McHugh, Hilarie K. Orman, R. Pascale, Ann B. Marmor-
Squires,  B.  Danner,  C.  Martin,  M.  Branstad,  J.  Benson,  and  D.  Rothnie.  A  high 
assurance window system prototype.  Journal of Computer Security, 2(2-3):159-190, 
1993.
[28] E.W Felten, D. Balfanz, D. Dean, and D. Wallach. Web spoofing: An internet con 
game. Technical  Report 540-96, Dept.  of  Computer Science,  Princeton University, 
1996.
[29]  Norman  Feske  and  Christian  Helmuth.  A  Nitpicker’s  guide  to  a  minimal 
complexity  secure  GUI.  In  ACSAC ‘05:  Proceedings  of  the  21st Annual  Computer 
Security Applications Conference, pages 85-94, Washington, DC, USA, 2005. IEEE 
Computer Society.
[30] Eran Gabber, Phillip B. Gibbons, Yossi Matias, and Alain J. Mayer. How to make 
personalized  web  browsing  simple,  secure,  and  anonymous.  In  Financial 
Cryptography, First International Conference, FC ‘97, Anguilla, British West Indies, 
February  24-28,  1997,  Proceedings,  volume  1318  of  Lecture  Notes  in  Computer 
Science, pages 17-32. Springer, 1997.

[31] Sebastian Gajek, Ahma-Reza Sadeghi,  Christian  Stüble, and Marcel  Winandy. 
Compartmented security  for  browsers  –  or  how to  thwart  a  phisher  with  trusted 
computing. In  Proceedings of the Second International Conference on Availability, 
Reliability and Security (ARES 2007), pages 120-127. IEEE, 2007.

[32]  S.  Gajek,  J.  Schwenk,  and X.  Chen.  On the insecurity  of  Microsoft’s  identity 

Open_TC Deliverable D08.2 106/109

http://www.sans.org/rr/papers/60/480.pdf


 

 Security Services for a Trusted Mobile Application Final

metasystem cardspace. Technical Report HGI TR-2008-004, Horst Goertz Institute for 
IT-Security, 2008.
[33] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. Terra: a 
virtual machine-based platform for trusted computing. In  SOSP ‘03: Proceedings of 
the  nineteenth ACM symposium on Operating systems principles,  pages  193-206, 
New York, NY, USA, 2003. ACM.

[34] T. Groß and B. Pfitzmann. SAML artifact  information flow revisited.  In  IEEE 
Workshop on Web Services Security, 2006.
[35] J. Alex Halderman, Brent Waters, and Edward W. Felten. A convenient method 
for securely managing passwords. In WWW ‘05: Proceedings of the 14th international 
conference on World Wide Web, pages 471-479, New York, NY, USA, 2005. ACM.
[36]  Amir  Herzberg.  Browsers  defenses  against  phishing,  spoofing  and  malware. 
Cryptology ePrint Archive, Report 2006/083, 2006. http://eprint.iacr.org/2006/083.
[37]  Amir  Herzberg  and  Ahmad  Gbara.  Security  and  identication  indicators  for 
browsers against spoofing and phishing attacks. Cryptology ePrint Archive, Report 
2004/155, 2004. http://eprint.iacr.org/2004/155.

[38]  D.  P.  Jablon.  Strong  password-only  authenticated  key  exchange.  Computer 
Communication Review, 26(5):5–26, 1996.

[39]  C.  Jackson,  D.  Boneh,  and J.  Mitchell.  Spyware resistant  web authentication 
using virtual machines. http://crypto.stanford.edu/spyblock/, 2006.

[40] C. Jackson, D. Boneh, and J. Mitchell. Transaction generators: Root kits for web. 
In 2nd USENIX Workshop on Hot Topics in Security (HotSec ’07), 2007.

