OpenTC Newdletter
January 2008

From the Open Trusted Computing (OpenTC) research premhsored by the
European Union.

In thisissue:

- Editorial: Verified compartments to protect users agameware

- Private Electronic Transactions - The OpenTC prodfasfeept prototype
- Static analysis using Abstract Interpretation (Bart

- Recent OpenTC publications

Editorial: Verified compartmentsto protect usersagainst malware
By: Arnd Weber, ITAS, Forschungszentrum Karlsruhe, Genyn
Dear reader,

At the beginning of the OpenTC project, many opinions usteEd Computing (TC) gathered
on the Internet in discussion fora and articles weiteeal of the technology. Some people
believed that TC would be used for tracking citizensivaats, locking computers into
proprietary configurations, enforcing unfair business mofdelsontent or software
provision, and even automatically deleting emails and deatsywithout the user’s approval.
In this context, the project’s work package on requireragatysis (WP02) found that a
prototype showing TC's potential to protect users could betasedke TC more attractive,
as opposed to an application protecting "only" organisatike®mployers or content
providers. Such a prototype would make it possible to demonsirtite public the broad
range of purposes for which TC can be used. A particudanitgble use-case in our opinion is
one that demonstrates how TC can be used to protectdodlgiagainst financial risks, e.g.,
security threats in homebanking or online auctions. Gikahdomputer criminals frequently
produce malware software to fool users into giving thesir g8ecurity credentials, so-called
phishing, strong protection against such attacks would be thdiebdjeta suitable use-case
implementation. On the basis of the OpenTC architecthe design of the prototype would
comprise a TC-secured hypervisor with a verified compartmemting an isolated browser,
to be used for the risky transactions underlined in thaasw (i.e., not for general web
surfing) in order to keep it secure. This compartment wauldhext to a compartment with a
legacy operating system and untrusted applications usedsfoal¢asks. We nicknamed this
prototype the "PET", an abbreviation of "Private Electrdimansactions”, and the consortium
implemented a proof-of-concept prototype based on this soenari

The PET prototype is described in the first article bypkaae Lo Presti (Royal Holloway,
University of London), Gianluca Ramunno (Politecnico diifi@y, and Dirk Kuhlmann
(Hewlett Packard Laboratories, Bristol). The desigeh éecision process which led to
creating the PET is described in more detail in Kuhlmanb®#EL], where the reader can
find a review of the various arguments found in the meddescription of the consortium’s
internal decision process, and the conclusions drawnthhanprocess, as well as information
on the OpenTC architecture and PET design. The sourcehasd®en made publicly



available [2] in order to enable developers, in partide@8S (Free and Open Source
Software) developers, to use it.

In future real-world systems that use the code producéldeb®penTC project, the various
mechanisms from the OpenTC architecture should be implech@t a very high level of
qguality. In the second article in this OpenTC newsletter continue our description of the
consortium’s approach to improving the source code of thjegbran the last issue, Pascal
Cuoq from CEA-LIST, Paris, provided an introduction to titanalysis using Abstract
Interpretation”, while in this second part of his artisdegoes on explaining precisely how
static analysis works. The consortium’s approach tartrstworthiness of code will continue
to be explored in upcoming articles in the next issueéseoOpenTC newsletter.

We conclude this newsletter with an announcement of ar@ssarch paper published by
members of the OpenTC consortium.

References:

- [1] Kuhlmann, Dirk; Weber, Arnd (eds.): Requirementsibigbn and Specification.
OpenTC Project Deliverable D02.2.

http://www.opentc.net/deliverables2006/0OTC _D02.2_ Requirementshifimii and_Specific
ation_update.pdf

- [2] Free and Open-Source Software (FOSS) componétiie @pen Trusted Computing
architecture:

http://www.opentc.net/index.php?option=com_content&taskw&id=47 &ltemid=65

Contact: arnd.weber at itas.fzk.de

Our thanks go to Richard Brown, Alison Hepper, Dirk Kuhlmetephane Lo Presti and
Dirk Weber for their help in preparing this issue.

