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Chapter 1

Introduction and
State-of-the-Art

M. Schunter (IBM), S. Cabuk (HPL)

1.1 Introduction

This document is the first deliverable of the OpenTC Workpaek05 — “Security
Management”. It summarises highlights of our researcherfitist half of the OpenTC
project.

The OpenTC architecture comprises four main layers. Théwemne layer (Work-
package 03) provides hardware with virtual machine andrgg@nablement. This is
then used by the hypervisor layer (Workpackage 04) to peovidual machines with
appropriate security enforcement capabilities. Examiplelside isolation or access
control to virtual machines. The security services layeoidgackage 05) provides
secure device virtualisation such as secure storage, netand display. It provides
functionality to manage the security policies and intggaf the trusted computing
base of the OpenTC platform.

1.2 Outline

This document is structured as follows. Chapter 1 introdtice OpenTC concept and
describes the high-level architecture of the OpenTC platfthat is common to both
hypervisors, Xen and L4. Chapiér 2 summarises related watlbackground. Chap-
ter[3 describes the Xen security services architecturetaild€hapte[# describes the
L4 security services architecture in detail. Chapler 5 dless the integrity manage-
ment concept that is hypervisor agnostic and can be implesdem both hypervisors.
Chapte[b describes our Public Key Infrastructure. It dbssithe certificate extensions
to X509v3 certificates that are necessary to support the Opghatform. Chapter]7
outlines some of our more advanced research such as prédysesty attestation or in-
creased dependability by means of using hypervisors. @H8ptoncludes this report
while AppendiXA contains supplemental material.

Open_TC Déliverable 05.1
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Figure 1.1: Layers of the OpenTC Architecture

1.3 High-level Secure Virtualisation Architecture

Figure[I.1 outlines our architecture. The unique featufekedOpenTC architecture
are:

e \erifiable security by means of trusted computing technplog
e Support of multiple different hypervisors (L4 and Xen).
e Flexibility by means of configurable policies.

Itis structured in different layers of abstraction that wit describe in the sequel. Each
layer interact with the next layer of abstraction by a set elixdefined interfaces.

The foundation of our architecture is an actual virtuaitssaenabled x86 processor
and its peripherals. This includes processors, memorydauites (network, storage,
PCI cards, etc.) that need to be virtualised. The hypersisse AMD SVM tech-
nologﬂ as well as Intel VT technoIoEy By using processors with full virtualisation
support, we can achieve better isolation without the neenddify guest operating
systems.

1.3.1 Virtualisation Layer

The virtualisation layer provides virtual machines andrtbasic policy enforcement
capabilities. We have built on existing versions of the L4l a&en hypervisors. Our
main focus is to extend these hypervisors to increase $gciiat includes several
aspects:

1Seehttp://enterprise.amd.com/us-en/solutions/consolidation/virtualization.aspx
2Seehttp://www.intel.com/technology/computing/vptech/.
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e Fine-grained Trust Domains: Unlike today’s version of Xere separate ser-
vices into small isolated virtual machines to increase stiiess and security.

e Policy-enforcement: The virtualisation layer is built toferce a wide range of
security policies. Examples include access and flow copwobties as well as
resource sharing policies.

e \rifiable security: By means of trusted computing, extestakeholders can
verify the virtualisation layer and its policies.

The virtualisation layer offers a basic management inter{8MI) to the security ser-
vices layer. The interface supports functions like creptinvirtual machine while
specifying its virtual network cards, memory, storage, &RUs. An example of a
policy that can be enforced at the virtualisation layer &tgpe policies that can be
loaded at boot-time [81].

1.3.2 Security Services Layer

The security services layer provides scalable securityamgalisation functions that
are needed to enforce security policies. This incluteapartment security manage
ment user security managememndsecure device virtualisation

The compartment security manager manages the life-cyslgtafl machines and
tracks the security policies and other context associatddesch compartment. This
includes integrity constraints, permissions, and glodehtifiers for each compart-
ment. The compartment security manager can be used to ptaated security prop-
erties to peers. The user security manager manages thefifeesystem and enables
authentication of individual users and their associatéekro

An important contribution to scalability for trusted contjmg is the focus on se-
curity properties for trust managemehnt[[71] 78, 35]. Indtefiverifying integrity by
means of cryptographic checksums, we use higher-levelptieg such as user roles,
machine types, or trust domains to determine trust. Thismedy first using check-
sums to verify the core security services and then use tleesgity services to evalu-
ate the desired security properties. Only if these propeetre satisfied, certain actions
such as unsealing a key or performing a transaction with egve@erformed. The con-
sequence is that a verifier only needs to define security piiepéo be satisfied and no
longer needs to track individual software configuratioret #re deemed trustworthy
(see Section 711).

Virtualised devices can include any device that can be madmipport virtual-
isation. Secure storage provide virtual partitions wittegrity, confidentiality, and
freshness guarantees. Virtual networks can provide muytisalated virtual network
topologies and secure transport (df.|[34]). The implemtéoreof trusted user inter-
faces depends on the environment. A simple solution thatfficent for reliable
selecting a compartment can be implemented by a secureelgdhiiat is caught by a
virtualised keyboard driver. Another alternative is a matimpartment graphical user
interface that assigns a distinguishable window to eachpaostment. An third option
are remote user interfaces such as a secure shell managesnsote or a remotely
accessible management service. In our secure transacgoargo the user can use a
hot-key to switch compartments. In a server setting, thdl shkindicate the com-
partment that it is operating on. The cryptographic sesvinelude a virtual TPM[10]
as well as other cryptographic and key management prirsitive

Open_TC Deliverable 05.1



10 OpenTC D05.1 — Basic Security Services

For efficiency, the security services can push policiespolicy enforcement func-
tions of the virtualisation layer. This is done, if fast pglienforcement is critical for
performance. E.g., a policy decision whether a certain odtward can be assigned
to a newly created virtual machine can easily be done outhigldaypervisor since it
is usually not performance critical. Access decision farsk resources, on the other
hand, should be executed in the core since their performarciical.

1.3.3 Virtual Machines Layer

The virtual machines layer contains the actual virtual nreehthat constitute the pay-
load of the architecture. The architecture can host Windamg Linux virtual ma-
chines. This is done by providing drivers for accessing thteial hardware provided
by the lower layers. Depending on the hypervisor, certaguse services can be
implemented by a set of security management machines (Xdighter-weight tasks
(L4).

1.3.4 Application Layer

In a management virtual machine, we host the managemerntaiphs that allow
users to interact and maintain their platform. This inchidecepting/rejecting policies
and defining or loading baseline policies that can delegat@io management func-
tions (such as trust in public keys) to other parties. Anoth@mple is the life-cycle
management of a trusted platform module.

An important class of applications are management apjmitat In particular, in
virtualised data centres, a scalable management infcistruis essential. Technically,
this scalability is achieved by multiple mechanisms suckexzire migration of vir-
tual machines that enables load balancing or self-servamhines that obtain mainte-
nance orders and execute these orders while only repodsudts to the management
servers. An example of such a pull model is patch managememhich a machine
pulls the latest patch policy, then installs the patchesfaocluster of software distri-
bution servers, and finally reports its success to the cordigun management system.
As a consequence, central management infrastructure carages policies while the
costly operations are distributed onto the individual niaes.

1.3.5 Implementation of the Architecture

On the L4 hypervisor, the security and management serviedsa@ated tasks that run
directly on top of the L4 micro kernel. Each service defines#-defined interface for
inter-process communication (IPC). Interaction betweswises or between instances
of hosted payload virtual machines and services is perfdrasing these interfaces.
An IPC call that is issued by a process first goes to the L4 nkerael, which then
transfers it to the callee. The IPC mechanism is implemest®dlarly to the IPC
architecture of CORBA.

The implementation of the security and management seroicdhe Xen Hyper-
visor is split into two parts. The low-level part is implented directly in the Xen
Kernel running with full privileges. This part contains thecurity enforcement of the
security services. The lower-level part controls the basimess, communication and

Open_TC Deliverable 05.1
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Figure 1.2: A high-level abstraction of the management comepts.

enforcement and provides a well-defined interface to thédridayers. The higher
level includes non-enforcement parts of the security sessas well as the manage-
ment components. Both run in one or nfbservice virtual machines or in a special
security service virtual machine as normal user processes.

1.4 High-level Management Architecture

Figure[1.2 illustrates a high-level abstraction of the nggmaent components that are
required to manage virtualised platforms. Each componamt@ntrates on a specific
aspect of virtualised platform management. Platform manmsmt involves the life-
cycle management of the underlying physical platform asdécurity device (e.g.,
trusted platform module (TPM)). Domain management death tfie management
of virtual domain users and life-cycle. Virtual devices Isus virtual network inter-
faces [34], virtualised TPM< [10], and virtualised usereifiaces[[68] are managed
through resource management. Network management makes thsese virtualised
devices to further enable virtual topologies using varinesvork virtualisation tech-
nigues.

The management components are not mutually exclusive. ighebrresponding
management duties may be handled in collaboration with nih@tone management
component. For example, resource management and netwodg®aent collaborate
to enable and manage network virtualisation. In this sgttine former manages the
virtual network interfaces and the latter manages the aiirtetwork topology.

Security services provide the necessary functionalityefech management com-
ponent listed above and further enhance each to meet secegitirements such as
integrity, isolation, access control, confidentialitygddiow control. Further, they main-
tain a unified view on security guarantees that cover meltifgvices (e.g., data on a
disk being stored in a TPM) and the virtualisation layer cofable[1.1 lists the se-
curity requirements for the underlying physical platforndahe virtual domains and
resources it hosts. Figufe .3 illustrates an example gg@mhanced management
framework with the relevant functionality grouped togeth&he framework is built
upon the foundation of the hardware root of trust offeredi®yTPM. The architecture
leverages the recent advances in hardware virtualisatiom as virtualisation support
in the CPU offered in the latest chips from Intel and AMD. Tlaedware layer includes
one of these chips and the TPM. Just above the hardware kgerusted virtualisa-
tion layer with strong isolation properties (among virtdaimains) and well-defined
interfaces to the TPM. On top of the virtualisation layerecare the security services.

3For increased security, we split the single managemeniatirnachine of Xen into multiple smaller
ones.

Open_TC Deliverable 05.1



12 OpenTC D05.1 — Basic Security Services

| | Integrity | Isolation | Confidentiality | Access control| Flow control |

Platform security X X
Domain security X X X
Network security X X X
Storage security X X X
Interface security| X X

Table 1.1: Security requirements for the physical platforimual domains, and virtual
devices (storage and interfaces).

1
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Figure 1.3: An example security-enhanced management fvankevith the relevant
functionality grouped together.

Security services models presented in this report follewtiodel depicted in Fig-
ure[1.3 to realise such a framework making use of the vigattin and Trusted Com-
puting technology. However, they differ in the design an@lementation. One option
is to employ a single large management domain to orchedtratmanagement oper-
ations. An alternative approach follows a distributed niddemploy small manage-
ment domains to distribute the management functionalitysscthe platform.
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Chapter 2

Background and Related Work

S. Cabuk, C. I. Dalton (HPL), B. Jansen, H. Ramasamy, M. Sehuii. Van
Herreweghen (IBM), Ch. Stible, A. Sadeghi, M. Unger (RUB)

2.1 Trusted Computing

A TPM is a hardware implementation of multipleots-of-trust each for a different
intended purpose; e.g., root of trust for reporting, and aidrust for storage. The
specification of the TPM is given by the Trusted Computing @pr¢TCG [102]).
Each root of trust enables parties, both local and remotelace trust on a TPM-
equipped platform that the platform will behave as expeftethe intended purpose.
By definition, the parties trust each root-of-trust, andrdii@re it is essential that the
root-of-trust always behave as expected. Given that reqént, a hardware root-of-
trust — especially one that is completely protected frontvearfe attacks and tamper-
evident against physical attacks, as required by the TP Nifsgegtion — is better than a
software-only root-of-trust because of the inherent diffic of validating the software
that provides the root-of-trust in the first place.

The TPM has Platform Configuration Registers (PCRs), whielL&0-bit registers
useful for storing platform integrity measurements. Thiiga stored in PCRs are
essential for TPM functions such as attestation and sealliigg TPM specification
requires the first 16 PCRs to be non-resettable. The valoesdsin those registers
can only beextended The contents of other PCRs can be changed only by the reset
or extension operations. The extension operation takesput value and a PCR as
input arguments, and replaces the contents of the PCR withfalShash of the string
representing the concatenation of the old PCR contentsenidput value.

The TPM features we leverage in this section are integritpsueement storage,
recording, attestation, and sealing. “Measurement” ofamanent involves computing
the SHA-1 hash of the binary code of that component. The seguef measured val-
ues are stored inmeasurement lggxternal to the TPM. “Recording” a measurement
involves extending a PCR with the hash. “Attestation” refierthe challenge-response
style cryptographic protocol for a remote party to queryrfeorded platform measure-
ment values and for the platform to reliably report the retieie values. “Sealing” is a
TPM operation that is used to ensure that a certain data gexndessible only under
platform configurations reflected by PCR values. The “urisgabperation will reveal
the data item only if the PCR values at the time of the opematiatch the specified
PCR value at the time of sealing.

13
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14 OpenTC D05.1 — Basic Security Services

TCB Measurement. In particular, each software componentin the Trusted Campu
ing Base (TCB) is first measured and then recorded beforeathieat is passed to it.
These measurements are stored in the corresponding TPM, BGdRare incremental.
That is, a sequence of measurements can be recorded in tleersgister by incre-
mentally extending the previous measurement without cinarits size, thus enabling
virtually infinite number of measurements. This way, the ptate execution sequence
can be recorded enabling a third-party to verify it at a |pteaise.

Remote Attestation. A user can verify the correct operation of a trusted comput-
ing platform, for example, before exchanging data with thefprm, by requesting
the trusted platform to provide one or more integrity metridhe user receives the
integrity metric or metrics, and compares them againsteslhich it believes to be
true (these values being provided by a trusted party thateggsed to vouch for the
trustworthiness of the platform or by another party the iseiilling to trust). If there

is a match, the implication is that at least part of the platfés operating correctly,
depending on the scope of the integrity metric. If there ismaich, the assumption
is that the entire platform has been subverted and cannaubed (unless isolation
technologies are employed to restrict the scope of whatatdrentrusted).

2.1.1 Limitations

The static TCG architecture imposes several limitationsamnplex dynamic platforms
in which platform configuration and security policies afewakd to change frequently:

Linear Chain-of-Trust The TCG measurement model follows a linear model to
form a chain-of-trust rather than branching out hieraralyc This results in a lin-
ear dependency relation between the platform componentseter, in complex plat-
forms this conservative approach may prove impracticedbee a linear dependency is
often not the case. That is, components may form independestchains all branch-
ing out from a common root.

An expensive solution to this problem suggested by the TC® islentify and
group dependent components together and employ more traPOR to store the
measurement for each group. However, because the numlegisters is limited, this
solution is not scalable. Further, the TCG does not provigeraechanism to manage
these measurement groups at a later stage.

Static Measurement Model Current TCG schemes fail to address the cases in which
measured platform components are allowed to change inthani@rm (e.g., through
a software update) or adapt to current conditions. Furitentain platform compo-
nents may function in various operating modes (e.qg., witfedint configurations) to
perform operations with varying security needs. In eitlaese; the TCG takes the con-
servative approach to deem any such change as potentidibiona and irreversible.
The TCG requires on-going measurements to take place ugagurement agents
to monitor ongoing activity. However, these measurememrgstatic and irreversible.
For example, if a platform component changes into anothrer &md changes back into
its original form, the static solution requires a completbaot and the re-measuring
of the entire chain-of-trust to be able to re-establishtivasthiness. This approach

Open_TC Deliverable 05.1
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can be beneficial for platforms in which one cannot evaludtatimpact such changes
may have on the platform. However, it is impractical for dyri@platforms in which
platform components are allowed to change frequently andmwarious operating
mode

2.2 Secure Operating Systems

Much effort has already been put into improving securityahgputing platforms since
computers are used within infrastructures that requireagament of sensitive data.
Examples of systems that were developed from scratch tecesgcurity require-
ments are BirliX[37], Multics[[2B] and Hydra[21] or more &t ones are EROS[B7]
and SPIN[[11]. The problems inherent to these approachkatisystems particularly
designed for preserving security tend to be very inflexiblsaftware cannot be ported
easily to these systems or has to be developed from scratelseTactors inhibit these
approaches to be applied in a large scale. SELihuk [88] suffem similar prob-
lems. While allowing legacy applications to run, SELinugiois to achieve security
by defining and enforcing specific security policies, butiwg these security policies
turned out to be far too complicated. Furthermore theseaguies although especially
designed to preserve security have been proves to be vhlagoaattacks [48]. Other
approaches rely on special hardware, e.g., secure cogmegtd realise their security
goals like Dyad[[104] for example. In this system similar si@@s to keep data secure
are applied like in our approach, but in contrast to the Ofgeapproach they rely on a
physically fully separated execution environment. Thuklitonal costs for this sep-
arated environment are induced. By providing logical sefian we omit these costs.
Another approach represents the “Bear” project [60] of thetbouth College. In this
system TCG hardware is used by an adapted boot loader taderavdhain of trust and
a Linux security kernel module monitors changes to semsiata. The weakness of
this system is that it still relies on a large monolithic keltnMarchesini et. al[[61]
propose OS-hardening techniques to provide isolation eir@mments but they also
use a monolithic kernel as base for their system. As resufopeance loss occurs
and the overall improvement of security is rather small dose these legacy mono-
lithic kernels are too large to evaluate their security. rEfare, we aim at keeping the
amount of code that has to be evaluated as small as possihlsiiy virtualisation
and microkernel techniques. Other advantages of the Opepptach is that legacy
software does not have to be adapted to run without perdept#sformance loss.