[41] Collin Jackson, Daniel R. Simon, Desney S. Tan, and Adam Barth. An evaluation 
of  extended  validation  and  picture-in-picture  phishing  attacks.  In  Financial 
Cryptography and Data  Security,  11th International  Conference,  FC 2007,  and  1st 

International Workshop on Usable Security, USEC 2007, Scarborough, Trinidad and 
Tobago, February 12-16, 2007. Revised Selected Papers, pages 281-293. Springer, 
2007.
[42] Markus Jakobsson and Adam Young. Distributed phishing attacks. Cryptology 
ePrint Archive, Report 2005/091, 2005. http://eprint.iacr.org/2005/091.

[43] R. C. Jammalamadaka, T. W. van der Horst, S. Mehrotra, K. E. Seamons, and N. 
Venkasubramanian. Delegate: A proxy-based architecture for secure website access 
from  an  untrusted  machine.  In  22nd  Annual  Computer  Security  Applications 
Conference (ACSAC’06), pages 57–66. IEEE Computer Society, 2006.

[44]  Stephen  Kost.  Hashing  Credit  Card  Numbers:  Unsafe  Application  Practices. 
http://www.integrigy.com/security-
resources/whitepapers/Integrigy_Hashing_Credit_Card_Numbers_Unsafe_Practices.p
df.

[45] P. C. S. Kwan and G. Durfee. Practical uses of virtual machines for protection of 
sensitive  user  data.  In  Information  Security  Practice  and  Experience  Conference 
(ISPEC 2007). Springer, 2007.
[46] Jochen Liedtke. On micro-kernel construction. In SOSP, pages 237-250, 1995.

Open_TC Deliverable D08.2 107/109

http://www.integrigy.com/security-resources/whitepapers/Integrigy_Hashing_Credit_Card_Numbers_Unsafe_Practices.pdf
http://www.integrigy.com/security-resources/whitepapers/Integrigy_Hashing_Credit_Card_Numbers_Unsafe_Practices.pdf
http://www.integrigy.com/security-resources/whitepapers/Integrigy_Hashing_Credit_Card_Numbers_Unsafe_Practices.pdf
http://eprint.iacr.org/2005/091
http://crypto.stanford.edu/spyblock/
http://eprint.iacr.org/2004/155
http://eprint.iacr.org/2006/083


 

 Security Services for a Trusted Mobile Application Final

[47] H. Löhr, A.-R. Sadeghi, C. Stüble, M. Winandy. Secure Wallet. Open_TC Internal 
Deliverable. Ruhr-Universitat Bochum, Horst Gortz Institute for IT Security, Bochum, 
Germany, January, 2007.
[48] John Marchesini, Sean W. Smith, Omen Wild, Josh Stabiner, and Alex Barsamian. 
Open-Source Applications of TCPA Hardware. In ACSAC ‘04: Proceedings of the 20th 

Annual  Computer  Security  Applications  Conference  (ACSAC’04),  pages  294-303, 
Washington, DC, USA, 2004. IEEE Computer Society.

[49] OMTP  (Open  Mobile  Terminal  Platform)  Trusted  Environment  TR0,  March 
2006, http://www.omtp.org/Publications.aspx

[50] OMTP (Open Mobile Terminal Platform) Advanced Trusted Environment TR1, 
May 2008, http://www.omtp.org/Publications.aspx
[51] Rolf  Oppliger,  Ralf  Hauser,  and David A. Basin.  SSL/TLS session-aware user 
authentication  –  Or  how  to  effectively  thwart  the  man-in  the-middle.  Computer 
Communications, 29(12):2238-2246, 2006.
[52] Bryan Parno, Cynthia Kuo, and Adrian Perrig. Phool-proof Phishing Prevention. 
In Financial Cryptography and Data Security, 10th International Conference, FC 2006, 
Anguilla, British West Indies, February 27-March 2, 2006, Revised Selected Papers, 
pages 1-19. Springer, 2006.
[53] Birgit Pfitzmann, James Riordan, Christian Stüble, Michael Waidner, and Arnd 
Weber.  The  PERSEUS  system  architecture.  In  Dirk  Fox,  Marit  Kuehntopp,  and 
Andreas Pfitzmann, editors,  VIS 2001, Sicherheit in komplexen IT-Infrastrukturen, 
pages 1-18. Vieweg Verlag, 2001.