Private Electronic Transactions- The OpenTC proof-of-concept prototype

By: Stephane Lo Presti, Royal Holloway, University.ohdon, UK; Gianluca Ramunno,
Politecnico di Torino, Italy; and Dirk Kuhlmann, Hewl&ackard Laboratories, Bristol, UK

Introduction

The OpenTC project recently published the first proof-afeept prototype of its Open
Trusted Computing architecture. This work involved several dpees from HP (United
Kingdom), IBM (Switzerland), Politecnico di Torino (Itdy\Ruhr-Universitaet Bochum
(Germany), Technische Universitaet Dresden (Germany), (Bd&z University of

Technology (Austria) and SUSE (Germany). The prototype @mrdemonstrate some core
ideas of the OpenTC approach, combining Trusted Computinggficyirtualisation
technologies with Free and Open Source Software (FO8&Jlopment. The release
implements a concrete application of TC, is availabléhe general public, and could serve as
a working basis for interested developers.

As a proof-of-concept prototype, the implementation idrtan comprehensive, and has not
been thoroughly tested. It does not include all the nacgssmponents for the OpenTC
architecture, nor are the existing ones in any finaliseah.fNevertheless, we hope that the
proof-of-concept work will give some impression of ho® @ould be applied in practice,



foster discussions about the use of TC and the Openh@eatcire, and encourage
contributions from the FOSS communities. With someomexceptions, all source code is
released under the GPLV2 license. It is provided as botea@D image (binaries) and as
source code (see link at the end of the article). Thetyy was developed and tested on HP
nx6325 and IBM T60 laptops equipped with Trusted Platform Modules §fyRM2 and 1

GB RAM.

OpenTC makes use of virtualisation layers - also caliedid Machine Monitors (VMMSs)
or hypervisors - and supports two different implementatjo@s Xen and L4/Fiasco). This
layer hosts compartments, also called virtual machin&tsjVdomains or tasks, depending
on the VMM being used. Some domains host trust serviceatdavailable to authorised
user compartments. Various system components make tisdvb€apabilities, e.g., in order
to measure other components they depend on or to provesteenaptegrity to remote
challengers.

The current prototype implements a scenario called Rrizgctronic Transactions (PET),
which aims to improve the trustworthiness of interacti@ith remote servers. Transactions
are simply performed by accessing a web server througmdasd web browser running in a
dedicated trusted compartment named "domT". In the PE¥®Soethe server is assumed to
host web pages belonging to a bank; however, the setoi@pplies to other e-commerce
services.

The communication setup between browser compartmergemer was extended by a
protocol for mutual remote attestation tunnelled througBSI/TLS channel. During the
attestation phase, each side assesses the trustwatbiribe other. If this assessment is
negative on either side, the SSL/TLS tunnel is clopesljenting further end-to-end
communication. If the assessment is positive, enditbeemmunication between browser
and server is enabled via standard HTTPS tunnelled ovelTESL/

General approach

The approach of this scenario relies on four elements:

1) Trusted platform setup

2) Authenticated boot process

3) Registration of the known-good measurement values
4) Trusted communication setup

The following sections give a cursory overview of theteps.

1. Trusted Platform Setup

As a first step, the user has to initialise the clgatform and to prepare it for subsequent
operations.

The setup procedure is performed as soon as the OpenEthdyas started up for the first
time. First, the user, acting as the platform owmerst "take ownership" of the TPM. This
assumes that the TPM is enabled in the BIOS andydstalready used before, is cleared and
re-enabled. More information about this feature of TChmfound at [1].

Next, an Attestation Identity Key (AIK) must be credtand certified, and the corresponding

3



identity activated. In a real-world situation, Privaogrt@ication Authorities (PCASs) that
operate a valid TC-enabled Public Key Infrastructure (PKildvbe used during this
process. However, for the sake of simplicity, bothriquests for and the release of the AIK
certificate operations are currently handled locallyhenclient, using hard-coded passwords.
This is done by a software library that comes with fvaired mock certificates for the
authorities involved (e.g., PCA).

2. Authenticated boot process

From the initial bootup process up to the start of trustetboments, a chain of trust is
generated: each component of the chain is measured@passing control to it. The
component measurements, i.e. their fingerprints througitagraphic hashes of relevant
binary and configuration data, are accumulated in Plat@onfiguration Registers (PCRs) of
the TPM.