2.2.1 Approaches using Virtualisation

The Terra[[3L] system represents promising approach tareseduualisation by di-
viding the system in closed-box and open-box virtual maehinClosed-box virtual
machines run separated from others and are capable to pravsécurity enhanced
environment for applications processing sensitive data.

2.2.2 Approaches using Microkernels

Examples for systems using microkernels are SawMill-Lif@3] based on the L4
microkernel [58] and Flask [91], a Mach-based system. Asfawe know these ap-

1Although dynamic root of trust feature was introduced in TRM2 that can potentially address this
problem, the problem of dynamically managing softwareesta¢mains unaddressed.
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proaches neither aim at keeping security relevant partsal as possible, nor do they
provide mechanisms such as trusted path or protected envéots.

2.3 Secure Virtual Networking

Previous work on virtualising physical networks can be tdyggrouped into two
categories: those based on Ethernet virtualisation andethmsed on TCP/IP-
level virtualisation. Although both categories includeubstantial amount of work

(e.g., [42[ 4B, 24, 25,67, 92,198,]99]), few studies havexgli@t security focus.

Ethernet Virtualisation:  Ethernet virtualisation aims at transporting multiple &tth
net connections over a single physical medium. There arega lumber of Ethernet
tunnelling protocold[25]. Local transport over a “trustedre is usually multiplexed
using the well-established VLAN standard IEEE 802.1Q-2p@. It adds virtual
LAN tags to each Ethernet segment and enables separationltplanetworks. An
example for high-performance Infiniband VLANSs is given[i8[3 In wide-area net-
works, VLAN tags are often not preserved. To overcome thesgictions, Ethernet
encapsulation has been proposed as an alternative [424925R Ethernet packets
(including tags) are wrapped into TCP/IP packets. This lsehe embedding of a vir-
tual Ethernet network into a wide-area network. Unfortehathe performance and
scalability of the resulting system are limited.

Overlay Networks and TCP/IP Virtualisation: Overlay networking provides
application-level network virtualisation among partafing hosts. An overlay net-
work typically consists of hosts (physical or virtual), tets, and tunnels that serve as
virtual links between the hosts. Several overlay designe lb@en introduced in the
literature: PlanetNet VNET [67] 9], X-Bong [98], ResilieDverlay Networks[[4], and
the JXTA project[[99]. The designs share the common goal &ditang a virtualised
network layer with a customised topology mapped onto theagthysical infrastruc-
ture. They differ in the underlying technology that enaltfesmapping, management
of the technology, and the terminology used.

Overlay networks are most useful for implementing a virtuativork topology on
top of the physical topology. However, they are not suitdbfesystems with strong
separation, isolation, and flow control requirements. Aexample, although the Plan-
etLab VNET provides separation of network packets origimgpfrom differentslices
the separation is merely enforced using the OS network ces\[©]. Similarly in
JXTA, peer groupsare used to group network peers and enforce certain isolptimp-
erties [99]. However, it is the network administrator'spessibility to enforce flow
control policies across group boundaries as JXTA does npos® any specific flow
control schemes for the sake of flexibility. Other shortoogsiof overlay networks are
complex management models, binary intra-group flow pdi@ad lack of inter-group
flow control policies.

The VIOLIN project addresses a number of these deficiencidsemhances the
traditional TCP/IP overlay networks to create mutuallylased distributed environ-
ments [45[ 74]. The main idea is to provide each subsysteim avitirtual IP world
having its own address space. In particular, a VIOLIN is xéan top of an overlay
network (such as PlanetLabl [9]) and consists of virtual fiostvitches, and routers.
Communication between these entities is enabled througdeaMode Linux (UML)

Open_TC Deliverable 05.1
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implementation enhanced with UDP-tunnelling for inteshoommunicatidh The
VIOLIN model provides isolation between different VIOLINshich in turn enhances
mobility through location-independent addressing. Fentthe model enables the cus-
tomisation of each VIOLIN with the desired technology (elBv6) without requiring a
global deployment. A major disadvantage of VIOLIN is tha thodel completely dis-
allows inter-VIOLIN communication rather than adoptingaipy-based flow control
scheme. In practice, it may be desirable for VIOLINs beloggio different organi-
sations to interact with each other under certain flow cémpioticies enforced at each
VIOLIN boundary.

Previous solutions also offered network virtualisatiohesoes that do not rely on
overlay networking. Spawning networkemploy nested programmable networks to
form a hierarchy of virtual networks that are isolated fromele other[[16, 17, 52]. The
main idea is to enable parent networkspawnchild networks that utilise the parents’
resources. The child networks then may or may not chooseh&riincertain charac-
teristics from their parent. The advantages are that thid aetworks can employ a
specialised networking technology (e.g., a mobile-IP oekvwhile inheriting basic
network functionality from their parent. Further, they cgawn child networks of
their own, forming a forest of networks.

Spawning networks utilise the Genesis network kernel [62} enables the life-
cycle management of each spawned network including therdpgveapability. The
Genesis kernel is a complex virtual networking kernel thestds to be installed on ev-
ery physical domain that will potentially host spawningwetks. The major downside
is that this requires major changes to the existing netwadrkstructure.

2.4 Attestation and Integrity Verification

There have been several proposals in the literature foegtiog and proving the in-

tegrity of computing platforms based on cryptographic teghes and trusted compo-
nents. Known aspects in this context are secure and auth&di(or trusted) booting.
The former means that a system can measure its own integdtieaminates the boot
process in case the integrity check fails, whereas the kittes at proving the platform

integrity to a (remote) verifier (for both topics see, e/§], [29], [84], [82], [110]).

The property attestatiorapproach outlined in Sectidn 7.1..7 was first proposed in
[71] to prevent the deficiencies of the existing binary attésn (see Figure 2.1 a)).
Similar to the certificate-based detection method disaliss&ectiori 7.116, this solu-
tion is based on property certificates that are used bgrdication proxyto translate
binary attestations into property attestations.

In [44], an abstract integrity model for virtual machine nitors is provided. The
authors introduce a more formal notation for attestatioth sealing. Their notation
for attestation introduces a function that can be used toéefitestation of properties
by mapping configurations to a corresponding property. Bia#testation is obtained
when the identity function is given.

The authors of[[35] proposgemantic remote attestatienusing language-based
trusted virtual machines (VM) to remotely attest high-lepeogram properties (see
Figure[21 b)). The general idea behind this approach is sieeofi a trusted virtual
machine that checks the security policy of the code that wittsn the VM. Since
the trusted VM still has to be binary attested, semantic terattestation is a hybrid
solution with code analysis (see Secfion 4.1.6).

2A Xen-based solution has recently been introdu€ed [75].
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Figure 2.1: Comparison of related approaches: a) Propetgstation, b) Semantic
Remote Attestation, ¢) The Enforcer Project

In [60], [62], and [61] the authors propose a software agtitre based on Linux
providing attestation and sealing (see Fiduré 2.1 c)). Thkitcture allows to bind
short-lifetime data (e.g., application data) to longtlifee data (e.qg., the Linux kernel)
and to allow access to the data only if the system is compatibk security policy
certified by a security administrator. Moreover, the pagaggest to use a certification
authority that certifies the trustworthiness of certainfigurations of long-lifetime
data. Thus, the proposed architecture is very similar tolaitlyapproach based on
property certificates.

2.5 Virtualisation and Dependability

We now give a sampling of related work in the area of usingueirtmachines for
improving dependability. Bressoud and Schneider [12] enpnted a primary-backup
replication protocol tolerant to benign faults at the VMMéé The protocol resolves
non-determinism by logging the results of all non-deteistio actions taken by the
primary and then applying the same results at the backupaitttamn state consistency.
By treating the entire VM as a state machine, their approaas dhot require any
modifications to the hardware, the guest OS, or the apmicg@tiogram. However, the
downside of the approach is the significant performancehaaat incurred.

Commercial products such as VMware Double-Take[105] atsW-based fault
tolerance. Double-Take uses hardware-based real-timehsymous replication to
replicate application data from multiple VMs to a single pital machine so that the
application can automatically fail over to a spare machineporting the replicated
data in case of an outage. As the replication is done at theydeem level below
the VM, the technique is guest-OS-agnostic. Such a desigld gmovide the basis
for a business model in which multiple client companies ourttse their disaster re-
covery capability to a disaster recovery hot-site that keusultiple backup physical
machines, one for each client.

Douceur and Howell [26] describe how VMMs can be used to entuat VMs
satisfy determinism and thereby enable state machineediglh at the VM level rather
than the application level. Specifically, they describe laowM'’s virtual disk and clock
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can be made deterministic with respect to the VM'’s execufidre design relieves the
application programmer of the burden of structuring theliappion as a deterministic
state machine. Their work is similar to Bressoud and Sclamsicipproach[[12] of

using a VMM to resolve non-determinism. However, the ddfere lies in the fact that
while Bressoud and Schneider’s approach resolves nompdieiem using the results
of the primary machine’s computation, Douceur and Howelksign resolves non-
determinisma priori by constraining the behaviour of the computation.

Dunlap et. al. describe ReVift[28] for VM logging and repl&eVirt encapsulates
the OS as a VM, logs non-deterministic events that affectilhis execution, and
uses the logged data to replay the VM’s execution later. Suchpability is useful
to recreate the effects of non-deterministic attacks, ag fow later in[[47]. Their
replay technique is to start from a checkpoint state and tbkforward using the log
to reach the desired state. Joshi et.[all [47] combine VM éptection with VM replay
to analyse whether a vulnerability was activated in a VM befopatch was applied.
The analysis is based on vulnerability-specific predicatesided by the patch writer.
After the patch has been applied, the same predicates caseldeduring the VM'’s
normal execution to detect and respond to attacks.

Backtracker([4P9] can be used to identify which applicatiemning inside a VM was
exploited on a given host. Backtracker consists of an ordomaponent that records
OS objects (such as processes and files) and events (su@dawrite, and fork), and
an offline component that generates graphs depicting th&lpeshain of events that
occurred between the point at which the exploit occurredthedooint at which the
exploit was detected.

An extension of Backtracker [51] has been used to trackkgtiom a single host
at which an infection has been detected to the originatdrettack and to other hosts
that were compromised from that host. The extension is basddentifying causal
relationships, and also has been used for correlatingsdtern multiple intrusion de-
tection systems.

King et. al. [50] describe the concept of time-travellingwal machines, in which
VM replay is used for low-overhead reverse debugging of afrey systems and for
providing debugging operations such as reverse breakpeierse watch point, and
reverse single step.
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Chapter 3

Xen Security Services

S. Cabuk, C. I. Dalton (HPL), B. Jansen, H. Ramasamy, M. SetniBM)

3.1 Xen Security Architecture

This section provides background on virtual machine mosiémd an overview of the
Xen security model and architecture.

3.1.1 Virtual Machine Monitors

Virtualisation is a technology that allows the real hardsveonfiguration of a system
to be abstracted away and allows multiple virtual domaires,(VMs), each running
its own operating system and applications, to be hosted amgéephysical machine.
Virtual computing involves using a layer of software, cdltbe virtual machine mon-
itor (VMM) or hypervisor, between the physical hardware #meloperating system to
provide the illusion of a real physical machine to the ogrgasystem. The VMM does
this by emulating the physical machine in software. The afyey systems running in
the VMs are calleduestoperating systems. Depending on how the emulation is done,
changes may be required to the guest operating systems.\Bdive such as VMware
ESX and Xen V3 can leverage recently introduced processmialisation support and
do not require any change to be made to the guest operatitgnsy.s Without pro-
cessor support, changes to the guest operating system uggyested to achieve better
performance (e.g., Xen para-virtualisatioh [8]). The O8 applications of a VM run
on the VM'’s own virtual resources (virtual CPU, virtual Ni€tual RAM, virtual
disks, etc.). The VMM maps the virtual resources to the glatsiesources and also
manages access to the input/output devices.

3.1.2 Xen Basics

In Xen-speak, running instances of VMs are callieinains A special domain, called
DomO or domain zero, is the first domain that is created. Thisain controls all
other domains, called user domains or DomUs. DomO alsose=athe management
duties for DomUs. These management duties include platfoamagement, domain
management, resource management, and network managentistetchin Sectioh 114.

20
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Figure 3.1: Xen Virtual Machine Architecture

In this setting, DomO and the underlying hypervisor are oesgble for: (1) building
and managing user domains, (2) managing virtualised dewcd making them avail-
able to user domains, (3) managing virtual network intexagnd topologies, and (4)
allowing interfaces for inter-domain communication.

User domains are managed by the management domain thraubblife-cycle.
The privileged management domain itself is bootstrappethbyunderlying Xen hy-
pervisor which passes control to it upon successful imitietDomO0 then assumes full
control over its life-cycle and the life-cycle of user domsi The latter involves domain
creation, suspension, hibernation, migration, and teation.

The Xen functional model requires a privileged DomO to bé&vaain the platform
at all times (i.e., user domains cannot exist without a mamamnt domain (existential
policy)). Further, DomO is trusted at all times and the platf is trusted if and only
if the hypervisor and DomO (i.e., Trusted Computing BaseRJ)Gs trusted. Con-
trastively, if DomO or the hypervisor is compromised, aleusomains are rendered
compromised as well. The hypervisor and DomO further prewithe necessary isola-
tion between user domains (vertical isolation) as well asisblation between Dom0
and the user domains (horizontal isolation). As an exangptbe former, a compro-
mised or a defunct user domain should not have any sidetgféetany other user
domain. Similarly, a compromised or a defunct user domagukshnot have any ef-
fects on Dom0O. However, a compromised or a defunct DomO rsradleuser domains
compromised or defunct.

The management domain additionally acts as a driver dorhaindirects 1/O re-
quests from user domains to the underlying hardware deviEes a given physical
device, the native device driver is part of at most one VMh# tlevice is to be shared
with other VMs, then the VM with the native device driver makée device avail-
able throughdevice channelsnplemented using shared memory. The virtual device
organisation of Xen splits drivers into two parts: a frondedriver and a back-end
driver. A front-end driver is a special driver that residathim the kernel of the guest
domain. The back-end portion of the driver resides withimklrnel of the driver do-
main (DomO or the domain with the native device driver) arehtes a virtual device
within the driver domain for every front-end device in a grdgsmain that gets created.
Conceptually, the pair of front-end and back-end devicésbes as follows: Requests
sent out by the front-end device in the guest domain appeegcaeests received by
the back-end device in the driver domain. Similarly, re¢sieent out by the back-end
device by the driver domain appear as requests receivedebfydht-end device. In
its standard configuration, Xen is configured to forward theed domain back-end
request to the real physical device. By this mechanism,astglgenerated by a guest
domain find their way to the physical device and vice versa.
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Figure 3.2: Security services in Xen context.

Lastly, the Xen architecture allows communication betweser domains and be-
tween a user domain and DomO using various inter-domain agmuation (IDC) tech-
nigues. Briefly, memory pages can be shared between domsimggrant tables
Similarly, event channelare used for event notification. Further, recent implemen-
tations of IDC [59] use a socket-like interface to read/evfiom/to domains that is
shown to perform better than employing the network stackéonmunication. IDC is
coordinated and managed by DomO and the underlying hyervis

3.1.3 Xen Architecture

Figure[3.2 depicts a snapshot of a Xen platform with potésgieurity services in con-
text. Xen security services realise security-enhancedagement of the virtualised
platform. To do so, they mainly make use of the domain manageriunctional-
ity provided by the Xen API, and the underlying inter-domaommunication and
front/back-end device architecture (e.g., netback / aetfin the figure). Further, they
employ libraries to access the underlying hardware secdewice (i.e., TPM) to store
secrets securely and make use of the sealing capabilitg(ootn in the figure).

Because security services run in a privileged domain thegansidered privileged
services. That is, a platform user needs to trust (and Jetfy correct operation of
these services in order to be able to trust the platform. &fbeg, in this setting, the
security services are considered to be a part of the plaff@Biand they are measured
during the platform bootstrap along with the other DomO comgnts. This centralised
approach yields a practical solution to domain and serviaeagement as no inter-
domain communication is needed to interact with other ses/i The disadvantage
is that a compromised service effectively renders the cetagilatform compromised
(i.e., untrusted).
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3.1.4 Xen Disaggregation

Recently, the Xen community has been working on a distribstdution to domain
management. The work involves the disaggregation of Xen @orto smaller man-
agement domains that work in coordination. The main goab ietluce the size of
DomO, hence the size of the TCB that a platform user needssgbitr order to trust the
platform. Further, this approach results in managemenpoom@nts virtually indepen-
dent from each other in terms of integrity. In this settingpanpromised component no
longer results in a platform that is considered compromésed whole. This security
advantage is countered by the negative performance imphaid.is because by sepa-
rating the services some of which may work together, thealvieter-domain traffic
is potentially increased.

An example implementation uses a separate domain to haoaiaid management
(i.e,. building) duties. The resulting domain is called D®(ne., domain builder) that
is designed to be considerably smaller than the DomO. Threiglihat in cases DomO0
is compromised, DomB may still function practically allowji it to spawn a fresh /
un-compromised version of DomO0. The work is in progress.

3.2 Xen Security Services

Lack of security of VMs and lack of trust in the correct exéontof virtualisation
engines are a major concern limiting the broad adoption of tétdhnology. Perhaps,
nowhere is this concern more evident than in data centresenVigls belonging to
multiple (perhaps, competing) companies are to be hostéldeosame physical infras-
tructure.