[54]  B.  Pfitzmann and  M.Waidner.  Analysis  of  liberty  single-sign-on  with  enabled 
clients. IEEE Internet Computing, 7(6):38–44, 2003.
[55]  Blake  Ross,  Collin  Jackson,  Nick  Miyake,  Dan Boneh,  and  John C.  Mitchell. 
Stronger  password  authentication  using  browser  extensions.  In  SSYM’05: 
Proceedings of the 14th conference on USENIX Security Symposium, Berkeley, CA, 
USA, 2005. USENIX Association.
[56] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and 
implementation  of  a  TCG-based  integrity  measurement  architecture.  In  SSYM’04: 
Proceedings of the 13th conference on USENIX Security Symposium, Berkeley, CA, 
USA, 2004. USENIX Association.
[57]  Jonathan  S.  Shapiro  and  Norman  Hardy.  Eros:  A  principle-driven  operating 
system from the ground up. IEEE Software, 19(1):26-33, 2002.
[58] Jonathan S. Shapiro, John Vanderburgh, Eric Northup, and David Chizmadia. 
Design  of  the  eros  trusted  window  system.  In  Proceedings  of  the  13th USENIX 
Security Symposium, August 9-13, 2004, San Diego, CA, USA, pages 165-178, 2004.
[59] George Staikos. Kwallet - The KDE Wallet System. 
http://www.staikos.on.ca/staikos/papers/2003/kwallet-kastle-2003.ps.

[60]  Michael  Steiner,  Peter  Buhler,  Thomas Eirich,  and Michael  Waidner.  Secure 
password-based cipher suite for tls. ACM Trans. Inf. Syst. Secur., 4(2):134-157, 2001.

[61] Mario Strasser (ETH Zurich), Heiko Stamer, Jesus Molina. The TPM Emulator – 
Software based TPM Emulator for Unix), http://tpm-emulator.berlios.de/

Open_TC Deliverable D08.2 108/109

http://tpm-emulator.berlios.de/
http://www.staikos.on.ca/staikos/papers/2003/kwallet-kastle-2003.ps
http://www.omtp.org/Publications.aspx
http://www.omtp.org/Publications.aspx


 

 Security Services for a Trusted Mobile Application Final

[62] F. Stumpf, O. Tafreschi, P. Roeder, and C. Eckert. A robust integrity reporting 
protocol for remote attestation. In Proceedings of the Second Workshop on Advances 
in Trusted Computing (WATC’06 Fall), Tokyo, December 2006.

[63] TCG MPWG. TCG Mobile Reference Architecture. TCG specification Version 1.0 
Revision 1, The Trusted Computing Group (TCG), Portland, Oregon, USA, June, 2007.

[64]  TCG  MPWG.  TCG  Mobile  Trusted  Module  Specification.  TCG  specification 
Version 1.0 Revision 1, The Trusted Computing Group (TCG), Portland, Oregon, USA, 
June, 2007.

[65] TCG. TPM Main, Part 2 TPM Data Structures. TCG Specification Version 1.2 
Level 2 Revision 85, The Trusted Computing Group (TCG), Portland, Oregon, USA, 
February, 2005.

[66]  TCG.  TCG  PC  Client  Specific  Implementation  Specification  for  Conventional 
BIOS.  TCG specification  Version  1.2  Final,  The  Trusted Computing  Group  (TCG), 
Portland, Oregon, USA, July, 2005.

[67] TCG. TCG Software Stack Specification. TCG Specification Version 1.2 Level 1, 
The Trusted Computing Group (TCG), Portland, Oregon, USA, January, 2006.

[68]  Sean  Whalen,  Sophie  Engle,  and  Dominic  Romeo.  An  Introduction  to  ARP 
Spoofing,  2001. 
http://www.rootsecure.net/content/downloads/pdf/arp_spoofing_slides.pdf.