In order to generate the chain of trust, all componrttsis chain must be instrumented to
perform integrity measurements of their successorgaoution. For instance, the BIOS must
include a Core Root of Trust for Measurement (CRTM), ameléfoy the Trusted Computing
Group. Further modifications concern the Master BoaoRe(MBR) and the boot loader.
The latter has to measure the hypervisor, the kernahdrad ram disk images of privileged
domains, or files or disk images of trusted compartmeptsthis purpose, the OpenTC
prototype includes "tGRUB", an extended version of the fam@Rand Unified Bootloader
(GRUB). The tGRUB boot menu offers a choice betweertwo different virtualisation
layers, XEN and L4/Fiasco.

A second boot menu option concerns the execution modiéers a "normal user" mode that
comes with a simplified interface and restricts as¢esnanagement functions, geared
towards showing how the user can perform a transaictiameal-life scenario. The "expert
user" mode, on the other hand, enables full access tqgmaeat features, permitting a peek
“under the hood”. It allows interactive access ande®mith a more complex interface. As a
demonstration of the differences between successfuiaimd) verification of integrity
measurements, the boot menu also provides a "good domT"'evgli@ domT" option. In

the "good" mode, all measurements match their expectedsv&uethe other hand, the
"rogue” mode simulates a modified compartment that cowd baen tampered with by an
attack from a malicious program. In this case, at leas PCR contains an unexpected
measurement value.

OpenTC’s tGRUB loader is constrained to supporting theadled Static Core Root of Trust
for Measurement (S-CRTM) model. In this case, all 9gcand trust-relevant components
must be measured, starting with the BIOS. To demongtrateew Dynamic Core Root of
Trust for Measurement (D-CRTM) approach introduced witMM2.2, OpenTC provides
the Open Secure LOader (OSLO) boot loader implementedtas@ard module for
GRUB/tGRUB. OSLO implements the D-CRTM for AMD's @&, invoking the SKINIT
instruction for re-initialising the platform in a trustetloy manner late at runtime.

3. Registration of the Known-Good Measurement Values

The client can now register with a server by uploatiegmeasurements that represent its
platform state (that is assumed to be trusted). Duhisgorocedure, the user (acting as a bank
operator) registers his platform with a bank serverthi®end, he uploads the integrity
measurements of his platform (i.e., the expected valuthé domT compartment), thus



authorising the trusted compartment to connect to the lmkrs In a realistic scenario, this
process would be automated using secure communicationso@adicated registration
protocol. Since the prototype does not yet implement ¢aisife, the user instead launches a
script (in "normal user" mode) or uses a browser @'éxpert user" mode) to upload a file
containing a measurement digest to the front-end proxy runnitigedrank server. This
digest corresponds to the current state of the cliatfiop, i.e., its trusted virtualisation layer
and the trusted domain domT. For simplification, thekiserver (named "domS")
measurements are already present on the clientisidep(ivileged compartment of the
virtualisation layer named Domain-0 or domO) of the Oggsystem: the PCR metrics
defined to correspond to a "trusted" server state arentlyrterd-wired into the system.

4. Trusted communication setup

Trust status information is exchanged between the diaththe server through a pair of
proxy services running in a privileged compartment (domO) onlign @and as a front-end in
the server compartment (domS). The proxies commurticedagh an SSL/TLS tunnel that
can encapsulate any TCP-based protocol. For the PBargmeHTTPS is used.

The communication setup is initiated when the browsstaided in the trusted compartment
(domT) and the link provided in its toolbar clicked on. Thanection request is passed to the
client proxy that runs in the privileged compartment (domAQjedicated component running
in this compartment opens an SSL/TLS tunnel to connebktserver-side proxy running in
the bank server compartment (domS). The permissilofitihis connection must be stated in
the policy of the virtualisation layer. Measurementsaftware components on both sides
(client and server, see above) are represented by RIG&swf the hardware and software
TPM. These values are signed with the AIK acquiredap 8, and communicated to the
respective peer system.

Communication between the client and the server wiil be enabled if both the client and
the server metrics suggest that they booted into (ahdusijlthe expected configuration. This
could prove a countermeasure to phishing attacks, preventingehéom following a false-
lead URL to connect to a fake bank server. The meamamigjht also improve the protection
of the bank server against unauthorised connections.