We are interested in the following ways to provide betteuség of VMs:

1. At the virtualisation software level, the policy enfontent capabilities of the
VMM itself can be significantly improved to allow enforcenteri more strin-
gent and fine-grained security policies][81].

2. Implement sound policy management and enforcementaifrirdtion flow con-
straints. One example are virtual firewalls.

3. Increasing security of virtualised devices. One exanmplgecure virtualised
storage.

4. Integrate integrity validation and protection mechargsnto the VMM. This
means that customers can validate the integrity of the VMM i&m essential
services.

We are interested in enhancing the security of the virtatiis layer by estab-
lishing finer-grained trust domains and offering methodsefdernal stake-holders to
verify, using Trusted Computing (TC), the integrity of thetwalisation software layer
and its associated policies. Complementing those methodddvbe a new layer of
enforcement mechanisms appropriate for guiding the behawf the virtualisation
software layer and hosted operating system instancese ®Bmégrcement mechanisms
are what we call “security services.”

The enforcement capabilities of the Xen security servigesismultiple aspects
of a Xen-based virtual infrastructure, e.g., platform,wwrking, storage, VM life-
cycle, graphical user interface (GUI), TPM, and other desic The goal is to map
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Figure 3.3: System Architecture

overall system-wide security policies onto each of thoshvidual aspects. We use
the Trusted Virtual Domain (TVD) model[14] to specify ovBsystem-wide policies.

Table[3-1 summarises how TVD policies can be mapped ontousmspects of a
virtual infrastructure. Here, we assume that each TVD hastandt colour, and use
the termscolour andTVD interchangeably.

3.2.1 Security System Architecture

We list the essential security services that we considenénQpenTC project (Fig-
ure[3:3). The system is built upon the foundation of the haréwoot of trust offered
by the TPM. The architecture leverages the recent advandesmdware virtualisation
such as virtualisation support in the CPU offered in theslatdips from Intel and
AMD. The hardware layer includes one of these chips and thd.TRist above the
hardware layer is a trusted virtualisation layer (denotg&bM core in Figure[3.B)
with strong isolation properties (among VMs) and well-deflrinterfaces to the TPM.
Above the VMM core are the security services.

The security services can be divided into two types: secexécd virtualisa-
tion services and security management services. Secuieedevtualisation pro-
vides security-enhanced virtualisation of devices. EXesmclude secure storage,
secure virtual network topologies |34], virtualised TPNMS]], or trusted user inter-
faces[[68]. Security management services maintain a unifeed on security guaran-
tees that cover multiple devices (e.g., data on a disk etedypith a TPM key) and
the VMM core. The security management services are sulmtiviicto compartment
security services, user security services, and integeityises. Compartment services
track individual VMs and their (local) security propertié$ser services maintain users
and their preferences. They also comprise a trusted usefané. Integrity services
maintain overall integrity guarantees so that, for exanlesrifier can validate several
devices, its own user VM, and the integrity of the VMM core.

To enforce certain security guarantees on the VMM core,¢barity services con-
figure the VMM core using policies. An example of such pobkciethe sHype device
access control policies that can be loaded at boot fime idve the security services
layer are VMs, each running its own guest operating systairagplications.

3.2.2 Component-Level Design of the VMM Security Services
Layer
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Figure 3.4: Component-Level Design of the VMM Security Sezg Layer

Overview

The VMM security services layer (Figure B.3) provides fumes such as compartment
security management, integrity services managementseserity management, and
secure device virtualisation, that are needed to enforesehurity policies. Here, we
provide an overview of these functions.

The Compartment Security Manager deals with the life-cye@agement of com-
partments (i.e., VMs) and tracks the security policies atietrocontext (such as in-
tegrity constraints, permissions, and global identifiasgociated with each compart-
ment. It can be used to prove selected security propertipsdcs. The User Security
Manager manages the users of the system and enables azdtientof individual
users and their associated roles. The Integrity Servicemlyler (or Integrity Manager,
for short) maintains the integrity of the system. An impattacontribution to scala-
bility for trusted computing is the focus on security prdjes for trust management
[71,[783%]. Instead of verifying integrity by means of ctygraphic checksums, we
use higher-level properties such as user roles, machires typ trust domains to de-
termine trust. This is done by first using checksums to vehié/core security services
and then use these security services to evaluate the desitaedty properties [V, 78].
Only if these properties are satisfied will certain actionshsas unsealing a key or
performing a transaction with a peer be performed. The apresgce is that a verifier
only needs to define security properties to be satisfied andmger needs to track
individual software configurations that are deemed trugtwo The Security Policy
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Manager deals with the creation, access management, aadetof local and global
policies for the VMs, virtual devices, and other securitvgees.

Virtualised devices can include any device that can be madapport virtualisa-
tion. Secure storage provide virtual partitions with imtggand confidentiality. Virtual
networks can provide mutually isolated virtual networkdtmmies and secure trans-
port [34]. The implementation of trusted user interfacgsetels on the environment.
A simple solution that is sufficient for reliably selecting@ampartment can be imple-
mented by a secure hot-key that is caught by a virtualiseddayl driver. Another
alternative is a multi-compartment graphical user integfthat assigns a distinguish-
able window to each compartment. An third option are remetr interfaces such as
a secure shell management console or a remotely accessiblgement service (e.g.,
http://demo.tudos.org/nitpicker_tutorial.html).

If fast policy enforcement is critical for performance, thibe enforcement of cer-
tain policies may be done at the virtualisation layers iadtef at the security services
layer [81]. For example, a policy decision whether a certatwork card can be as-
signed to a newly created VM can easily be done outside theh¥parvisor as it is
usually not performance-critical. On the other hand, asdezisions for shared re-
sources are performance-critical and may be executed Nt core.

Figure 3.4 shows the component-level design for the integranagement subsys-
tem of the security services layer. The subsystem implesritbetconcepts introduced
in Section 3.4P2. Compared with Figurel3.3, it shows thegteat the next level of
detail, depicting the individual components that make wgpghbsystem and the inter-
faces the components expose. We now describe these comtpoRensecure virtual
device management, we focus on one type of device, namalyeseictual hard disks.

Compartment Manager

At the top level, there is theompartment security managésr compartment man-
ager(CM), for short), which is the central instrumentation amdhestration point and
with which the user and the verifier directly interact. The Gi the name indicates,
deals with anything related to compartments or VMs, inaglgddperations such as
creating, hibernating, migrating, stopping, and attestiivis. It also has an interface
getCurrentState() for obtaining the current state of the entire environmemtl(iding
the list of active VMs, the list of users to whom the VMs belphgw much free mem-
ory is available, etc.). An example usage of this interfacald be a state measurement
service invoking the interface for attestation purposes, for attesting the state of the
physical machine. Note that thpetCurrentState() function would not tell the state
measurement service whether the VMs are in good state, hultvpoovide informa-
tion about how many and what types of VMs are currently presenthe physical
machine, which VMs are running, which ones are hibernatig, Using such infor-
mation, the state measurement service itself would havedaak whether the physical
machine is in an “acceptable” state. The CM also hgstHD() interface, which can be
invoked to obtain the unique identifier of the CM. Such a fiorctvould be useful, for
example, in a data centre environmentin which multiple ptafsnachines and, hence,
multiple CMs would have to be coordinated. TieedConfig() interface of the CM is
used internally when the CM is requested to create a new VMaftest() interface of
the CM offers a generic attestation call with an attestatiescriptor (describing what
should be attested) as the parameter. The function is a ffuwoxiion as it merely calls
the requestAttestation() function of the Integrity Services Manager (ISM), which is

Open_TC Deliverable 05.1


http://demo.tudos.org/nitpicker_tutorial.html

28 OpenTC D05.1 — Basic Security Services

described below.

The createVM() function of the CM is invoked when a user wants a new VM
to be created. The VM configuration data, in the form of a coofigect or file, is
passed as parameter to the function. The combination of see Security Manager
and the policies stored in the Security Policy Manager (shiowFigure 3.8, but not
in Figure[3.4) is used to check which VM-related functions tiser is authorised to
request. For this purpose, thkeckUser() function of the user manager is invoked by
the configuration manager. The function takes a user namsané specified input
policy as parameters, and checks whether the user’s reguageration is compatible
with that policy. An example input policy may say that anymusan create a VM, but
only users A and C can create a particular kind of VM (say, a \fMrmautomobile
company). To retrieve a certain policy from the Securityi¢ddManager, the CM calls
getPolicy() with a policy identifier as an argument.

Integrity Services Manager

The ISM is responsible for sealing, measurement, and atiest These services
are implemented using multiple specialised low-level piag These plugins imple-
ment the extensibility concept outlined in Sectfon 3.4.2istidct plugins are used
for various devices for separation of concerns and for eatgnsibility. At system
startup time, any available plugin will register its capities with the ISM using the
registerPlugin() function.

There are two kinds of attestation: TPM-based attestafioplémented by the
TPMAttestation component shown in Figufe_3.4) and hypervisor-based attest
(implemented by thédypervisorAttestation component; omitted in Figufe_3.4). In
both cases, the signatures on thgestationResult are made by the TPM. TPM-
attestation (sometimes called binary attestation) is thditional form of attestation
specified by the TCG. It involves obtaining an incrementalptographic hash chain
based on the hashes of the binaries of the boot loaders, @%pgutications running
on the physical machine. The hash chain is stored in one oP@iRs of the TPM
chip. The verifier component at an external stake-holdetlean remotely verify the
execution state of the platform either using a referenceeval based on a policy (as
described above). Hypervisor-based attestation assuratthe hypervisor is part of
the TCB. The trustworthiness of the hypervisor can be clekblgea remote party by
obtaining a signed TPM attestation also for the hypervisar. hypervisor-based at-
testation, the attestation description is given to the hyiper in text form through the
AttestationDescriptor data object. The description specifies (in a considerablgemo
flexible manner than TPM-based attestation) what needs tttbsted. The hyper-
visor then obtains those attestations. With respect to adehin Sectioi 3.412, the
AttestationDescriptor identifies the projection of the overall system data thall &lea
attested. If theHypervisorAttestation is used, then property-based attestation can be
realised by implementing (in thédypervisorAttestation class) an attestation evalua-
tion function (such as the one described in Chdpter 7) thastates the system state
into a statement of properties about the system.

The sealing services of the ISM is provided through $eelingServices plugin.
Just like attestation, there are two types of sealing: hardwwased sealing (or TPM-
based sealing) and hypervisor-based sealing. Note thagdp the figure readable,
only the former is depicted in in Figure 3.4. Both types oflisgacan be used to make
a key available only if certain conditions are satisfied. Ildegr, of the two types of
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Figure 3.5: Realisation using Xen and Linux

sealing, hypervisor-based sealing is considerably maxidofee The main limitation of
TPM-based sealing is that not much can be stored in the PCR& dPM. Only one
state may be specified for unsealing in TPM-based sealingpssed to saying “any

of theser states is acceptable” for unsealing. This is a seriousdtimit when attesting
different software that may be loaded in different sequsnbehypervisor-based seal-
ing, many acceptable states (i.e., reference values) &walimg may be specified. The
reference values are stored irbealingValuesStorage and the corresponding sealed
keys are stored in HeyStorage. Reference values may also be provided as parameters
to functions such asreateVM(). Hypervisor-based sealing can also be used to ensure
that only the specified user can unseal the VM. As in hyperdissed attestation,
hypervisor-based sealing assumes that the hypervisortisfthe TCB.

Secure Virtual Device Management

The Secure Virtual Device Manager (SVDM) is responsiblenfianaging virtual de-
vices such as virtual HDDs, virtual block devices, virtuatwork devices, and virtual
TPMs. The service offered by the SVDM is realised throughtiplel specialised low-
level plugins, one for each virtual device. Figlrd 3.4 shoms such plugin, the secure
virtual hard disk plugindvHDPIugin). We provide more information about this plugin
below in the context of a Xen- and Linux-based implementatio

Realisation using Xen and Linux

Figure[ 35 shows an example implementation of our secueityises design in Xen
using Linux for Dom0. The Xen hypervisor provides the phgkigevices to DomO
(Xen’s management domain). In Xen terminology, a front-emtlial device is one
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that is associated with a user domain and a back-end virayatel is present only in
Dom0. Every front-end virtual device has to be connected ¢oreesponding back-
end virtual device; only then does the front-end device bexactive. The mapping is
many-to-one, i.e., many front-end virtual devices, onefeach user domain, may be
mapped to a single back-end virtual device.

In DomO, secure device virtualisation is implemented in kbenel space. Tasks
such as configuring of the virtual devices would be done thindbhe SVDM in the user
(or application) space. For example, a secure hard diskikeimented by means of the
dm cr ypt loopback device. Similarly, the network is virtualised bpyding virtual
network cards for the guest partitions that can then be bddg the actual network
card. Security for networks has two aspects. Topology caims define which guest
is allowed to connect to which subnets. In addition, endoyptequirements define
which connections need to be encrypted. Another virtudlts=vice is a virtual TPM
that provides one virtual TPM instance to each of the guetitioas [10]. The virtual
device manager maintains the devices and their securipepties. The integrity and
compartment are implemented in DomO0 and interface to thedwgor as well as to
the other services implemented in DomO.

Secure management of virtual devices is a complex task. ¥anple, consider
the steps involved in starting a virtual hard-disk driversgia policy-based check
of the platform state is done. That may include verifying theasurements of the
hypervisor, binary disk, and the DomO0 image. Then, the alrhard-disk is attached
with credentials and connected with a loop device (/dey)jod he virtual hard-disk
may be encrypted, for example, with a sealed key that is meaiable only if the
platform is in a certain state. The decryption of the virthatd-disk image is done
using the Linux hard-disk encryptor. After decryption, tevice file that gives access
to the decrypted image is connected to the front-end. Simpdicy-based checks may
be done when starting other virtual devices. For examplfgreestarting a virtual
network device, policies may stipulate that the VM must bedme acceptable state
and outside firewalls must be configured correctly.

3.3 Secure Virtual Networking

Our focus in this section is security-enhanced networkigiisation, which (1) allows
groups of related VMs running on separate physical macholes connected together
as though they were on their own separate network fabric(2rehforces cross-group
security requirements such as isolation, confidentiatitggrity, and information flow
control.

We describe a secure network virtualisation framework tedps realise the ab-
straction of Trusted Virtual Domains (TVD<) [14] by guareging reliable isolation
and flow control between domain boundaries. The framewotiased on existing
and well-established network virtualisation technolggiech as Ethernet encapsula-
tion, VLAN tagging, and virtual private networks (VPNSs). Owmnain contributions
are (1) combining these technologies to realise TVDs, whiehsecurity-enhanced
variants of virtualised network zones, and (2) orchestgathem through a manage-
ment framework that is oriented towards automation. Inigalgr, our solution aims
at automatically instantiating and deploying the appm@tersecurity mechanisms and
network virtualisation technologies based on an input sgcomodel, which specifies
the required level of isolation and permitted network flows.
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The related work for this section has been summarised ind®&2i3 on page16.

3.3.1 Security Objectives and Policies

We describe the security objectives of network virtuai@ausing a security model
that enables the automatic enforcement of the objectivédge pblicies used in this
model are based on a security-enhanced variant of viradalietwork zones called
Trusted Virtual DomaingTVDs) [14]. The policies define integrity, confidentiality
isolation, and information flow control requirements.

Trusted Virtual Domains

A TVD is represented by a set of distributed virtual proceg®lements (VPE) (e.g.,
virtual machines) and a communication medium intercoring¢he VPEs, and pro-
vides a policy and containment boundary around those VPB&sWvithin each TVD
can usually communicate freely and securely with each othiethe same time, they
are sufficiently isolated from outside VPEs, including tabglonging to other TVDs.
Here, isolation loosely refers to the requirement that hatiest VPE in one TVD can-
not send messages to a dishonest VPE in another TVD, unkegstén-TVD policies
explicitly allow such an information flow.

Each TVD has an associata@drastructurewhose purpose is to provide a unified
level of security to member VPES, while restricting the ratgion with VPESs outside
the TVD to pre-specified, well-defined means only. Unifiedusi# within a domain
is obtained by defining and enforcimyembership requirementlat the VPEs have
to satisfy before being admitted to the TVD and for retainiimg membership. Each
TVD defines rules regarding in-bound and out-bound netwmafki¢. Their purpose is
to restrict communication with the outside world.

Security within a TVD

Within a TVD, all VPEs can freely communicate with each othdrile observing
TVD-specific integrity and confidentiality requirements.orEhis purpose, intra-TVD
communication may take place only over an authenticate@aod/pted channel (e.g.,
IPsec), or alternatively, a trusted netwlirkThe trusted network alternative may be
reasonable in some situations, e.g., within a data centre.

TVD security requirements may have multiple facets: ina¢pnotection, member-
ship requirements, etc. Given a §ewf trusted virtual domains, one way of formal-
ising internal protection is to define a domain-protectiondtionP : T — 2t¢:@:s},
which describes the subset of security objectives (confialéy, integrity protection,
and isolation) assigned to a particular TVD. Informallyteigrity means that a VPE
cannot inject “bad” messages and pretend they are from an¥fPE. Confidentiality
refers to the requirement that two honest VPESs (in the sanie dMdifferent TVDs)
can communicate with each other without an eavesdroppenitegthe content of the

1A network is calledrustedwith respect to a TVD security objective if it is trusted tdf@ce the given
objective transparently. For example, a server-interhéfaet can often be assumed to provide confiden-
tiality without any need for encryption.
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* Implemented in our Xen-based prototype.