[69] Min Wu, Robert C. Miller, and Simson L. Garfinkel. Do security toolbars actually 
prevent  phishing  attacks?  In  CHI  '06:  Proceedings  of  the  SIGCHI  conference  on 
Human Factors in computing systems, pages 601-610, New York, NY, USA, 2006. 
ACM.

[70]  Min Wu,  Robert  C.  Miller,  and Greg Little.  Web wallet:  preventing phishing 
attacks  by  revealing  user  intentions.  In  SOUPS  '06:  Proceedings  of  the  second 
symposium on Usable  privacy  and  security,  pages  102-113,  New York,  NY,  USA, 
2006. ACM.

[71]  E.  Ye,  Y.  Yuan,  and  S.  Smith.  Web  Spoofing  Revisited:  SSL  and  Beyond. 
Technical  Report  2002-417,  Dartmouth  College,  Hanover,  2002. 
http://www.cs.dartmouth.edu/~sws/pubs/TR2002-417.pdf.

[72] Ka-Ping Yee and Kragen Sitaker. Passpet: convenient password management and 
phishing protection. In SOUPS '06: Proceedings of the second symposium on Usable 
privacy and security, pages 32-43, New York, NY, USA, 2006. ACM.

[73]  Zishuang  (Eileen)  Ye,  Sean  Smith,  and  Denise  Anthony.  Trusted  paths  for 
browsers. ACM Trans. Inf. Syst. Secur., 8(2):153-186, 2005.

[74] Infineon, Product Brief PMB 8877, S-GOLD3, Turbo engine for EDGE-enabled 
multimedia phones, www.infineon.com/mobilesolutions

[75] Steven Bellovin. Security Problems in the TCP/IP Protocol Suite. In Computer 
Communications Review 2:19, pp. 32-48, 1989.

Open_TC Deliverable D08.2 109/109

http://www.infineon.com/mobilesolutions
http://www.cs.dartmouth.edu/~sws/pubs/TR2002-417.pdf
http://www.rootsecure.net/content/downloads/pdf/arp_spoofing_slides.pdf

	1 Introduction
	2 The Secure Wallet Use Case and Prototype
	2.1Overview of the Secure Wallet
	2.1.1Classical phishing 
	2.1.2Malware phishing 
	2.1.3Countering phishing 

	2.2Security Problem Definition 
	2.2.1Threats
	2.2.2Assumptions 
	2.2.3Objectives
	2.2.4Security Objective Rationale 
	2.2.5Requirements 

	2.3Related Work 
	2.3.1Client-based Phishing Countermeasures 
	Password Managers 
	Platforms & Operating Systems 
	Virtualisation 
	Secure User Interfaces 
	Trusted Computing 

	2.3.2Server-based Phishing Countermeasures 
	2.3.3Proxy Components 

	2.4The General Secure Wallet Architecture 
	2.4.1Wallet Behavior 
	 General Use 
	 Web Site Setup 
	 Password Change 
	 Registration Forms 

	2.4.2Design and Architecture 
	Protection against Classical Phishing Attacks 
	Deny credential input into the browser 
	Change the user's passwords 
	 Protection against Malware Phishing Attacks 
	Providing isolation 
	Trusted Path 
	Trusted Computing 
	Realization 


	2.5Security Analysis 
	2.5.1Attacks 
	Attacks on U 
	Attacks on S 
	Attacks on P 
	 Attacks on the channels 

	2.5.2Assumptions 
	2.5.3Protection against Classical Phishing Attacks 
	Fake Site Attack 
	 Unlocked Password Forms 
	Redirection Attack 

	2.5.4Protection against Online Malware Phishing Attacks 
	Confinement to the Untrusted Compartment 
	 Attacks against the Untrusted Compartment 
	Trusted Path 
	Configuration Modification 

	2.5.5Protection against Offline Attacks 
	General Attacks 
	Offline Malware Attacks 

	2.5.6Attacks on the Passwords 
	Common Password Attack 
	Dictionary attack without information 
	Dictionary attack with an old password 