Platform components and behaviour
The authenticated boot process launches the selectedligation layer, which is responsible
for controlling four dedicated compartments, namely:

- A privileged compartment (called "domQ") that directlgesses the physical platform and
includes the drivers for hardware devices. This compartimeatdéo used to perform
management operations at the virtualisation layemdamrfal user" mode, this compartment is
not visible, whereas the "expert user" mode allows ttiempartments (see below) to be
started manually via scripts. DomO is part of the Trustaahgliting Base (TCB).

- A compartment for the server side of the demormti@alled "domS") which executes the
banking application and its front-end. It locally sintelaa remote server (web server and
proxy). For the prototype, this removes the dependencytemaxcommunication which
would require an additional, separate banking computerddhm®in is accessed via the
network name "domSbox", and a software TPM emulatosesl to perform the integrity-
related operations for this domain. The compartmenttigiaible to the user. It goes without

5



saying that this domain could equally be executed on a rgghgsécal machine, and future
versions of the OpenTC prototype will support this.

- Two compartments for the client side of the systéhe first compartment (called "domT")
solely provides web browsing as its single functionalitys considered trusted in that its
integrity has been measured and the values correspongditlknown configuration.
Measurements, which include the configuration file, th@ddeand the virtual disk image with
the root file system, are accumulated within PCR[11heTPM through the “PCR extend”
operation. The second compartment is an untrustedcafied "domuU"). It is not measured
and is intended for daily use, but specifically nottfer PET transaction.

The platform policy ensures that only the trusted compantrfdomT) is authorised to use the
client proxy (executing in the privileged compartment dora®@xbnnecting to the bank
server (executing in domsS). By contrast, the untrustegpadment (domU) cannot connect
to the bank server, since no measurements exist théecased to attest to its trusted state.

Client compartments run a stripped-down Linux system (addelbased Damn Small
Linux/DSL distribution), while the privileged compartmel®mO runs either a SUSE or a
DSL distribution, depending on which version of prototype e&lu3he server compartment
(domS) runs a standard Debian distribution.

The L4-based OpenTC implementation provides a secure Guiteséor managing input and
output. This GUI is provided as a trusted service starte@BYJB at boot time and running
in a dedicated compartment. The top part of the digplegserved to indicate the number of
active compartments and the name of the one curremtiiged to the display. This section of
the screen is considered trusted because it is undexdlusiee control of the secure GUI.
With the L4 virtualisation layer, a pair of hotkeys ased to switch between compartments.

For the Xen-based OpenTC implementation, the whokescis under the control of a
selected compartment. Each compartment is assigneddahfitkey. When a specific hot key
associated to a compartment is pressed, the user careldbadtuthe desired compartment will
actually be displayed since the key is under the exclesim&ol of the privileged
compartment domo.

Shortcuts, simplifications, and limitations

Trusted Computing is an emerging technology, and infrastrustymeort, e.g., for issuing
certificates, does not yet exist. The technologyss fairly complex. For example, first-time
users are easily confused by the multiplicity of autladios secrets. For the sake of
simplicity, the OpenTC prototype, therefore, uses fixedwasts as authorisation secrets for
the TPM and AIK keys (which can, of course, be changedlf@perations by editing the
configuration scripts in the "expert user" mode).

The prototype attempts to strike a balance here in pragyvallmecessary components
(including PKI mechanisms) as part of the distributlorparticular, the server-side
mechanisms reside in a dedicated compartment on thepdaysieal hardware that runs the
client.

The PCR metrics corresponding to a trusted PKI seta&z are currently hard-wired into the
PKI component running on the client system. The bankimgpestment domsS is not actually
measured since it employs a TPM emulator instead ofdavaae TPM. Instead, we just



communicate the initial PCR values of the software TR\ future release of the OpenTC
prototype, the server side will run on a different phygitatiform, and integrity
measurements of the server domain will be duly recorded.

In the "rogue domT" scenario, the measurement oflibwet banking compartment (domT)
does not correspond to the one uploaded earlier to the eamt.sConsequently, the
attestation will fail, and communication with the bakver will be disallowed. Due to
implementation specifics, the PCRs mismatch currdrdyto be simulated in that the values
are not generated from actual measurements of the patgistmpartment image but only
from a different configuration file for domT. A futurelease will fix this issue.