Figure 3.6: Example Flow Control Policy Matrix for Three T¥D

communication. Lastly, isolation refers to the requiretrtbat resources used by two
VPEs are logically separated and there is no unintendedtdim®rmation flowdl.

Admission control and membership management are impoatpects of TVDs.
A TVD should be able to restrict its membership to machines #atisfy a given set
of conditions. For example, a TVD may require certificatesisy that the platform
will satisfy certain propertie$ [78] before allowing theaffbrm to join the TVD. One
way of formalising the membership requirements is to defifnationM : T — 27,
where(P, <) is a lattice of security properties. A machinewith a setp,,, of security
properties may be permitted to join the TMDff Vp € M(¢) : Ip’ € p,, such that
p’ > p. In other wordsyn is permitted to joirt iff there is at least one property of
that satisfies each security requirement.of

Member VPEs may be required to prove their eligibility on atamual basis either
periodically or on-demand. For example, members may beinedjto possess cer-
tain credentials such as certificates or may be requiredaegghat they satisfy some
integrity properties (property-based attestation a®dhiced in Section 7.1). The con-
ditions may vary for different types of VPEs. For examplayses and workstations
may have different TVD membership requirements. Some VP&slme part of more
than one TVDs, in which case they would have to satisfy the begship requirements
of all the TVDs they are part of. For a VPE to simultaneoushalmeember of multiple
TVDs, the individual TVD membership requirements must beflict-free.

Security across TVDs

Inter-TVD security objectives are independently enforbgdeach of the individual
TVDs involved. To facilitate such independent enforcemglatbal security objectives
are decomposed into per-TVD security policies. The adypntdi such a decentralised
enforcement approach is that each TVD is shielded from #gdciailures in other
TVDs. Security objectives may take different forms; here, fwcus on information
flow control among the TVDs.

An information flow control matrix is a simple way of formahg the system-wide
flow control objectives. Figure_3.6 shows a sample matrixtfioee TVDs: TV D,,,
TV Dg,andI'V D,,. Each matrix element represents a policy specifying botimjited
inbound and outbound flows between a pair of TVDs, as enfdrgexhe of the TVDs.
The1 elements along the matrix diagonal convey the fact thaettssfree information
flow within each TVD. The0 elements in the matrix are used to specify that there
should be no information flow between two TVDs, e.g., betwE&iD, andTV Dg.

An information flow from one TVD to another will be overseentimth the sender
TVD and the recipient TVD. Information flow control from oneé/D to another is
specified by two policies, with each TVD independently eaifiog one. For exam-
ple, P, 3, which represents the information flow policy fréfV’ D, to TV Dg, would

2Addressing covert channels that utilise indirect inforioraflow would exceed the scope of this report.
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consist of two sub-policies: ( };}1‘, which would be enforced by the recipient TVD,
TV Dg, and is concerned with the integrity protectionof” D, and (2)P§gt, which
would be enforced by the recipient TVID;V D, and is concerned with the confi-
dentiality protection off'V D,,. The distribution of policy enforcement to both TVDs
means that the recipient TVD does not have to rely solely emehts of the sender
TVD to enforce rules regarding its inbound traffic.

3.3.2 Secure Virtual Networks

In this section, we describe the aims of our secure netwotkalisation framework
and introduce the networking components forming the fraotkwWe then present
the composition of the components to form TVDs and to enfdr¢® policies, and
describe the management of the TVD infrastructure. Herefoses on the static be-
haviour of a secure network virtualisation framework ttgaaiready up and running.
Later, in Sectiof 3.313, we focus on the more dynamic asmédtse framework, in-
cluding establishment and deployment of the secure vimtdia@structure.

Network Virtualisation Aims

The main aim of our network virtualisation extensions is lova groups of related
VMs running on separate physical machines to be connectgdher as though they
were on their own separate network fabric. In particularweelld like to be able to
create arbitrary virtual network topologies independeaflthe particular underlying
physical network topology. For example, we would like grewgp related VMs to be
connected directly together on the same virtual LAN segneget though, in real-
ity, they may be at opposite ends of a WAN link, separated bypynphysical LAN
segments. As another example, multiple segmented viretsalorks may have to be
established on a single physical network segment to achigweved security proper-
ties and protection.

Our network virtualisation extensions must also be intggrable with existing
non-virtualised entities (e.g., standard client machimeshe Internet) and allow our
virtual networks to connect to real networks.

Networking Components

One option for virtual networking is to virtualise at the I&¢&l. However, to avoid

problems regarding the support for non-1P protocols andugpert services (such as
ARP) that sit directly on top of the Ethernet protocol, we énahosen to virtualise at
the Ethernet level.

Our secure network virtualisation framework allows muéiyMs belonging to
different TVDs to be hosted on a single physical machine. ffamework obtains
isolation among various TVDs using a combination of virtuANs (VLANS) and vir-
tual private networks (VPNSs). There is oimernal VLAN for each TVD; anexternal
VLAN may be used for communication with other TVDs and TVDtexal entities.
In the absence of a trusted underlying physical networkh &4cAN segment (i.e.,
an Ethernet broadcast domain, as in our case) may employtamalpVPN layer to
provide authentication, integrity, and confidentialitpperties.
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The networking infrastructure consists of a mixture ofuéitentities and physical
entities. Virtual entities include VMs, vSwitches, VLANggers, VPN, and gateways.
Physical entities include the physical hosts and the physietworking infrastruc-
ture, which includes VLAN-enabled physical switches, evgf and ordinary Ethernet
switches.

Virtual Ethernet cardor vNICsare the basic building blocks of our design. Each
VM can have one or more vNICs. Each vNIC can be associated atithost one
VLAN.

Each virtual LAN segment is represented byidual switch or vSwitch A VM
appears on a particular VLAN if one of its VNICs is “pluggedtd one of the switch
ports on the vSwitch forming that segment. The vSwitch bekéite a normal physical
switch. Ethernet broadcast traffic generated by a VM comukti the vSwitch is
passed to all VMs connected to that vSwitch. Like a real dwitbhe vSwitch also
builds up a forwarding table based on observed traffic sortbatbroadcast Ethernet
traffic can be delivered in a point-to-point fashion to imardandwidth efficiency.

The vSwitch is designed to operate in a distributed fashibime VMM on each
physical machine hosting a VM connected to a particular VLgdgment hosts part
of the vSwitch forming that VLAN segment. A component of th&M captures
the Ethernet frames coming out of a VM’s vNIC. The componentonfigured to
know which vSwitch the VM is supposed to be connected to. Véerlee the vSwitch
implementation in detail in Sectidn 3.8.4.

The VM Ethernet frames are encapsulated in IP packets oethggth VLAN
identifiers. The actual encapsulation is performed by amgsuation module on re-
quest by the vSwitch. The vSwitch component then maps therih address of the
encapsulated Ethernet frame to an appropriate IP addreesn@pping allows the en-
capsulated Ethernet frame to be transmitted over the undgrphysical network to
physical machines hosting other VMs connected to the saypsiqai LAN segment.
The result is the same as when all VMs on the VLAN segment anaected by a
real LAN. The IP address chosen to route the encapsulatedtrigthframes over the
underlying physical network depends on (1) whether the gidated Ethernet frame
is an Ethernet broadcast frame, and (2) whether the vSwistbhilt up a table of the
locations of the physical machines hosting other VMs on plaaticular physical LAN
segment. The entries in such a table would be based on treffer'ved on that physical
LAN segment.

IP packets encapsulatibgpadcasEthernet frames are givemaulticastlP address
and sent out over the physical network. Each VLAN segmentamaf® multicast
address associated with it. All physical machines hostiMs\n a particular VLAN
segment are members of the multicast group for that VLAN ssgmThis ensures
that all VMs on a particular VLAN segment receive all broagidzthernet frames from
other VMs on that segment, whereas VMs on a different VLANsegt do not.

Encapsulated Ethernet frames that contain a directed iighdestination address
are either flooded to all the VMs on a particular LAN segmestr(g the IP multicast
address as in the broadcast case) or sent to a specific ghysiclaine IP address. The
particular choice depends upon whether the vSwitch compiarethe encapsulating
VM has learned the location of the physical machine hostiregMM with the given
Ethernet destination address based on traffic observémiongh the vSwitch.

Encapsulating Ethernet frames from VMs within IP packelsvwed us to connect
different VMs to the same VLAN segment as long as the physithines hosting
these VMs have some form of IP-based connectivity (e.g., &\WiAk) between them.
There are no restrictions on the topology of the underlyimgsical network.
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Figure 3.7: Components of the Secure Virtual Networkingdsfructure

We employ VLAN tagging, an existing technology, as an akdke to Ethernet
encapsulation for efficiency purposes. Each VLAN segmetengploy its owrlVLAN
tagger(s)to tag its Ethernet frames. The VLAN identifier, which is wnégfor each
VLAN within a virtual network, is used as tagging informatioThe tag is then used
by the VLAN switch to distinguish traffic flows from the varis LAN segments that
connect to the switch.

A VLAN-enabled physical switch (or  LAN switch for short) connects two or
more VLAN segments belonging to the same VLAN. VLAN switclsbsuld not to be
confused with vSwitches. VLAN switches are part of the pbgbnetworking infras-
tructure, whereas vSwitches are virtual entities. Each Mls®gment is connected to
a port on the VLAN switch. Multiple VLANS (i.e., VLAN segmesibelonging to dif-
ferent TVDs) may also connect to the same VLAN switch. The WLéwitch must be
appropriately configured to guarantee isolation among segsbelonging to different
VLANS, while at the same time connecting physical machivdds, and vSwitches
on the same VLAN to each other.

Routing within Virtual NetworksRouting functionality within a virtual network
may be implemented by the use of a dedicated VM with multiNéGs. The vNICs
are plugged into ports on the different vSwitches betweeiche VM has to provide
routing services. Standard routing software is then corgidand run on the VM to
provide the desired routing services between the LAN se¢s@mnected.

Communication with Non-Virtualised SystentGateways enable communication
with systems that live in the non-virtualised world. Theayedy is simply a VM with
two VNICs. One of the vNICs is plugged into a port on a vSwit€he other vNIC is
bridged directly onto the physical network. The gatewaytihasmain roles. Firstly, it
advertises routing information about the virtual netwoehind it so that hosts in the
non-virtualised world can locate the VMs residing on théuat network. Secondly, the
gateway converts packets to and from the encapsulated foeqpaired by our virtual
networks.
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Figure 3.8: Internal- and Inter-connections for each TVRA&y

Composition of Secure Virtual Networks

Figure[3.¥ shows how the networking components can be coeddo® a secure net-
working infrastructure that provides isolation amongeliént TVDs, where each TVD
is represented by a different colour (blue, green, or red).

A non-virtualised physical host, such as Host-3, is disectinnected to a VLAN-
enabled physical switch without employing a vSwitch. Fartla VM can be connected
to multiple VLAN segments using a different vNIC for each VNAsegment; hence,
the VM can be a member of multiple TVDs simultaneously. Faregle, the lone VM
in Host-2 of Figuré 317 is part of two VLAN segments, each esgnted by a vSwitch
with a different colour; hence, the VM is a member of both theeland green TVDs.

Abstractly speaking, it is as if our secure virtual netwagkiramework provides
coloured networks (in which a different colour means a défe TVD) with secu-
rity guarantees (such as confidentiality, integrity, armlagon) to higher layers of
the virtual infrastructure. Internally, the framework pides the security guaran-
tees through admission control and the appropriate corigosind configuration of
VLANSs, VPNSs, gateways, routers, and other networking eleie

Ethernet frames originating from the source node are hdriterently depending
on whether the source node is virtualised and whether thind@en node resides in
the same LAN. We illustrate frame-processing alternatfeeslifferent scenarios in
Figurd3.Y. For a virtualised domain (e.g., Host-1), eaghfr is tagged using the IEEE
802.1Q standard for VLAN taggin@ [40]. If the destinationtb& Ethernet frame is a
VM on another host that is connected to the same VLAN-cap=bieh (e.g., another
physical domain in a data centre), this tag indicates the Nlskgment to which the
VM belongs. If the destination is a host that resides outti@eLAN domain (e.g.,
Host-4), the VLAN tag forces the switch to bridge the coniwecto an outgoing WAN
line (indicated by the black line in the VLAN-enabled phydiswitch of Figurd_317)
that is connected to a router for further packet routing.his tase, the VM Ethernet
frames are encapsulated in IP packets to indicate the VLARsat membership (e.g.,
using EtherlIP[[42] as in the Xen implementation in Secfidh®. Lastly, if a non-
virtualised physical host is directly connected to the VLAWitch (e.g., Host-3), no
tagging is required for the outgoing connection from thetkatomain. We provide
more details on each processing step in Sedfion]3.3.4, wherdescribe our Xen-
based|[B] prototype implementation.

Inter-TVD Management

Central to the management and auto-deployment of TVDs diteesrcalledTVD mas-
ters Thereis one TVD master per TVD. We refer to the TVD mastersiagle logical
entity, although its implementation may be a distributed.on
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Inter-TVD management deals with tirgerchange fabridor communication be-
tween TVDs, enforcement of inter-TVD flow control policiexternal zones (IP versus
Ethernet), approval of admission requests by TVD-extezntilies (such as a new VM)
to join the TVD, and linking such entities with the appropeid VD master.

Information flow control between TVDs has two aspects: ptgisiopology and
policies. Physically, each TVD is implemented by at least Mt ANs (Figure[3.8):
an external VLAN and an internal VLAN. The external VLAN (sko in Figure[3.8
by thin lines) serves as a backbone to send/receive infwmet/from other TVDs. It
is through the external VLAN that a TVD proxy communicatestwthe TVD master
before becoming a member of the TVD. The internal VLAN (shdwrFigure[3.8
by thick lines) connects machines that are part of a TVD.riiéD policies specify
conditions under which VLANSs belonging to different TVDsallowed to exchange
information. The policies may be conveniently represebteidformation flow control
matrices, such as the one shown in Fiduré 3.6. For a given Thpolicies are stored
atthe TVD master, which then enforces them in a distribuastibn through admission
control and appropriate configuration of firewalls and TVDxpes.

Having separate VLANs for TVD-internal and TVD-externahwmunication fa-
cilitates unrestricted communication within a TVD and tremplete isolation of a
TVD from another TVD if the inter-TVD policy specified allows information flow
between the TVDs. Such is the case Tov'D, andTV Dg, according to the flow
control matrix shown in Figurie 3.6.

A cheaper alternative to the dual VLAN solution would be tly solely on trusted
boundary elements such as firewalls to enforce isolatioe.r&bulting assurance may
be somewhat lower than that of the dual VLAN solution, beeanfghe possibility of
mis-configuring the boundary elements.

As shown in Figur@€ 3]6, inter-TVD communication can be bipathssified into
three types: (1kontrolled connections, represented by policy entries in the matrix,
(2) openor unrestricted connections, represented fements in the matrix, and (3)
closedconnections, represented Byelements in the matrix.

Controlled connections restrict the flow between TVDs basesbecified policies.
The policies are enforced at TVD boundaries (at both TVDspppgropriately con-
figured firewalls (represented in Figlire]3.8 by entities radrkW). The TVD master
may push pre-checked configurations (derived from TVD jpedicinto the firewalls
during the establishment of the TVD topology. If availaldenanagement console at
the TVD master may be used to manually set up and/or alterahigurations of the
firewalls. A TVD firewall has multiple virtual network intea€e cards, one card for the
internal VLAN that the firewall protects and one additionaldfor each TVD that the
members of the protected TVD want to communicate with.

Open connection between two TVDs means that any two machiregther TVD
can communicate freely. In such a case, the firewalls at bgtbsTwould have virtual
network cards for the peer domain and simply serve as bridgegeen the domains.
For example, different zones in a given enterprise may faffarént TVDs, but may
communicate freely. As another example, two TVDs may hafferént member-
ship requirements, but may have an open connection betwenelements. Open
connection between two domains may be implemented usinglénited number of
virtual routers. In a physical machine that is hosting two &/bMelonging to different
TVDs with an open connection, the corresponding vSwitchay fve directly con-
nected. Communication between two TVDs, while open, mayubgst to some con-
straints and monitoring. For example, a TVD master may ptetimei creation of only
a few virtual routers on certain high-assurance physicahimes for information flow
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Figure 3.9: Steps in Auto-Deployment of TVDs

between the TVD and another TVD with which the former has aanagnnection.

A closed connection between two TVDs can be seen as a spas&bta controlled
connection in which the firewall does not have a virtual neknveard for the peer
TVD. In addition to the firewall filtering rules, the absendelee card will prevent any
communication with the peer TVD.

Intra-TVD Management

Intra-TVD managementis concerned with TVD membership,mamication within a
TVD, and the network fabric (i.e., internal topology) of a DV

Intra-TVD policiesspecify the membership requirements for each TVD, i.e., the
conditions under which a VM is allowed to join the TVD. At a @igal machine host-
ing the VM, the requirements are enforced by the machine’® Pvoxy in collabo-
ration with networking elements (such as vSwitches) basethe policies given to
the TVD proxy by the TVD master. We describe TVD admissiontoarin detail in
Sectior 3.313.

A VLAN can be part of at most one TVD. For completeness, eaciNIlthat
is not explicitly part of some TVD is assumed to be a member dummyTVD,
TV Da. Although a VLAN that is part off'V DA may employ its own protection
mechanisms, the TVD itself does not enforce any flow contadicp and has open
or unrestricted connections with other TVDs. Thus, in thierimation flow control
matrix representation, the entries for policié,, and P,A, would all bel for any
TV D,,.