	2.5.7Discussion 
	Assumptions 
	Metatag Approach 
	Password Knowledge 

	2.5.8Other Attacks 
	Transaction Generators 


	2.6Architectural Overview 
	2.6.1Architecture on a PC
	2.6.2 Storage Manager
	2.6.3X-GOLDTM 208-Based Architecture
	2.6.4Hybrid Architecture for Demo-Prototype
	Communication between PC and X-GOLDTM 208 platform


	2.7Porting and Test Concepts of the TPM emulator on X-GOLDTM 208
	2.7.1Porting Concepts
	2.7.2Implementation strategy
	2.7.3Architecture
	2.7.4Test Architecture


	3 TCG Support for the Secure Wallet Prototype
	3.1Requirements for a Robust Implementation of the Secure Wallet
	3.1.1Secure Wallet Application Installation
	3.1.2Secure Wallet Protocol Suite
	3.1.2.1Starting the Secure Wallet
	3.1.2.2Setting a User Passphrase
	3.1.2.3Authenticating a User
	3.1.2.4Changing a Passphrase
	3.1.2.5Storing Sensitive Data
	3.1.2.6Accessing Secure Storage

	3.1.3Summary of Requirements

	3.2Requirements Analysis
	3.3TCG Mappings
	3.3.1Revised Architectural Model
	3.3.2Fundamental MTM command runs
	3.3.2.1MTM Permanent Flags
	3.3.2.2MTM Initialisation
	3.3.2.3MTM Start-up
	3.3.2.4MTM Self-testing
	3.3.2.5Endorsement Key Generation
	3.3.2.6Accessing a Public Endorsement Key
	3.3.2.7Enabling an MTM
	3.3.2.8The Ownership Flag
	3.3.2.9Taking Ownership of an MTM
	3.3.2.10MTM Activation

	3.3.3Authenticated Boot Process
	3.3.4Secure Boot Process
	3.3.5Maintaining Integrity
	3.3.6Secure Storage
	3.3.6.1Key Hierarchy
	3.3.6.2Installing Integrity and Confidentiality Sensitive Data
	3.3.6.3Secure Storage of and Access Control to Sensitive Data
	3.3.6.4Security of the Secure Wallet Sensitive Data While in Use

	3.3.7Demonstrating Privilege
	3.3.8Conclusions


	4 OMTP TR1 and the Secure Wallet Prototype
	4.1OMTP TR1 Summary
	4.1.1Security Enablers
	4.1.2Threat Model
	4.1.2.1Group 1 (Hardware Modules used for Accessing Memories)
	4.1.2.2Group 2 (CLCD (Color LCD Controller) used for displaying memories and interfering with displayed data)
	4.1.2.3Group 3 (Bypass security by removal of battery power or removal of external memory card)
	4.1.2.4Group 4 (Attack by replacement of flash when power is off (pre-boot))
	4.1.2.5Group 5 (Extract secret via bus monitoring)
	4.1.2.6Group 6 (Mod chip attacks on data in external RAM)
	4.1.2.7Group 7 (Attack by replacement of flash when power is on (post-boot))
	4.1.2.8Software Threats

	4.1.3TR1 Core Requirements
	4.1.3.1Requirements to protect against software threats
	4.1.3.2Requirements to protect against hardware threats
	4.1.3.3Debug Requirements
	4.1.3.4Cryptographic Requirements

	4.1.4Asset Protection
	4.1.5Trusted Execution Environment
	4.1.5.1Open Trusted Execution Environment
	4.1.5.2Trusted Execution Environment Requirements

	4.1.6Use Case Overview
	4.1.6.1Broadcast Service Protection
	4.1.6.2Trusted Device Management
	4.1.6.3Mobile Commerce


	4.2Secure Wallet Architecture in the context of TR1
	4.3Proposal of the final porting of the secure wallet to the X-GOLD 208
	4.4Platform Integrity and Authenticity
	4.4.1Trusted Execution Environments
	4.4.2Secure Storage
	4.4.3Secure User IO
	4.4.4Software Threats

	4.5Summary

	5 Conclusions