Furthermore, the current prototype is also limited i than-in-the-middle or "relay of
attestation challenge" attacks have not yet beenaenesl. For more information, please see

2].

Although the current implementation of the PET scenarielatively straightforward and
cuts quite a number of corners, it is a concrete elaofghe possibilities of coupling TC
with virtualisation technology. As the source code efpiototype is publicly available, the
OpenTC prototype provides a working basis for any developeested in implementing TC
applications.

About the authors: Stephane Lo Presti is a researitaagsvorking at Royal Holloway,
University of London (UK), on mobile trusted computing andgelisination activities of the
OpenTC project. Gianluca Ramunno is a research assmbaking at the technical university
Politecnico di Torino (IT) on security applications dhdl for trusted computing. In the
OpenTC project, he coordinated the development of the-pfeaincept prototype related to
the PET scenario. Dirk Kuhlmann is a senior researgmear for Hewlett Packard
Laboratories in Bristol, UK, where he works as a menati¢he Trusted Systems Laboratory.
He acts as the overall technical leader for the Open®feqtr

Download:
The prototype can be downloaded from the OpenTC website, URL:
http://www.opentc.net/index.php?option=com content&taske&ied=45&Itemid=63

The source code for the components of the OpenTC systeaferenced in the following
webpage:
http://www.opentc.net/index.php?option=com_content&taskagid=47&Itemid=65

References:

- [1] "The Roots of Trust - The RTM and the TPM ", Ean&allery. Second Lecture of the
Trusted Computing course, MSc of Information Security,a&Rélplloway, University of
London, 2007.

- [2] Kenneth Goldman, Ronald Perez and Reiner Saileking remote attestation to secure
tunnel endpoints. In: Proceedings of the first ACM wodgshn Scalable Trusted Computing
(STC '06), pp. 21-24. Alexandria, Virginia, USA, 2006. ACM Pré&SBN: 1-59593-548-7,
http://doi.acm.org/10.1145/1179474.1179481

Contacts: Stephane.Lo-Presti at rhul.ac.uk; Ramunnoliad. i



Static analysisusing Abstract Interpretation (part 2)
By: Pascal Cuog, Commissariat a 'Energie Atomique (CE3Y), Paris, France

This is the second part of the article, the first pawhich was published in the September
2007 issue of the OpenTC newsletter, see [1].

The sample program analysis used in the first part cdrtide showed how static analysis
can work at first sight. This second and final part efdfticle aims to show that it is not
always as easy as it seems, using various program example

The property of termination of a program

The programming example used in the first part of thelamvas simple, but not simplistic,
because it contained a loop statement. Many researeffogewvents in theoretical computer
science either have to do with the fact that loofestants are necessary for programming, or
try to deal with the difficult questions they automatigcahise. One such question is whether
a given program is always guaranteed to end and returnla fidss property is considered
particularly interesting and is called "termination'tieé program. However, it was not

difficult to check the properties of the loop statet{@niwhile' statement) used in the previous
programming example. It is easy to see that the conditi the ‘while' construct (x >= 2)
would eventually become false and cause the loop to stegning that the program would
not run forever. Let us now consider the following Cregke instead:

for(n=4;;n+=2)
{
for(pl=2;pl<n;pl++)
{
p2=n-pl;
if (is_prime(pl) && is_prime(p2))
break;
}
if (p1 ==n)
10 break; // sum of two primes not found for n.
11}

O©COoO~NOO O, WN -

The function "is_prime" always terminates and returnge"twhen its argument is a prime
number. The implementation of this function requit@®e ingenuity in order to make it
efficient for big numbers, but a simple implementatioat repeatedly divides its argument
"m" by every number smaller than m and returns "truey dmone was a divisor, would be
enough for our purposes. Programming this function inl€fti@s an exercise to the reader.

The above program enumerates for each value of tigbl@t'n" the even integers greater
than 2 (4, 6, 8, 10, etc.). For each of these suceesgalues of n, the program first (lines 3 to
8) enumerates the various ways of splitting n intostiia of two integers pl and p2. If this
split is such that both p1 and p2 are prime numbers, tlgggmmjumps to the next even value
for n (line 7). If no pair of numbers pl and p2 satisfying phigerty, i.e., n == pl + p2 and
pl and p2 both prime, is found, the program stops (line 10).