A VM that is connected to a particular VLAN segment autoneticinherits the
segment’s TVD membership. The VM gets connected to the VLAdhsent only after
the TVD proxy on the VM’s physical machine has checked whetthe VM satisfies
the TVD membership requirements. Once it has become a methkeVM can ex-
change information freely with all other VMs in the same VLAEgment and TVD
(intra-TVD communication is typically open or unrestridje As mentioned before, a
VM can be connected to more than one VLAN (and hence, be a nreshb®re than
one TVD) through a separate vNIC for each VLAN.

A VM can become a TVD member either in an active or in a passiskibn. A VM
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Figure 3.10: Steps in Populating a TVD

can be passively assigned a TVD membership at the time afgtgion by specifying
in the VM’s start-up configuration files which VLAN(s) the VMhsuld be connected
to. Alternatively, a VM can actively request TVD membersaia later stage through
the corresponding TVD proxy interface.

TVD membership requirements may be checked and enforcesna-éime or on
a continual basis. Membership can be a one-time operatishich the requirements
are checked once and for all, and thereafter, the VM hold$#i2membership for the
duration of its life-cycle. Alternatively, membership tegements can be re-evaluated
in an online fashion. The TVD proxy may regularly check wlesta VM satisfies the
requirements. A session-based scheme may be employed é¢h ahiM is allowed
open communication with other TVD members only until thetreheck (i.e., end of
the session).

3.3.3 Auto-deployment of TVDs

Figure[3.9 shows the steps involved in automatic deployraesécure virtual infras-
tructures as TVD configurations. Figlire 3.10 shows the siepéved in the establish-
ment and management of a single TVD.

First, the virtual infrastructure topology must be decosgibinto constituent
TVDs, along with associated security requirements anatpatiodel. Second, eapa-
bility modelof the physical infrastructure must be developed. Capgiiodelling is
essentially the step of taking stock of existing mechanigrascan be directly used to
satisfy the TVD security requirements. In this section, wesider the case where both
steps are done manually in an offline manner; future extessidll focus on automat-
ing them and on dynamically changing the capability modakel on actual changes
to the capabilities.
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Property Description

TVD Isolation Flow control policies in place for a TVD.

Network The actual topology of a virtual network in g
physical machine.

Network Policy Security policies for the network, such as

firewall rules and isolation rules stating
which subnets can be connected.
Storage Policy Policies for storage security, such as whether
the disks are encrypted and what VMs have
permission to mount a particular disk.
Virtual Machines The life-cycle protection mechanisms of the
individual VMs, e.g., pre-conditions for exg-
cution of a VM.

Hypervisor Binary integrity of the hypervisor.
Users The roles and associated users of a machjne,
e.g., who can assume the role of administra-
tor of the TVD master.

Table 3.2: Examples of Security Properties used in Capabllodelling

Capability Modelling of the Physical Infra-structure

Capability modelling of the physical infrastructure catesis both functional and secu-
rity capabilities. The functional capabilities of a hostyniiee modelled using a function
C : H «— {VLAN, Ethernet, I P}, to describe whether a host has VLAN, Ethernet,
or IP support. Modelling of security capabilities include® orthogonal aspects: the
set of security properties and the assurance that theseniespare actually provided.
Table[3.2 lists some examples of security properties anteTaB gives examples of
the types of evidence that can be used to support securipepsoclaims.

TVD Establishment and Population

When the set of TVDs have been identified, the next step istt@byg establish them.
The initial step for establishing a TVD is to create the TVDstea (step O in Fig-
ure[3.10) and initialise the master with the TVD requirersgfas formalised above)
and the policy model. The step involves the derivation of mpeehensive set of TVD
policies, which are maintained at the TVD master. The ougfuhe step is a TVD
object that contains the TVD’s unique identifier, i.e., théDimaster's URL.

Once the TVD master has been initialised, the TVD is readyp&ng populated
with member entities, such as VMs. A VM becomes admitted tov® Bfter the
successful completion of a multi-step protocol (steps 1amdFigure 3.1D).

1. Alocal representative of the TVD, call@d/D proxy is created and initialised
with the URL of the TVD master.

2. The TVD proxy sets up a secure, authenticated channelth&iVD master
using standard techniques.

3. The TVD proxy indicates the security and functional calitaés of the physical
machine. Using the capability model, the TVD master deteesiwhich addi-
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Past State Description

Trust A user believes that an entity has certain security prop-
erties.

Mutable Log The entity provides log-file evidence (e.g., audits) that

indicates that the platform provides certain properties.
Immutable Logs | The entity has immutable logging systemsfor providing

evidence. Since the log cannot modified by the entity
itself, the resulting assurance is stronger than when mu-
table logs are used.

Present State | Description

Evaluations Evaluation of a given state, e.g., Common Criteria eval-
uations[[66].
Introspection Introspection of a system by executing security tests,

e.g., virus scanner.

Future State Description

Policies By providing policies and evidence of their enforc
ment, a system can justify claims about its future bhe-
haviour. E.g., DRM policies and VM life-cycle proteq
tion policy.

Audit By guaranteeing regular audits, organisations can clgi
that certain policies will be enforced in the future.

D
h

m

Table 3.3: Assurance for Past, Present, and Future Stagdsru€apability Modelling

tional mechanisms must be provided at the level of the Viitdgstructure. For
example, if a TVD requirements specification includes isofaand the physi-
cal infrastructure does not have that capability, thenigh€¢LAN tagging or

EtherlP) modules must be instantiated within the DomO ofspdal machines
hosting VMs that are part of the TVD.

4. The TVD master then replies to the TVD proxy with the TVD ety policy
(such as flow control policies between VMs belonging to défe TVDs hosted
on the same physical machine) and additional mechanisrstrst be provided
at the virtualisation level.

5. The TVD proxy then instantiates and configures the requikéD-specific mod-
ules (e.g., vSwitch, VLAN tagging module, encapsulatiordoie, VPN module,
policy engine, etc.) according to the TVD policy. After thstep, the physical
machine is ready to host a VM belonging to the TVD.

6. As shown by step 2 in Figufe_3110, a command is issued at khéoMoin the
TVD (active membership mocﬁ)l This results in the VM contacting the TVD
proxy. Based on the TVD security policies, the TVD proxy mayrg out an
assurance assessment of the VM (e.g., whether the VM hajalired software
properly configured). Once the required verification of thé i¢ successful, the
TVD proxy may connect the vNICs of the VM to the appropriateDVSwitch.
At this point, the VM is part of the TVD.

SAlternatively, if the passive membership model is used ctiramand to join the TVD can be issued by
the VM manager component that instantiates the VM.
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Figure 3.11: Prototype Implementation of TVDs

3.3.4 Implementation in Xen

In this section, we describe a Xen-based prototype impl¢atien of our secure virtual
networking framewofk Figurg3IJL shows the implementation of two TVDs, T¥D
and TVDg. The policy engine, also shown in the figure, implements tieies cor-
responding to the TVDs specified in the information flow cohtnatrix of Figuré 316,
i.e., open connection within each TVD and closed connedbetweenTV D, and
TV Dg.

Our implementation is based on Xen-unstable 3.0.4, a VMMHel A32 platform,
with the VMs running the Linux 2.6.18 operating system. Oetworking extensions
are implemented as kernel modules in DomO, which also aasias domain for the
physical NIC(s) of each physical host. A driver domain isciglein the sense that it
has access to portions of the host’s physical hardware,asatphysical NIC.

The virtual network interface organisation of Xen splitsi&€Nriver into two parts:
a front-end driver and a back-end driver. A front-end drigex special NIC driver that
resides within the kernel of the guest OS. It is responsibieaflocating a network
device within the guest kernel (ethO in Dom1 and Dom2 of Héstnd B, shown in
Figure[3:I1l). The guest kernel layers its IP stack on top af device as if it had
a real Ethernet device driver to talk to. The back-end portbthe network driver
resides within the kernel of a separate driver domain (Dom@ur implementation)
and creates a network device within the driver domain fornef®nt-end device in
a guest domain that gets created. Figure]3.11 shows two ¢ thack-end devices,
vif1.0 and vif2.0, in each of the two hosts A and B. These ba#l-devices correspond
to the eth0 devices in Dom1 and Domz2, respectively, in eash ho

40ur preference of Xen is purely for practical purposes ab BMD and networking design are agnostic
to the underlying hypervisor.
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Conceptually, the pair of front-end and back-end devichabes as follows. Pack-
ets sent out by the network stack running on top of the frowtreetwork device in the
guest domain appear as packets received by the back-endrketevice in the driver
domain. Similarly, packets sent out by the back-end netvdankice by the driver do-
main appear to the network stack running within a guest domspackets received by
the front-end network device. In its standard configurati®n is configured to simply
bridge the driver domain back-end devices onto the realipalyilIC. By this mech-
anism, packets generated by a guest domain find their waytbatohysical network
and packets on the physical network can be received by the damain.

The Xen configuration file is used to specify the particulawit&h and the partic-
ular port in the vSwitch to which a Xen back-end device ischtéal. We use additional
scripts to specify whether a particular vSwitch should usear both of VLAN tagging
and encapsulation mechanisms for isolating separateal/imeiworks.

The vSwitches fofl'V D, andT'V Dg are each implemented in a distributed fash-
ion (i.e., spread across hosts A and B) by a kernel module m@avhich maintains a
table mapping virtual network devices to ports on a paréicubwitch. Essentially, the
kernel module implements EtherlP processing for packetsmg out of and destined
for the VMs. Each virtual switch (and hence VLAN segment) hasumber identi-
fier associated with it. The Ethernet packets sent by a VM apguced by the kernel
module implementing part of the vSwitch as they are receorethe corresponding
back-end device in Dom0. The packets are encapsulated HtfireglP with the net-
work identifier field set to match the identifier of the vSwittlat the VM is supposed
to be plugged into. The EtherlP packet is given either a wastior unicast IP address
and is simply fed into the DomO IP stack for routing onto thggibal network. The
kernel module also receives EtherlP packets destined éophlysical host. The mod-
ule un-encapsulates the Ethernet frames contained in ttapsulated EtherlP packets
and transmits the raw frame over the appropriate virtualogt interface so that it is
received by the intended guest vNIC.

In addition to the kernel module for EtherIP processing, weshalso implemented
a kernel module for VLAN tagging in DomO of each virtualiseash Ethernet pack-
ets sent by a VM are grabbed at the same point in the DomO nlestack as in the
case of EtherlP processing. However, instead of wrappieggtihernet packets in
an IP packet, the VLAN tagging module re-transmits the peckemodified into a
pre-configured Linux VLAN device (eth@.and ethQ3 of hosts A and B, shown in
Figure[3.11) matching the VLAN that the VM’s vNIC is suppogede connected to.
The VLAN devic8 (provided by the standard Linux kernel VLAN support) apglie
the right VLAN tag to the packet before sending it out onto phgsical wire through
the physical NIC. The VLAN tagging module also interceptsANL packets arriving
on the physical wire destined for a VM. The module uses thedstal Linux VLAN
Ethernet packet handler provided by the 8021q.ko kerneluteodith a slight modifi-
cation: the handler removes the VLAN tags and, based on thertaps packets to the
appropriate vSwitchd or 3) which, in turn, maps them to the corresponding back-end
device (vif1.0 or vif2.0) in Dom0. The packets eventuallyivar at the corresponding
front-end device (ethO in Dom1 or Dom2) as plain Ethernekpe

Below are some implementation issues we had to tackle irsiegthe VLAN and
encapsulation approaches.

5An alternative approach, which we will implement in the fietuis to directly tag the packet and send
the tagged packet straight out of the physical NIC witholytimg on the standard Linux VLAN devices.
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Figure 3.12: NetlO Benchmark: Guest VM to Guest VM Throughpu

1. Some Ethernet cards offer VLAN tag filtering and tag renofioad capabili-
ties. Such capabilities are useful when running just a sikgtnel on a physical
platform, in which case there is no need to maintain the tagmbking propa-
gation decisions. However, for our virtual networking ediens, the hardware
device should not strip the tags from packets on receptienttre physical wire;
instead, the kernel modules we have implemented shouldeléciwhich VM
the packets should be forwarded. For this purpose, we mddifesLinux kernel
tg3.ko and forcedeth.ko network drivers so as to disable Mlofloading.

2. For efficiency reasons, the Xen front-end and back-enediinplementations
avoid computing checksums between them for TCP/IP and UDgdtkets. We
modified the Xen code to also handle our EtherlP-encapsliIBtpackets in a
similar manner.

3. The EtherlP encapsulation approach relies on mappingalEthernet broad-
cast domain to a IP multicast domain. While this works in a LANiron-
ment, we encountered problems when creating VLAN segmeatspan WAN-
separated physical machines. We resolved this issue hyitgilini-directional
multicast tunnels between successive LAN segments.

3.3.5 Performance Results

We now describe performance results for the prototype implgation of our secure
virtual networking framework. We obtained the throughpegults using the NetlO
network benchmark (version 1.23-2.1) and latency ressitsgthe ping tool.

We used the NetlO network benchmark to measure the netwookighput for
different packet sizes of the TCP protocol. We measured théotitgoing) and Rx
(incoming) throughput for traffic from one guest VM to anatbeest VM on the same
physical host. For this purpose, we ran one instance of thetmeark on one guest
VM as a server process and another instance on the secondiies do the actual
benchmark.

Figure[3.12 compares the throughput results for the standan-bridged config-
uration (explained in Sectidn_3.8.4) with configurationattimclude our VLAN tag-
ging and EtherIP encapsulation extensions. The graphs gtaivthe performance of
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our virtual networking extensions is comparable to thathef standard Xen (bridge)
configuration. The VLAN tagging extension performs slighiktter than the encap-
sulation extension for the Tx path, whereas the oppositpdrapin the case of the Rx
path.

The major cost in the Tx path for the EtherlP method is havingllocate a fresh
socket buffer §kb) and copy the original buffer data into the freskb. When first
allocating askb, the Linux network stack allocates a fixed amount of headrtmm
the expected headers that will be added to the packet asstdywen the stack. Unfor-
tunately, not enough space is allocated upfront to allovods in the EtherlP header;
so, we have to copy the data around, which is very costly. Wew¢here isomespare
headroom space, which is enough for the extra VLAN tag. Assaltethe VLAN
tagging method does not suffer from the packet copying @amthThe cost of copying
data in the EtherlP case is greater than the cost of tragetwim network devices (the
physical Ethernet device and the Linux-provided VLAN deyitor the VLAN pack-
ets. That is why the VLAN method is more efficient than the Bf@pproach for the
Tx path. In a future version of our prototype, we will add a giefix to the kernel to
ensure that the initisdkbs have enough headroom upfront for the EtherlP header.

In the Rx path, there is no packet-copying overhead for thef# approach; the
extra EtherlP header merely has to be removed before theepiscgent to a VM. In
the VLAN case, the packets have to traverse two network devias in the Tx path)
and the vSwitch kernel module. In the EtherlP case, the pagjestraight from the
physical device to the vSwitch kernel module. As a resulheféxtra step of traversing
the VLAN device, the VLAN method performs slightly pooreaththe EtherlP method
for the Rx path. Our next prototype will avoid using the LindkAN code and have
our vSwitch module do the tagging/untagging directly ab@EtherlP case. We expect
this enhancement to bring the Rx throughput of the VLAN apphoon par with that
of the EtherIP approach.

Minimum | Average| Maximum | Mean
Deviation
Bridged 0.158 0.208 0.295 0.030
VLAN 0.171 0.233 0.577 0.049
EtherlP 0.174 0.239 0.583 0.052

Table 3.4: Round-trip Times using Ping

Table[34 shows the round-trip times between two guest VMa physical host
for the bridged, VLAN, and EtherlP encapsulation casesinéthusing thepi ng - ¢
100 host command,i.e., 100 packets sent. The average round-trgstfor VLAN
and EtherIP encapsulation are 12% and 14.9% higher tharothhe standard Xen
bridged configuration.
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3.4 Integrity Management

3.4.1 Introduction

Integrity measurement, recording, and reporting are antemmost important features
of a Trusted Platform Module (TPM). Through these featuttes,TPM enables a veri-
fier to check whether the platform hosting the TPM is in a trasthy state. The TPM
also enables integrity protection by restricting the statder which the platform can
perform certain sensitive operations.

Recent works such 10] combine Trusted @bngp(TC) [96]
and hardware virtualisation concepts for improving segun a virtualised environ-
ment. Many of these works designate the virtualisationvg and its configuration
files as part of the Trusted Computing Base (TCB), whosewarshiness is verified
using TC concepts.

In this section, we expand TPM-based integrity protectiod erification mecha-
nisms to cover virtual machines (VMs) and devices that cagdverned by arbitrary
security policies. Examples include isolation policies $ecure device virtualisation
or migration constraints for VMs. Our goal is to obtain a gémattestation and seal-
ing framework for VMs that is extensible and flexible. Bytensibility we mean that it
should be possible to provide integrity functions evené ¥fMs include arbitrary vir-
tual devicesFlexibility means that the verifier should be able to specify which aspect
of VM's integrity and the underlying platform’s integrity¢ares about, and obtain only
the corresponding information for platform validation.

We make the following contributions. First, we describe arfal model for pro-
tecting and verifying integrity of VMs in a generic fashio@ur model also addresses
how these integrity management operations can be madepiwaserving. Second,
we describe the architecture and protocols for realisimgpgaised integrity protection
and verification in practice.

3.4.2 Integrity Management for Virtual Machines

In today’s virtualised environments integrity managen@itMs is an important chal-
lenge. Integrity management includes protection, measeng reporting, and verifi-
cation of the integrity of VMs. In a traditional (non-virtlised) server environment,
users today are convinced that their servers are trustwbyth

e running the servers themselves,

e asking a provider to guarantee full control over the seriet,(a root login, a
dedicated cage in a larger data centre, or a dedicated data)e

e asking a provider to provide log files and other evidence dliatvs the user to
heuristically validate critical installations, or

e performing regular audits of the hosted servers.

While many of the above concepts used for managing the itgegmachines in non-
virtualised server environments will also be applicable fstual servers, integrity
management in a virtualised environment is even more diffi@cause of the unique
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security and privacy challenges that arise in such an emviemt. Users would like
to be convinced that virtual servers are as secure as phgsicaers. However, that
is non-trivial because the security of virtual servers aelsenot only on the server
configuration, but also on the security of the VMM and its s&s and on the ability
to guarantee an acceptable degree of non-interferencesatation among VMs. In
addition to being able to prove security to one user, an itgpoprivacy requirement
is a guarantee that this proof does not yield informatioruébther users on the VMM.
In particular, when competing customers are co-hosted®sadme physical hardware,
no “virtual cages” exist today that can guarantee theirfiadalie isolation. To provide
such guarantees, several aspects of the VMM need to be bézifiad protected:

e The VMM software needs to be designed to satisfy the sectegyirements of
a customer.

e The software running on the machine needs to correspondiimect installation
of a given VMM.

e The policies and configuration files used by the VMM shouldrgatee the se-
curity requirements of the customer. In addition, the peticshould prevent
unauthorised modification of the software.

We now introduce concepts that show how to verify and prdtexi/MM installation
and policies. The first item listed above, dealing with théing of correct software,
has been well-studied in the context of formal methods anddvexceed the scope of
this section.

Virtual Machine Monitor Model

We now introduce an abstract notion of VMMs (shown in Figurg3} that we later
use for describing our security concepts for VMs. The VMMasfigured by a policy
p. Ata given timet, a VMM has a statg, and produces log datathat is computed by
a functionlog(s;). s; reflects the integrity of the VMM at timeé The state can often
be decomposed into a software stateand a data staté,. As truthful reporting of
the state of a compromised VMM cannot be expected, log filespaticies (that are
external to the VMM and cannot be modified by the VMM) are useagpproximating
the actual security. Whereas the log file history yields afication of past security,
security policies enable extrapolation of future secugitrantees. The series of log
entries is collected by an independent audit system in ait lmgdog*. The software
provides installation integrity ifvy = w for some installation software, wheret = 0
indicates the installation time. Each ugehas a set of security requirements that are
modelled by predicates. A software provides integrity is@mudefined predicalé(s)

is satisfied.

Generalised Sealing to Protect Integrity

Model: The concept of sealing can be used to make a datadteraccessible if the
VMM state does not provide sufficient integrity. It can be ratbeld by two functions,
seal andunseal. Theseal function done at time; takes as input the data itedh a log
projection functiorp(), a predicatél, andK,, which is the public part of an encryption
key K. It produces an encrypted output {0, 1}*, which is encrypted with respect
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Figure 3.13: Integrity Model for Virtual Machine Monitors

to K,,. The log projection functiop() takes the lod,, as input and outputs a subset of
lt,. Theunseal function done at time; takes as input and the log;; and outputs/ iff
(p(ls;)) = 1. A simple implementation of the predicatiewould compare an input
top(ly,), i.e., I(x) : « = p(ly,).

Assuming the audit system is correct, one possible implé¢atien of sealing and
unsealing is as follows. Duringeal(), K,(p(), 1L, s) is obtained using the state On
unseal(), the audit system decrypts this message using its secrekkeynd outputs
the states iff TI(p(lt,)).

The predicatél models the various criteria for assessing the trustwoetsmf the
platform. This can be a simple predicate that compares amafiigns such as the input
startup config with a fixed configuration at hibernation tilkare complex predicates
could evaluate certain properties such as whether onlifiedror well-known software
is being used [53, 7L, 78].

Usage: An important application of the sealing function in intégnnanagement
would be to make certain secrets inaccessible if the irtiegfithe platform is not
guaranteed. An example usage is to seal data to a softwalieajogm. The usage
can be implemented by a projectip() that derives the software state from the log
l;; (assuming that the log file reliably reflects the softward)thé software state at
the time of sealing isv = f(I;,) and the software state at the time of unsealing is
w' = f(l;,), then the predicatél would be defined a$l(w’) iff w' = w. Another
example usage would be to seal a hard disk to a VMM. In this,¢hsesoftware is the
VMM. The secret is a key that is used to decrypt the hard disk.

Special Case — Trusted Platform Moduléhe TPM implements the special case
in which log entries are restricted to storing hash valueslimited number of PCRs.
The log file projectiorp() is defined as a subset of the PCR indi¢és...,n}. The
integrity predicate is defined as a desired PCR value for esmghter in this subset.

Generalised Attestation to Prove Integrity

Model: Attestation aims at convincing a user that the state of thehma is as ex-
pected. That is done by signing a projection of the loglfilg'. In our model, the log
file contains a list of all log entries. An attestation functattest obtains a challenge
¢, a functionf() (described below), a log file projectiqt), and a secret keks, and
outputs a signed messa§ign - (f(p(log*)), c).

Usage: Attestation can be used in two wayBinary attestatiorsigns a subset of
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Figure 3.14: Trees of log entries

the log file. This means that the functiéf) is the identity function, i.ef(z) = . It
enables the user to obtain a signed subset of the log file guites the user to locally
assess its trustworthinesBroperty-based attestatioi1, [78,35] allows the user to
obtain only the results of function evaluations on the log. fifor example, a user can
specify what software; , ws, ... he or she deems acceptable and define the funfitjon
to assess from the log file whether any other software wasuga@cSimilarly,f() can
be used to extract certain policies or evaluate other cimmgit Attestation can be used
to convince a user of the integrity of the macfink can also be used to validate the
integrity of machines when connecting to a network (cf. @sd&Network Admission
Control).

Special Case — Trusted Platform Modukeor the TPM () is the identity function
andp() is specified by a subset of the PCRs. The attestation tokesigmad message
containing the challenge and a subset of the PCRs.

Extensibility and Flexibility

The model we have described so far is too simplistic for tlaé-weorld. In practice, a

VMM consists of a large number of subsystems and componkatsiepend on each
other. Examples include hardware components such as CPlUdewicks, software

components such as kernel, libraries, drivers, and usdicapipns. To provide ex-

tensibility, new types of subsystems need to be added atima- Furthermore, it is

desirable that each subsystem be able to log and attestitmgrtaspects of its be-

haviour. A disk, for example, should be able to selectivelyits contents, its access
control list, or other aspects that need to be configurabtadéyolicy.

Itis clear that in reality, it is difficult to justify a singleotion of a state or a single
logging function. A more flexible alternative is to represiire state by a tree of triples
(see Figur€_3:14), one triple for each component. Eactetdphtains an identifier, a
component typeype, and a vector of log valudsg. Subcomponents are modelled as
children of a node. The overall effect is that the log dataoistained in a hierarchy
of vectors of log values. It can be extended by adding or réngoghildren nodes.
Adding a device is, for example, reflected by adding a new ofmhild to the sub-tree
of thetype device.

Note that while log files are represented by trees, we now tadefine how to
apply attestation and sealing to thésg trees Sealing and attestation require a pro-
jection and a predicate. For a log trees, the projectiontfong() is simply a subset
of the nodes of the tree, and for each of those nodes in theswbsubset of the log
entries. The predicatéd is then defined op.

Note that this usually requires that the user have a indegermmputing device to perform this verifi-
cation. One example is a customer verifying a data centre.
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Privacy Protection

The integrity of certain sub-states can be essential toipheiisers. Conversely, sub-
states can be private to one or more users. For example, Wigilentegrity of the
VMM core would be of interest to all users, the state of a patéir VM should be
visible only to the user of that VM. To satisfy these privaeguirements, we have
to introduceblinding into our integrity architecture. In other words, it is impamt
that attestation and sealing can be done on projectionseostiite, i.e., subsets of
the state. Furthermore, if a state is relevant for integrityle containing information
about multiple users, it should be possible to prove intggvithout revealing the ac-
tual state. For that purpose, it is necessary to have (1)vagqyirequirement model
that defines visibility constraints or the requirements o projection functions, (2)
privacy-preserving projections that satisfy those rezpaints, (3) a means of identify-
ing whether a projection is potentially privacy-invasiaad (4) a way of ensuring that
the predicate applied after a privacy-invasive projectian hide the private ddta

Given a set of user and a log tree, a privacy requirement specification is a func-
tion r() that assigns a subset@fto each vector element in each node of the tree. The
subset assigned to a given vector element in a given noddlésl tae access control
list (ACL) for that element. Although the number of ACLs magtentially be very
large, they can be implemented efficiently by attaching AGhly to some nodes and
vector elements and then using inheritance along the nadesc@ping rules along the
vector elements for a given node to derive the actual finergdeaccess permissions.

A projectionp() applied by a uset. € U is privacy-protecting with respect to a
privacy requirements specificatiof) iff the output only contains vector elements in
whichu was contained in the access control list.

If the projection is privacy-preserving with respect to a@cy requirement speci-
ficationr() and a user, then the sealing or attestation using this projection mate
ically preserves privacy. This means that any evaluatioetion (for attestation) and
any predicate (for sealing) can be applied without infrirggdn the privacy of the users
of the system.

If the projection is not privacy preserving, we require i@ function and predicate
be mutually agreed upon. Examples of such agreed upon funsctian be “software
certified by a given list of certifiers.”

3.4.3 Detailed Component Interactions

In this section, we describe two examples of how the comptsriatroduced in Sec-
tion[3:2.2 interact to achieve high-level security funottity. The interactions are
structured as use cases. We assume that the core trustedtomrmase (including
Xen and DomO Linux) has been measured at start-up time. ddditservices may
need to be measured based on policy. The step numbers ingtyépdien below relate
to the steps shown in the interaction diagrams, Figuresand$3.16.
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Figure 3.15: TPM-based Attestation

TPM-based Attestation to the Current State of the Hypervisa

Figurd3-Ibh shows the component interactions for attegtiegurrent state of the TCB
and the hypervisor status information (such as which VMg@anaing on the physical
machine, how much memory is available, etc.).

The verifier directly interacts only with the CM through thetest() call pass-
ing anAttestationDescriptor and aUserCredential as parameter. The credential gets
verified and the CM checks whether the verifier is allowed totttd requested at-
testation (not shown in Figufe_3]15)AttestationDescriptor is a data object that
describes what the verifier wants to have attested. EsBgnttee object provides
the log file projection functiop() described in Sectidn_3-4.2. It consists of one or
more MeasurementDescriptors, each of which describes what has to be measured.
The CM checks whether the verifier is allowed to access allpidues the verifier
wants to attested by calling theeriveAllowedAttestationPieces(). If the check re-
veals that the verifier wants to have more attested than wé/ahé is allowed to,
then the entire attestation request is denied. OtherwigeCM forwards the request
to the ISM (step 3), which forwards it to thittestationService (step 4), which, in
turn, invokes theMeasurementService (step 5). TheMeasurementService calls the
ConfigurationMeasurement module (step 6), which retrieves the current state infor-
mation for the list of VMs by callinggetCurrentXenState() (step 7) of the CM.
The CM obtains this information from the VMM (steps 8-11) grakses it to the
ConfigurationMeasurement component through th8tateinfo object (step 12). The
ConfigurationMeasurement component measures tBeateinfo object and passes the
result in theMeasurement object to theMeasurementService (step 13). Thereatfter,
the AttestationService calls the attestTPM() of the TPMAttestation component
(step 15) to complete the attestation process. The nexs stepto write the mea-

"Note that the result of any predicate applied after a priyaegerving projection will always be privacy-
preserving.
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Figure 3.16: Creation of a VM with TPM-based Sealing

surement hashes generated into a PCR by calliRyl_Extend() and to generate a
quote by callingTPM_Quote(). The AttestationResult consists of the quote and the
AttestationDescriptor with the results of the different attestation targets. Aifier
can verify the integrity of the attestation result by recanipg a hash over the at-
testation targets specified in tietestationResult and comparing the resulting hash
with the hash in the PCR from the quote. The PCR in whichAttestationResult is
stored gets reset after the attestation process has finighedefore, we need a TPM
that implements the TCG version 1.2 specification, and the P@dex for storing the
AttestationResult hash has to be more thaa.

Creation of a VM with TPM-based Sealing

Figure[3-Ip shows how a VM with a sealed disk is (re)startedppBse the policy
specifies that the virtual hard disk has to be measured tonothta key for unsealing
the VM. Suppose further that the policy specifies that the TéPiguld reveal the key
only if the measurement value written into a specified PCRchet the value against
which the key was sealed.

To enforce the above policy, the CM calls the ISM interfaedorcePolicy()
(step 1). TheSealingService, which gets called by the ISM, extracts the
MeasurementDescriptor from theSealingDescriptor (step 2). Then, thBealingService
calls the MeasurementService (step 3), which measures the virtual disk by call-
ing measureStorage() (step 4). After retrieving the measurements (steps 5-8),
the SealingService component invokes thenseal() function of the TPMSealing
component to unseal the key (step 9). ThBMSealing component invokes the
(TPM_Extend()) function of the TPM (step 10) and if successful, tries toaaishe
key through thél PM_Unseal() function (step 12). For simplicity, Figure 3]16 does not
show details of key handling such as loading a sealing wirapgeinto the TPM. If
the measurement matches, fheMSealing component returns the key (steps 14-16).
The CM callsconfigAndUnlockDisk() to attach and unlock the disk (step 17).
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3.4.4 Summary

In this section we have described a flexible and extensibégiity management ar-
chitecture for VMMs. The architecture allows arbitrary fyans of the system to be
measured and these measurements to be used for sealingtestdtiain. \We have
furthermore described a unified model and approach to ptwpased and binary at-
testation and sealing. The core idea is that the verifier panify whether he or she
wants to obtain raw log data or output of certain securityiuat#ons of the log. We
also described how the design can be realised in the corftthé Xen hypervisor.

Note that trusted computing is no silver bullet for impraysecurity in virtualised
environments. A party interacting with a TPM-equipped folah can verify the in-
tegrity of the platform, and thereby assess the amount dfdsmce and trust that can
be placed on the interaction with the platform. Buildingta@ire that warrants suffi-
cient trust is an ongoing independent research challenge.

We have implemented parts of the design in the context of #grehypervisor. The
design and the implementation still are work in progressa&ensequence, we expect
future improvements based on lessons learned during a eteripiplementation.
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Chapter 4

L4 Security Services

A.-R. Sadeghi, M. Wolf, C. Stiible, M. Scheibel, R. Landfarm, H. Lohr,
S. Schulz, M. Unger, P. Stewin (RUB)

4.1 High-Level Software Architecture

In this section we describe the basic concepts and compookatr security services,
followed by our implementation of these concepts and coraptm

The general idea behind our architecture is to establislowsicompartments on
one computing platform where each compartment can havenitssecurity policy.
The policy defines

e the protection level for the data accessed and processambimpartment as well
as for the applications that run in this compartment, and

e the information flow between individual compartments asl wslbetween the
compartments and external parties.

The goal is that each compartment behaves as if it is a singtlopn separated
from other compartments. Furthermore, the underlyingitecture should provide
channels to the corresponding compartments where the ehanoperties are specified
by the overall security policy.

4.1.1 Basic Concepts

The concepts of security services briefly sketched in thieviahg section provide
mechanisms to realise abstract concepts like, e.g., trest@nnels and trusted storage
that have been defined to provide secure platforms for fappdications.

Terms and Definitions

We define acompartmenas a software component that is logically isolated from iothe
software components. Thmnfigurationof a compartment unambiguously describes

54
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the compartment’s 1/0 behaviour based on its initial stat@nd its set of state trans-
actions that convey a compartment from stétdo stateS;,;. Moreover, we distin-
guish secure, trusted, and plain communication channelsslea compartment®lain
channeldransfer data without providing any security prope8gcure channeknsure
confidentiality and integrity of the communicated data a8l e the authenticity of
the endpoint compartmenflrusted channels are secure channels that additionally
validate the configuration of the endpoint compartmentalymintegrity of informa-
tion obtained from a channel or compartment is providednif modification is at
least detectable. ThErusted Computing Bagg@ CB) consists of all security relevant
components of the platform, e.g., kernel and security sesvi

Security Services

These services allow applications to use enhanced setumitiionalities strengthened
by Trusted Computing. They also mediate and monitor acaesssburces. Thus,

they enforce isolation of compartments and control comation between processes
running in different compartments. The following serviees defined in our approach:

e User Manager: The User ManagetUM) maps between real user names and
system-internal user identifiers. Moreover, it performsrwmuthentication and
manages secrets attached to each user, e.g., to allow tiag&tdanager to bind
data to a user. The programming interface offered by the Wsarager hides
the concrete user model. Thus, it is possible to use a UNKXdser model, or a
role-based model without modifications of other system comepts.

e Storage Manager: The Storage ManageEW) provides persistent storage for
the other compartments while preserving integrity, comidity, availability
and freshness of the stored data. Moreover it enforcesgstsotation by bind-
ing the stored data to the compartment configuration andfer secrets The
Storage Manager has access to the configuration of its gliginice it communi-
cates with them over trusted channels.

e Compartment Manager: The Compartment Manage€i) manages creation,
update, and deletion of compartments. It controls which ganments are
allowed to be installed and enforces the mandatory secpoiigy. During in-
stallation of compartments, it derives its configuratiobéoable to offer a map-
ping between temporary compartment identifileaiad persistent compartment
configurations.

e Trust Manager: The Trust ManagerT(M) offers functions that can be used by
application-level compartments to establish trusted ohEbetween remote and
local compartments.

e Secure I/O: The Secure 1/08I0) renders (e.g., displays, plays, prints, etc.)
content while preventing unauthorised information flowu$BIOincorporates
all compartments that are responsible for secure outputmieat (e.g., drivers,
trusted GUI, etc.).