This program is very simple, but in fact conceals g déficult theoretical problem: deciding
whether the program terminates or not is equivalentdwimy or disproving the mathematical
"Goldbach's conjecture”, which at the time of this wgitiemains an open problem in number
theory and has been so for more than 250 years. Inqaatttis means that it is in the worst
case impossible to know whether a program will stop uadgrcircumstances. Although the
previous program does not use any complicated programming aheauestion of
whether it terminates or not is theoretically everdbato solve than Fermat's last theorem.

Loop invariants

Even when the termination of a loop statement is e&siestablish than in the previous
example, the correct behaviour of the loop may relgamplicated hidden invariants. "Loop
invariant" is the name given to a property that holdsughout the execution of a loop. This
situation should be familiar to any developer who has leaérto modify code that he did not
write himself: the program works for reasons thatrateobvious in the code, for example
because the value of a certain variable "p" can nex@ebative. The invariants are not
always explicitly written in the program (experiencedalepers write them in comments or
in assertions, but even with experience, it is ney ¢a think of all the invariants that should
be written down). Taking the example of the variablegh halways positive, the invariant
holds because one can check on each program staté@eatrtegative value is never
assigned to p. The difficulty lies in the fact thasihot easy to reconstruct the invariant by
simply looking at the source code. Similarly to the situaof the termination of loop
statements, it can in fact be arbitrarily difficult.

Analysis of actual source code does not always reguiréing or disproving Goldbach's
conjecture, however. The above example is only intetmlsbdow the kind of difficulties that
make the problem impossible to solve in all generdlityeal life and for ordinary programs,
invariants are often simple enough to be discovered autaihat

Example of a program that is difficult to analyse

Besides loop statements, real programs also contaig statements that are difficult to
handle because they do not fit well into the thecaéframeworks used for program analysis.
The particular set of statements that causes problepesids on the analysis framework, but
it typically contains some or all of the followingasts, union types, architecture-dependent
statements, pointers and aliasing, integer overflowating-point arithmetic. The following
example illustrates several of the above issues:

void shift_string (char *s, unsigned int src_offs, unsignedize)
{
unsigned int dst_offs = src_offs - 4;
while (size > 0)
{
* (int *) (s + dst_offs) = * (int *) (s + src_d};
size -= 4
dst_offs += 4;
src_offs += 4;
10 }
11}

O©CO~NOOOUITEAWN -



This function makes particular assumptions about thepating architecture and the
compilation model in order to shift a specified part sfring "s" (starting at "src_offs") by
four characters. The function also assumes thatahable "size" is a multiple of 4, and that
the parameters passed to it do not make it access mentarf/bounds or in a misaligned
way. For the purpose of the program analysis, we asthahéhese assumptions are well
understood by the developer, and that the bug we are lookilif doy) does not lie in these
assumptions. Proving that the above function satigBasformal specification (shifting part
of the string "s" by four characters) is difficult. Bbé=s all the low-level statements that the
analyser needs to understand (e.g., the conversion'@oar*" to "int*"), there are several
hidden invariants that ensure that the function workatasded.

To perform the analysis of this program, let us focus dinsone of these invariants: at the
beginning of the body of the loop (line 6), the curremi@af variable "dst_offs" is always
equal to "src_offs-4".

It is necessary to establish this invariant in order ¢ogothat the function "shift_string"
operates as it is supposed to. For a 32-bit architecture,dperpr implies, in particular, that
there is no overlap between the four bytes read atdtieess "s+src_offs" and the four bytes
written at "s+dst_offs" (line 6).