1Since SM does not provide sharing of data between compartments,eit dot realise a regular file
system.
2A compartment identifier unambiguously identifies a compartt during runtime.
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In the following sections we explain how these services aegltio provide the nec-
essary security properties and concepts, i.e., privagstedd channels, secure storage,
and fresh storage.

Trusted Channels

According to the definition above, trusted channels allosvitivolved communication

end-points to determine their configuration and thus toveettieir trustworthiness.
Other integrity measurement architecturés, [82, 84] hawneseport the integrity of

the whole platform configuration includingll currently running compartments to
remote parties, and thus violating user privacy. In cohti@s architecture supports
to establish trusted channels between single compartméthisut the involvement of

the whole platform. This has the following advantages:

e Privacy: A remote party only needs to know the configuration of the appate
compartment including its trusted computing base, andh®tonfiguration of
the whole platform.

e Scalability: Remote parties do not have to derive the trustworthinest obm-
partments executed on top of the platform, to determinertmsvtorthiness of
the appropriate compartment.

e Usability: Since a compartment’s trustworthiness can be determirdspan-
dently of other compartments running in parallel, the dmtivrustworthiness
stays valid even if the user installs or modifies other cotmpants.

Trusted channels can be established using the functioesedfby the Trust Man-
ager and the Compartment Manager, while the Compartmentalganwhich is re-
sponsible for installation and manipulation of comparttegprovides the mapping
from compartment identifiers into configurations. Thussted channels can be es-
tablished assuming that the TCB including the Compartmeaader and the Trust
Manager is trustworthy. In Sectién 4.11.2, we will explaimh@mote parties can de-
termine the trustworthiness of the TCB.

We distinguish between trusted channels between compatsmenning on the
same platform (local trusted channels) and trusted charetlveen a remote and a
local compartment (remote trusted channels).

Local Trusted Channels: Since both the sender and the receiver are executed on
top of the same TCB, an explicit verification of the TCB’s tmsrthiness does not
make sense in this case. Therefore, trusted channels ciéin leagstablished using
secure channels offered by the underlying TCB, and the fomstprovided by the
Compartment Manager: The sending compartment first regjtiestconfiguration of
the destination compartment from the Compartment Man&esuccessful validation
that the destination configuration conforms to its secyrdiicy, the source compart-
ment establishes a secure channel to the destination comgysr

Remote Trusted Channels:The required steps to establish a remote trusted chan-
nel from a remote compartment to the local compartment arfelesvs: If a local
compartment receives a request from a remote compartniento¢al compartment
requests the Trust Manager to provide a credential incudsrown configuration.
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Figure 4.1: System Architecture

Then the Trust Manager generates the credential based brtHeotompartment con-
figuration provided by the Compartment Manager and the cordigpn of the plat-

form’s TCB. The resulting credential is returned to the king local compartment
that forwards it to the remote compartment. That can nowyw#re trustworthiness of
the local compartment and, on success, using the credentipen a trusted channel.

Trusted Storage

Compartments running in parallel on one physical platfoeada possibility to store
data securely, i.e., data of one compartment has to be kalptéd from data of an-
other compartment. In our approa8M guarantees this isolation by providing trusted
storage to the compartments. Thisong isolationis needed to ensure certain security
properties like confidentiality and integrity. Additiomathe SMis capable to guaran-
tee authenticity and freshness.

4.1.2 Implementation

Our system architecture based on security frameworks amopedal, e.g., if [419]/[83]
and shown in Figure_4l.1 aligns with the high-level architegtas described in section
[I.3. We briefly explain each layer of our implementation, itiigalisation process as
well as the implementation of the core components, namelyr'tbst Manager and the
Storage Manager.

Our implementation primarily relies on a small securityrialr virtualisation tech-
nology, and Trusted Computing technology. The securitpékilocated as a control
instance between the hardware and the application layetements elementary se-
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curity properties like trusted channels and isolation leetvprocesses. Virtualisation
technology enables re-utilisation of legacy operatingesys and present applications
whereas Trusted Computing technology serves as root df trus

On top of the security kernel, a para-virtualised legacyrafieg system (currently
Linux) including legacy applications, and the Secure 1/© executed in strongly iso-
lated compartments runnirig parallel as user processes. In the following, we briefly
describe each implemented layer in more detail.

TC-enabled Hardware Platform (cf. [2.1): The hardware platform has to provide
additional components as defined by the TCG in various spetidins (e.g.,[102]).
The central component forms a low-cost tamper-resistaygtegraphic chip, called
Trusted Platform Modul¢TPM). Currently, the TPM is implemented as a dedicated
hardware chip. It offers amongst othersigptographic hash functio(SHA-1), a
cryptographic engin¢RSA) for encryption/decryption as well as signing, a haacky
basedRandom Number Generat@RNG), hardware protectadonotonic counteras
well as some amount gfrotected storagelt provides a set of registers in protected
storage calledPlatform Configuration Registe($CR) that can be used to store hash
values. Protection mechanisms ensure that the value of ada@Rnly be modified

in a predefined wﬂ/(see also Sectiodn 2.1). The TPM is primarily used as a root
of trust for platform’s integrity measurement and repdagtirDuring system startup,

a chain of trust is established by cryptographically haghéach boot stage before
execution. The measurement results are stored protected iRCRs. Based on this
PCR configuration, two basic functions can be providBeémote Attestatioallows

a TC-enabled platform to attest the current measuremen$eaatingBinding of data

to a certain platform configuration. Our implementationsuaeTPM in the present
version 1.2[[102] since previous TPM versions cannot be tspdovide fresh storage
by monotonic counters.

Virtualisation Layer:  The main task of the virtualisation layer is to provide an ab-
straction of the underlying hardware, e.g., CPU, intesugevices, and to offer an
appropriate management interface. Moreover, this lay&rees an access control
policy based on this resources. Device drivers and othenéas operating system
services, such as process management and memory managemeénisolated user-
mode processes. In our implementation, we kept the intesfaetween the layers
generic to support also other virtualisation technolaglésis, the interface offered by
the virtualisation layer is similar to those offered by wat machine monitors or hy-
pervisors like sHype and Xeh [70,183,]27]. However, we atyuddcided to employ a
L4-microkernel that easily allows isolation between singtocesses without creating
a new full OS instance in each case such as when using Xen.

Trusted Service Layer: The trusted service layer, based on the PERSEUS security
architecture[[69, 76, 79]. It provides elementary secyityperties like trusted chan-
nels and strong compartment isolation as well as severakglary management com-
partments (e.g., I/O access control policy) that realieisy critical services inde-
pendent and protected from compartments of the applicéigar. The main services
are the Trust Manager, the User Manager, the Compartmenadéanand particularly

3 PCR;4+1 <« Hash(PCR;|x), with the old register valu®#CR;, the new register valu®CR; 1, and
the inputz (e.g., a SHA-1 hash value). This process is cadiettndinga PCR.
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the Storage Manager. Our implementation of the Trust Mamiadgased on the open-
source TCG Software StadkouSerJ100].

Application Layer: On top of the security kernel, several instances of the kgac
operating system (L4Linux) as well as security-criticabigations (e.g., Secure 1/0O)
are executed in strongly isolated compartments such tfzatthorised communication
between applications or unauthorised 1/0O access is predﬁn'fhe legacy operating
system provides all operating system services that areeuoirity-critical and offers
users a common environment and a large set of existing apipiis. If a mandatory
security policy requires isolation between applicatiohthe legacy OS, they can be
executed by parallel instances of the legacy operatingsyst

Secure Initialisation: The security of the whole architecture relies on a securé-boo
strapping of the trusted computing base. A TPM-enabled BtSCore Root of Trust
for Measurementmeasures the integrity of thdaster Boot RecordqMBR), before
passing control to it. A secure chain of measurements is #éstablished: Before
program code is executed it is measured by a previously medisund executed com-
ponent. For this purpose, we have modified GRRUB boot loadét to measure the
integrity of the core compartments, i.e., the virtualisatiayer, all compartments in-
teracting directly with the TPM — Compartment Manager, TManager and Storage
Manager — as well as the TPM device driver. The measuremsuliseare securely
stored in the PCRs of the TPM. All other compartments (iniclgdhe legacy OS) are
subsequently loaded, verified, and executed by the CompattManager according
to the effectual platform security policy.

Upon completion of the secure Initialisation, an authatisempartment (such as
the Trust Manager) can instruct the TPM to generate a cridiémtthe Trusted Com-
puting Base. This credential consists of all PCR valuesatifig the configuration of
the TCB and a key pair which is bound to these PCR values. Megetith an 1/0
access policy management service that is of course als@ptré TCB, the private
key can only be used by compartments that are both part of@feeahd are authorised
to access the TPM.

4.2 High-Level Requirements Specification

In this section we present a formal analysis of requiremieamtthe design of security
services. Subsequently components that allow to meet thgs@ements are shown.

4.2.1 Informal Requirements
This is a collection of informal requirements:
e Mandatory Security Policies

— It should be able to enforce Bell-LaPadula.
— It should be able to enforce Chinese Wall.

e Persistent Storage

4However, covert channels are still feasible.
Swww.prosec.rub.de/trusted_grub.html
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Function: Integrity of data.
Function: Confidentiality of data.

Function: Binding of data to property, e.g., platform, T@Bmpartment.
Policy: Preventing compartments from binding data.

Policy: Forcing compartments to bind data.

Policy: Applications should be able to bind data to itself.

Policy: If the policy allows compartments to bind data teelf, it should
be impossible to bypass this binding. Denial of Service (Dei®uld be
impossible.

o Attestation

— Function: A remote compartment should be able to attesta tmmpart-
ment including its TCB.

— Policy: Entities (the attested compartment, the Mandatagess Control
MAC) should allow to restrict the attested properties of mpartment.

e Trusted Channel
— Local and remote compartments should be able to open a sgtamael to
a local compartment that is bound to properties of that cotrpent.
4.2.2 Security Environment
Assumptions
/A 10/ Trusted Administrator

The security administrator of the system is non-malicious.

/A 20/ Correct hardware

The underlying hardware (e.g., CPU, devices, TPM, ...) dmg¢sontain back doors,
is non-malicious, and behaves as specified.

/A 30/ No Physical attacks

Physical attacks against the underlying hardware platfdsmot happen.

/A 40/ Attestation

The platform provides a mechanism that allows the Secugiykl to convince remote
parties about its trustworthiness.

Example mechanisms are to perform an attestation prot@sgdon an environ-
ment providing authenticated boot. Another example woeld tamper-resistant hard-
ware environment that can uniquely by identified as such leeete party, e.g., based
on a signature key stored inside.
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/A 50/  Security Kernel Binding

The IT-environment offers a mechanism that allows the Sgclernel to store in-
formation such that it cannot be accessed by another Sgd{ainel configuration.
Example mechanisms are the sealing function offered by a @Rdpecified by the
TCG in combination with an authenticated bootstrap archite, or a tamper-resistant
storage in combination with a secure bootstrap architectur

/A 60/ No man-in-the-middle attack

An attack that relays the whole communication between d iz and the 1/0 devices
to another device does not happen.

Threats

In the following section we present threats that exist eglab our approach and todays
computer systems in general.

/T 10/  Security Kernel Replacement

An adversary may try to violate security policies by rephacthe TOE by another
system under full control of the adversary.

/T 20/  Security Kernel Integrity Violation

An adversary may try to violate security policies by viatatithe TOE's integrity such
that security policies can be bypassed.

/T 30/ Malicious Device Drivers

An adversary may try to violate security policies by (dikgar indirectly) installing
a device driver that uses hardware functions (e.g., direnary access) to violate
security policies.

/T 40/  Virtualisation

An adversary may try to access sensitive information by ingnthe Security Kernel
on top of a Virtual Machine Monitor that is under control oéthdversary.

/T 50/ Trojan Horse

An adversary may try to get access to sensitive informatign deceiving
Administrators or Users (see Sectiofh 4.2.3) such that a compartment under control
of the adversary claims to be a(nother) trusted compartment

/T 60/ Unauthorised User

An unauthorised user may use a compartment to read or madidfynation owned by
another user.
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/T 70/ Unauthorised Administrator

An unauthorised user may use a management functionalityeoSecurity Kernel to

grant itself access to sensitive information.

/T 80/ Unauthorised Data Access

An unauthorised compartment may read or manipulate userniation persistently
stored by another compartment.

/T 90/ Unauthorised Memory Access

An unauthorised compartment may read or manipulate usemation stored within

the address space of another compartment.

/T 100/ IPC Confidentiality

An unauthorised compartment may read the communicatiomewset two other com-
partments to access sensitive user information.

/T 110/ IPC Integrity

An unauthorised compartment may manipulate the commuaithetween two other
compartments.

/T 120/ IPC Authenticity

A compartment may claim to another compartment a wrong igetn example is a

malicious compartment that claims to be a security-ciiseavice or another trusted
compartment.

/T 130/ Security Vulnerability

An malicious entity may use a security vulnerability of arcritical compartment to

gain access to security-sensitive information.

/T 140/ Unauthorised Data Binding

An unauthorised compartment may bind user data to the phatéy a specific soft-
ware configuration such that is not available after a sofwgudate or a change of the
platform.

/T 150/ Replay Attack

A malicious user may reset the state of a compartment, égylidence, by replaying
an older state, e.g., a backup.

4.2.3 Functional Requirements (Use Case Model)

We provide a list of functional requirements for the systéat {s developed.
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Figure 4.2: Use case view of the Security Kernel

Target Groups
e Home user (Single-user platform at home)

e Employee (Multi-user platform in enterprise environment)

Roles and Actors
e Anonymous: A subject (human user) accessing/using the Security Kerne
e User: An authenticated subject of the Security Kernel.
e Administrator: The administrator of the Security Kernel.
e RemoteClient: A remote party that can communicate with compartments.

e Compartment: An isolated compartment that is running locally on top df th
Security Kernel.

e TrustedCompartment: A trusted service offering security-critical services to

compartments or clients (also on local platforms).

e LegacyOS: Anisolated compartment running an instance of a virtealiegacy
operating system.

e AuthorizedEntity: An authorised combination of user, compartment, and plat-

form specified by a security policy.

Overview

Figure[4.2 illustrates the use cases detailed in Selcfiad 412 their dependencies.

Open_TC Deliverable 05.1



64 OpenTC D05.1 — Basic Security Services

Use Cases

Other use cases can be found in AppediX A.3

Use CASE UNIQUE ID /uc 10/

TITLE Initialisation

DESCRIPTION An unauthenticated subjects starts the Secyrity
Kernel.

ACTORS Anonymous

PRECONDITIONS The Security Kernel is correctly installed.

POSTCONDITIONS Anonymous.

NORMAL FLOwW

1. Anonymous activates the Security Ker
nel.

|®)
T

2. The Security Kernel (resp. its comp
nents) are started and initialised.

3. A Compartment, e.g., aLegacyOS, is
started and initialised.

4. Anonymous has access to a compart-
ment.

ALTERNATIVE FLOW
(AUTHENTICATED ACCESY 1

. Anonymous activates the Security Ker
nel.

2. The Security Kernel (resp. its compp-
nents) are started and initialised.

3. Anonymous performs an authentication
process (and thus becom&ser).

4. User has access to a compartment.

The bootstrap process starts an initial process (the "ssit‘} that starts and ini-
tialises the Security Kernel as well as the first compartm@ifite input of the root task
is measured by the boot process.

In the first case, the first compartment can be a Legacy OS. Wetbansure that
the compartment is started only if the TOE is initialisedp@dy.

In the second case, the first compartment can be the autagoticomponent. The
Legacy OS can be bootstrapped before or after the authBatigaocess takes place.
Security Kernel components that have to be measured by thtepbocess are:

e compartment management (to be able to start other compatsgjne
e property management (to perform measurements of otheraaments)

e the TPM driver (to securely store the measurements. Elseaficiobus TPM
driver could write wrong values about its own configuratioBut only for au-
thenticated boot, not for secure boot.
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e adata source (file system, network) to load the other commesnts to be loaded.

e all components required to execute and initialise the caorapts

All other Security Kernel components and compartments eastérted and measured
by the compartment manager itself.

4.2.4 Security Objectives
Security Objectives for the IT-Environment
/OE 10/ Security Kernel Identity Prove

The IT-environment provides a mechanism that allows theiStgd<ernel to convince
remote parties and local users about its identity. Commamgikes of such a mech-
anism are a unique signature key protected by a tampetassidevice, or a TPM
securely mounted to the platform.

/OE 20/ Security Kernel Integrity Prove

The IT-environment provides a mechanism that allows thei$gd<ernel to convince
remote parties and local users about its integrity. An examfsuch a mechanisms is
the authenticated bootstrap architecture as specifiedebV@G [102].

/OE 30/ Backup

The IT-environment ensures that the information stored Hey $ecurity Kernel is
backed up in regular intervals.