The equality "dst_offs = src_offs - 4" can be automdsiadiscovered by relational abstract
interpretation. The idea behind relational abstractpnétation is to compute information
about the relationships that are guaranteed to hold bettheesalues of several variables, in
addition to sets of possible values for individual vdeiabSets of possible variable values are
propagated from instruction to instruction in the samkidesthat intervals were propagated
in the first part of the article. But "values" hereams possible values for the tuple of
variables (size, dst_offs, src_offs). In the first pditthe article, we restricted the "sets" of
values to intervals. Here, we also need to make @&eMegarding the representation of these
sets of possible tuples, so that they can be computedeimsonable amount of time and
memory. There is a wide selection of options wheroshg a representation for sets of
tuples, but we are only going to consider linear relati@t&éen two variables (e.g.,
y=a*x+b), because this representation is space-effiaedtsimplifies the computations.
Without precise knowledge of the values of the argumesnts 6ffs" and "size", we know

that values that do not satisfy the above equalitynapessible for the pair (src_offs,
dst_offs) after executing line 3. In fact, the values #na possible for the pair can be
represented as a linear relation between these twables: src_offs = dst_offs + 4.

Given these values for the pair (src_offs, dst_off®,cdndition of the 'while' -loop can both
be true or false, so we have to assume that thisremteropagate to both the inside of the
loop at line 6 and the exit of the loop (line 11), whichls® @ahe exit of the function.

We will assume that the instruction on line 6 doesafiect the values of variables src_offs
and dst_offs (this would theoretically require proof thatmemory access "*(int *)(s +
dst_offs)" is not out-of-bounds). Line 7 does not chahgeaelation between src_offs and
dst_offs either.

The instruction on line 8 has an effect on the valugsbfoffs and, therefore, on the relation
between src_offs and dst_offs. Fortunately, the effettti® instruction on the relation
between src_offs and dst_offs can be computed. Bettethgeatesulting state can be
represented as another linear relation, "src_offs =otfst.

10



The instruction on line 9 has an effect on the relabemveen src_offs and dst_offs, too.
Since this assignment increments the value of srchgffs its effect on a state where
"src_offs = dst_offs" is to produce a state where "sifs ofist_offs + 4" (since the new
src_offs is the same as the old src_offs plus 4).

The state of the variables at the end of line 9 cammoisbd to decide whether the condition
of the 'while' loop (size > 0) is true, so this statetrivespropagated again to both the exit of
the function and the beginning of the body of the Iddps state, which is identical to the
state that occurred after executing line 3, has in feeady been propagated to the exit of the
function and the beginning of the body of the loop. Thiamsehat this state is a fixpoint of
the program (i.e., a state that leads to itself wherbtuy of the loop is applied to it), and that
the program analysis is finished. The analysis hasrdeted that the property held, because
the fixpoint found represents the invariant we wanted taepro

The choice of the kind of sets that are used deterntietypes of programs that can be
analysed accurately. In the above example, lineaiaoetaare a good choice because:

1. Some variables in the program are in a linear rel&i@ach other, and
2. The instructions executed by the program (particularines 8 and 9) transform a linear
relation into another linear relation, which can dsaepresented.

What else is necessary to analyse this program?

The other important requirement in order to be able to/smahis program is a memory
model. Actually running the program would have allocated tiireys's” to somewhere in the
memory, and it would be possible to analyse the funésbift_string" with respect to this
particular memory allocation (in this case, a paréicehoice of address where "s" is stored).
But this is not satisfactory because the goal ofcstatalysis is to check that there are no
errors for all possible executions, which means not famlall inputs, but also for all
addresses at which the system decides to allocate siting tivo strings are allocated in the
program, one goal of the verification process would bshexk that one string is not modified
via an out-of-bounds access to the other. This errormaayfest itself for some allocations
while it may not be visible for others, making it harditm or debug solely by testing the
program.

For this reason, the static analysis of a programegaas with respect to an abstract memory
model. An abstract memory model allows manipulatioa synthetic representation of all
possible choices for the layout of a program's data manmg As with the choices that must
be made with respect to the representation of reldtipndetween variables, there are
compromises in the design of an abstract memory mtidgles beyond the scope of this
article to delve into all the various possibilities. Thepose of an abstract memory model, on
the other hand, is simple: the abstract memory moaelldhmake it possible to analyse a
program without having to choose a particular memory ditmtalnstead, when the memory
model is appropriately devised, a program property proved ialisigact memory model
holds for all the possible allocations that can occuumtime. The adjective "correct”, which
was applied to analyses in the first part of the a&tisl applied to abstract memory models
which have this property. Of course, one needs a cameetory model in order to build a
correct analyser.

In the previous example, it is the task of the memoogehto ensure that the instruction on
line 6 does not have any effect on the relation betwseroffs and dst_offs. Because the C

11



programming language is a low-level language, an out-of-l®aockess does not necessarily
translate into a run-time error. Depending how the oy data is laid out in memory, the
memory access could also silently change the valaeather arbitrary variable. A
reasonable memory model should exclude this possibilityjrestead emit a warning
concerning the out-of-bounds access, if one might exist.

To analyse this example precisely, the memory modelr&sds to describe the fact that an
"int" variable takes up the same space as four "chaidhtas (on most current computers,
integers are stored on 32 bits while characters require)3dits what exactly happens when
a "pointer to char" is cast into a "pointer to iratyd subsequently accessed.

The Frama-C toolbox

The Laboratory for Software Safety at CEA LIST (BaFrance) is developing Frama-C, a
toolbox for the static analysis of C programs. Thidltow is designed to enable different
analysis techniques and features to be plugged in, and useehafitiother. One of the
distinguishing features of the Frama-C toolbox is theifpaton of the memory model,
which is especially adapted to the analysis of embeddediéleai} C code. Frama-C has
been used to analyse parts of the Xen hypervisor in thiextaf the OpenTC project.

Editor's note: An article about the analysis of XN hypervisor will be published in a
future issue of the OpenTC newsletter.

About the author: Pascal Cuoq has been playing with comgibtees he was 6. He is
currently doing so at CEA-LIST, within the Software &gfLaboratory, where he is one of
the architects of Frama-C, an assistance tool to ingpconfidence in critical C code.

Contact: pascal.cuoq at cea.fr
Reference:

[1] Static analysis using Abstract Interpretation. Ipe@TC newsletter of September 2007:
http://www.opentc.net/publications/OpenTC_Newsletter 02#ink3

Recent OpenTC publications

Since the publication of the last newsletter, the @@eproject partners have produced one
scientific publication:

- Murray, D.; Milos, G.; Hand, S.: Improving Xen secutilyough disaggregation. In
Proceedings of the 4th international conference otudiiExecution Environments (VEE
2008), March 2008 (to appear).

Edited by the Institute for Technology Assessment anteBysAnalysis,
Forschungszentrum Karlsruhe, Germany, on behalf oDffenTC research project
consortium, in co-operation with all partners.

Editor: Arnd Weber, Forschungszentrum Karlsruhe GmblAS, THermann-von-Helmholtz-
Platz 1, D-76344 Eggenstein-Leopoldshafen, Telephone: + 49 7247 82 3737.
Contact: editor at opentc.net

12



Disclaimer: The views and opinions expressed in thelestdo not necessarily reflect those
of the European Commission and the consortium or parthereof. All articles are regarded
as personal statements of the authors and do not nelyassféect those of the organisation
they work for.

The OpenTC-project is a research project supported by tlop&am Commission, project
IST-027635. Its 23 partners are: Technikon Forschungs- und Bsgesellschaft mbH
(project coordination, AT); Hewlett-Packard Ltd (techniealder, UK); AMD Saxony LLC
& Co. KG (DE); Budapest University of Technology and Emwmits (HU); Commissariat a
'Energie Atomique — LIST (FR); COMNEON GmbH (DE); Fohsingszentrum Karlsruhe
GmbH — ITAS (DE); Horst Goertz Institute for IT Sec¢yriRuhr-Universitaet Bochum (DE);
IBM Research GmbH (CH); Infineon Technologies AG (DE)TEK Closed Joint Stock
Company (RU); ISECOM (ES); Katholieke Universiteit LeuyBik); Politecnico di Torino
(IT); Portakal Teknoloji (TR); Royal Holloway, Univetgiof London (UK); SUSE Linux
Products GmbH (DE); Technische Universitaet Dresden (D&ghnische Universitaet Graz
(AT); Technische Universitaet Muenchen (DE); Technical Unsitae of Sofia (BR);
TUBITAK — UEKAE (TR); and University of Cambridge (UK).

For more information about the project, Sei#p://www.opentc.net

Feedback to the consortiutittp://www.opentc.net/feedback

Archive of newslettershttp://www.opentc.net/newsletter

Subscription: To subscribe or unsubscribe to the newslettise, an email to <subscribe at
opentc.net> or <unsubscribe at opentc.net>.

13