Security Objectives for the Security Kernel

/O 10/ Security Kernel Identity

Using functionalities offered by the IT-Environment, thec8rity Kernel should be
able to prove its identity to both remote parties and localsis

/O 20/  Security Kernel Integrity

Using the functionalities offered by the IT-Environmehk Security Kernel should be
able to convince remote parties and local users that thgrittef the Security Kernel
is not violated.

Changes in the Security Kernel must be detectable by botlugbe and remote
parties. Such changes can drastically affect the secwdiyeuties of the system, and
therefore mechanisms must be put in place to prevent eimgustnsitive data to such
a compromised system.

/O 30/ Strong Isolation

The Security Kernel should strongly isolate compartmemsifeach other. The isola-
tion has to be enforced on the address-space level and oatdéedel.
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/O 40/ Admin Authentication

The Security Kernel should always identify and authengicadministrators before
granting access to management functions of the Securityeer

/0 50/ User Authentication

Depending on the underlying security policy, the Securigriél should be able to
identify and authenticate users before granting accessmpartments.

/O 60/ Trusted Channel Between Compartments

The Security Kernel should provide a trusted communicatizannel between com-
partments, i.e., a channel providing integrity, confidalit{i, and authenticity of the
compartment’s configuration.

/O 70/ Trusted Path to Users

The Security Kernel should provide a trusted communicatiwamnnel, i.e., a channel
providing integrity, confidentiality, and authenticity tife compartment’s configura-
tion, between compartments and local users.  Moreover,ébary Kernel should
provide a trusted communication channel between itseleceal users.

/O 80/ Secure Persistent Storage

The Security Kernel should provide data containers to pexsily store information
providing (at least) the following list of security propies:

¢ Integrity: Allow the compartment to detect an integrity violation.
e Confidentiality:

— Security KernelAllow a compartment to bind information to the Security
Kernel.

— Compartment: Allow a compartment to bind information to a compart-
ment configuration.

— Role: Allow a compartment to bind information to a specific useerol
Freshness:Allow compartments to store information such that a repliscik
can be detected.

/O 90/ Data Availability after Security Kernel Update

The Security Kernel should ensure the availability of usgadot bound to a specific
Security Kernel version after a Security Kernel update liog the same security
properties.

/O 100/ Data Availability after Compartment Update

The Security Kernel should ensure the availability of usgaadot bound to a specific
compartment version after a compartment update providiagéame security proper-
ties.
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/O 110/ Data Availability after Security Kernel migration

The Security Kernel should ensure the availability of ussadot bound to a specific
Security Kernel version after a migration to another Segi@rnel providing the same
security properties.

/O 120/ Data Availability after IT-environment migration

The Security Kernel should ensure the availability of usaiachot bound to a spe-
cific IT- Environment after a migration to another IT-Envirent providing the same
security properties.

e an update of the Security Kernel,
e an update of ompartment,
e a migration to another Security Kernel,

e a migration to another IT-environment

4.2.5 Security Requirements
/SR 10/ Integrity of the TCB

The TCB should be protected from manipulations to guaratfiteenforcement of
security policies. No modification of the TCB must be allowegcept for changes
that have been authorised by théministrator.

/ISR 20/ Confidentiality and Integrity of Application Data

Application data should remain confidential and integeirduexecution and storage.

/SR 30/ Trusted Path to User

The inputs/outputs of the application a user interacts wfitbuld be protected from
unauthorised access by other applications.

/ISR 40/ Trusted Channel between Trusted Compartment and Exdrnal Parties

Trusted channels must be provided to allow remote partiéstecact with the Security
Kernel system while being assured of its well-behaviourigswillingness to conform
to their security policy.

/SR 50/ Information Flow

Information flow should only be possible where allowed by $keurity policﬁ. Pri-
marily, eavesdropping on another, non-cooperating cotmeant must be foiled.

8Covered channels may still exist, but due diligence musakert to minimise their impact.
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4.2.6 Supplementary Requirements
Preconditions
/PR 10/ L4-based resource management layer

L4 must offer a method of achieving access control for L4 IR{Isdetween different
L4 tasks (which constitute compartments).

/PR 20/ Trusted boot loader
A boot loader with TPM-support is required.

/PR 30/ TPM Interface Specification Driver

A TIS-Driver is required to use TPMs of version 1.2.

Required Criteria

In this section we present required criteria to realise Rmppntary requirements.

/MR 10/ L4 Support

The realisation of the use cases should be deployable on-as€d architecture.

/MR 20/ Common Management Layer

Both the L4-based architecture and the Xen-based arahiteshould offer the same
interface to the legacy OS (Linux).

/MR 30/  Single-user Support

The security architecture should support at least one user.

/MR 40/  Trusted Compartment

The product should support one untrusted and one trustegament at least.

/MR 50/ TPM Support
The Security Kernel should support a TPM of version 1.2 (ghbr) to protect the
Security Kernel integrity.
/MR 60/ Virtualisation

The product should not prevent a virtualisation of the siéclernel or executed com-
partments technically. However, attacks using virtuéitiseattempting to compromise
system integrity have to be considered.

Desired Criteria

/DR 10/ Multi-User Support

The Security Kernel should be able to handle multiple users.
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/DR 20/ Multiple compartments

The product should support multiple compartments.

Execution Environment
Software:
e Microkernel-based Architecture
— Fiasco L4V2u-kernel
— L4Env V0.2
— L4-Linux
Hardware:
e Intel LaGrande Platform
e AMD Pacifica Platform
e TPM 1.2 Platform

Development Environment

This section specifies hard- and software that developed ateast to implement the
Security Kernel successfully.

Software:
e Linux 2.6.x

e gcc 3.4.x

eclipse-3.1

Borland Together 6.2

AMD Pacifica Simulator

Hardware:
e Intel LaGrande Development Platform
o AMD Pacifica Development Platform
e TPM 1.2 Development Board
e VESA 2.0 Graphics adaptor

Open_TC Deliverable 05.1



70 OpenTC D05.1 — Basic Security Services

4.3 High-Level Software Architecture Specification
4.3.1 Security Model

Currently, we assume sHype as the underlying security mosld/pe is a security
model that is able to enforce different Mandatory Accesstf@bmpolicies like Bell
La-Padula or Chinese Wall. It uses an sHype security setwieaforce these policies
based on a virtualisation layer. So compartments runninthervirtualisation layer
are able to communicate with or access other compartmeritssaspecified in a se-
curity policy. Therefore, a list of security labels (coleyis assigned to every object
and every subject and e.g. components marked with the saloer @ve allowed to
communicate.

Users

A list of security labels is assigned to every user. So farjdeatified the following
user roles:

e Owner: The entity that owns the platform running the Segufiernel. The
owner can be a private person, or a company.

e User: A local entity that is authorised to use the Securitgniéein certain ways.

e Client: A remote entity that uses the Security Kernel in@iertvays.

Subjects

So far, we identified the following types of subjects: A compgent running on top
of the Security Kernel. More concretely, a set of threads share a set of address
spaces. Security attributes of subjects are:

e Explicitly: A session object defining the user/roles atetto that subject.
e Explicitly: A list of subject roles defining the subject’sgabilities.
e Explicitly: A list of resources.

e Implicitly: A list of security labels.

Subject Roles Subject Roles define the required capabilities of a subgepetform
a certain task. Examples of such roles are:

e Application: Needs read access to naming service.
e Service: Needs write access to naming service.

e Video Driver: Needs access to a PCI/AGP device and physiemhony of a
specific range.

e Browser: Application that needs access to a network andgor
e Mailer: Application that need access to network, addres&pand storage.

e GUI: Service that needs access to video driver and inpuédriv
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Resources
So far, we identified the following types of resources:
e CPU cycles: Explicit
e Memory page: Explicit or shared
e Physical Memory (PCl-mapped)
e Thread: Explicit
e Interrupt: Explicit
e PCI Bus: Explicit
e PCI device: Explicit
e |/O Port: Explicit

e Frame buffer: Explicit

Objects
So far, we identified the following objects:
e Session: An object defining the attributes of the user/ragsgyned to a subject.

— User: type user
— Security label

e Container: (e.g., Partition, Hard disk, File, USB-pautiti etc.). A Data Con-
tainer that guarantees security properties like integcityfidentiality, binding,
freshness, etc. Security Attributes are:

— A security label
— A security policy defining who is allowed to do what.

e Network: An output channel or input channel (or both) to atemal network.
Security Attributes are:

— A security label
— A security policy defining who is allowed to do what.
— (Optionally) a VPN authentication secret.

e Frame buffer: An output channel and input channel to a losal.u Security
Attributes are:

— A security label
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Mandatory Access Control (MAC): On the level of the Mandatory Access Con-
trol, the Security Kernel only knows about domains and ojp@na between them.
Domains are logical groups of objects and subjects, whéeptbssible operations are
read() and write(). The . Mandatory Access Control secyrdilicy mainly defines
information flows (none, read-only, write-only, and readt®) between domains. The
main security objective of the Security Kernel is to enfdits information flow secu-

rity policy.

In addition to the information flow policy between domainsttain properties of
domains can be defined by the administrator. Until now, tlleviang properties have
been identified:

e Storage: enforce/prevent/allow one of the following séguproperties - In-
tegrity, freshness, domain-binding, user-binding

e Network: VPN Key
e Capabilities: List of actions allowed to other domains
e Compartments: Required properties of compartments ppljcations)

Currently, we assume that only one domain is assigned to jgatob

Discretionary Access Control (DAC): In contrast to the mandatory access control
policy described above that is defined by the administralb@r,discretionary access
control policy is defined by thewnerof each object.

Subjects, Objects, and their Attributes: We identified the following objects and
their attributes:

e Owner: Property, Role

e Object: Domain, Owner

e Process: Domain, Role, Property
e Secure Container: Domain, Owner

e Virtual Network: Domain, Owner
We identified the following subjects and their attributes:

e User/Roles: Domain

e Processes: see above

4.3.2 Logical View
Overview

Legacy operating systems and security-critical applicetiare executed on top of
the Security Kernel security architecture including thelentying hardware (see Fig-
ure[4.3).

Within the Security Kernel security kernel package, we tifgithe following sig-
nificant sub-packages:
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Figure 4.3:Basic System Architecture.Trusted parts of the system are shown in red,
untrusted parts in blue

e Compartment Management

User Management

Trusted Storage

Trusted Network

Trusted Channel

e TPM Virtualisation

Architecturally Significant Design Packages

Figurel4.4 gives an overview of the architecturally sigaificdesign packages includ-
ing dependencies between them.

Compartment Management: The package Compartment Managementis responsi-
ble for the creation, deletion, and update of new compartsnemd for the translation
of high-level security policies into low-level access aohtules enforced by the Se-
curity Kernel. Moreover, this package provides informatatout compartments to be
used by other compartment to determine trust relationgbiges Figur& 4]5).

The package includes the following logical classes and cmapts:

e Compartment Manager (CM)

e Property Provider (PP)

The CM is the main component of the compartment managemekaga pro-
viding a public interface to start respectively stop new paniments and to manage
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Trusted Channel Secure Storage
Trusted Channel Establisher Storage Service
Attestation Service Resource Identifier
Private Key NV Storage
Certifier Storage Parameters
Public Key Transformed Data
Certificate Data

Transformer

User Management

Compartment Management User Management Service
CompartmentMgmtService TPM Interface
ConfigurationProvider

Configuration - TPM Interface

Compartment VvTPM

Figure 4.4: Significant design packages and their depeitenc

«service» CompartmentManager
PropertyManager =
+ start(comp : ByteString) : CompID
+ getProperties(comp : CompartmentManagement::::Compartment) : List<Property> + load(lib : ByteString)
+ getCompartments(props : List<Property>) : List<CompID> + kill(comp : ComplID)
Property
- name : String Compartment
- value : ByteString - myID : CompartmentManagement::CompID
+ Compartment()

ame value -mylD ‘
«datatype» «datatype» ‘ «datatype»
String ByteString ComplD

Figure 4.5: Packagéompartment Management

shared libraries. Internally, the CM ‘measures’ comparthpeoperties before execut-
ing them according to a defined policy. A common example ofsugag would be to
hash the image of the new compartment. Another resporigibflthe CM is to restrict
the compartments to be started and to derive their cagabilit

The responsibility of the PP component is to offer the measent results to other
compartments. According to a given security policy, cortrpants can query prop-
erties of other compartments to determine the trustwoesrof these compartments.
The PP also includes the functionality of a naming serviee, it provides a mapping
between service interfaces and compartment identifiers.

Secure User Interface: The packageéecure User Interface provides access to
the 1/0O interfaces used by the local user, i.e., output @sviike the video card and
input devices like keyboard and mouse. Fiduré 4.6 illusgrdihe design model of the
Secure User Interface package.
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UserlnterfaceManager

+ open() : UserlInterface

InputDevice - Userlnterface
-inputs ——_ e - nputs : InputDevice

- outputs : OutputDevice
OutputDevice | + refresh(region : Region)
-outputs + notify(msg : String)

+ close()

Figure 4.6: Packag8ecure User Interface

Subject User Manager
- mylID : SubjectID

+ manageSubjects()
+ selectSubjects()

SubjectSecret + selectSubject() : Subject
+ authenticateSubject(subject : Subject) : SubjectSecret

Figure 4.7: Packaggser Management

User Management: The packag&ser Management provides functions to create,
delete, select, and authenticate subjects, which arepiatflobal entities. Despite its
name, such a subject needs not be a user in the classical beihseould also be a
role, group, or other principal. Figute 4.7 illustrates thesign model of thé&Jser
Management package.

The general idea behind this design is that the cldssrManager completely
hides the concrete implementation of the user model, @lg-lrased, users/groups as
in many Unix’s, or smart-card-based. Since the internashatden, the clasdJser-
Manager has to provide its own management interface invokednapageRoles().
Even the authentication of subjects is performed by thestlagrManager itself. To
allow other compartments to bind data to subjects, UM retamauthentication secret
SubjectSecret on successfull authentication.

Trusted Network: The packagdrusted Network offers compartments the func-
tionality to access virtual and physical networks conmdtethe Security Kernel.
From the compartment’s perspective, access a physicaloneteannot be distin-
guished from a virtual private network. Both are "seen” gsasated network inter-
faces. Figurg4]8 illustrates the design model ofTihested Network package.

Packagelntegrity Management: The packagéntegrity Management offers com-
partments the functionality (i) to attest properties aridt@ createtrusted channels
i.e., secure channels to remote entities that are boundtairceompartment proper-
ties. Figuré 4.0 illustrates the design model of iegrity Management package.

Trusted Storage: This package features secure and trusted persistent stitvaigs
used to enforce a variety of security properties. Figur8 #ldstrates the design model
of the Trusted Storage package.

Currently, the following security properties are defined:

e Integrity: Integrity protection enforces checking content for altiera
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«service»
NetworkManager

# create() : NetworkManagemen
# delete(net : NetworkManagement::::::
+ getNetworkList() : List<Network>

«service»
Network

- myNetworkPolicy : NetworkPolicy NetworkPolicy
+ send(p : NetworkManagement::Packet)
+ receive() : NetworkManagement::Packet +myNetworkPolicy

+ getNetworkPolicy() : NetworkPolicy

Figure 4.8: Packag&usted Network

IntegrityManager

+ attest(props : List<Property>) : PropertyCertificate
+ bind(props : List<Property>) : BindingData
+ unbind(cert : PrivatePropertyCredential, cipher : ByteString) : ByteString

BindingData
- pubCert : PublicPropertyCredential
- privCert : PrivatePropertyCredential

PropertyCertificate

-privCert -pubCert

PrivatePropertyCredential PublicPropertyCredential

Figure 4.9: Packagietegrity Management

StorageManager

# create(policy : ContainerSecurityPolicy) : Container
# delete(c : Container)
+ getContainerlList() : List<Container>

_ i _ Container
l ContainerSecurityPolicy ‘L - myPolicy : ContainerSecurityPolicy
I | -myPslicy +open()
"%+ close()

+ load(id : BlockID) : Block

+ store(id : BlockID, block : Block)
+ getPolicy() : ContainerSecurityPolicy

Figure 4.10: Packag®usted Storage
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1
_‘l)_ ) rJ 0-1 )
/ TPM_Interface ¢
ient vTPM
Client

Figure 4.11: Packagéirtual TPM

— Basic Integrity CheckingBasic integrity checking verifies that content was
not maliciously altered by another party, but allows replafearlier states,
e.g., to allow backups.

— FreshnessProtects integrity, but additionally prevents restoritfigarlier
states.

e Confidentiality:To protect the confidentiality of information, data can behad
to the following architectural abstractions:

— Compartment BindingEnsure that only compartments with an identical
configurationcan access the information.

— Subject Binding:Ensure that information can only be accessed if the ap-
propriate subject has been authenticated.

— TCB Binding:Ensure that information can only be accessed by a TCB with
an identicakonfiguration

Each stored item can be protected by any combination of i options, while
compartment bindingmpliesTCB binding andfreshnessmpliesintegrity.

Virtual TPM: This package offers compartments a virtual TPM instancech&u
virtual TPM is unaffected by any change made to anotheraliffitPM, and offers the
functionality defined by the TPM specification of the TCG. trigl4.11 illustrates the
design model of th&irtual TPM package.

Use-Case Realisations

The corresponding use-cases were described in s¢ctiGhah@ Appendik ARB.

/ UCI[IA/ Initialisation

A user activates the Security Kernel. It executes a secuné seguence in order to
establish a chain of trust from some trusted instance @ ltardware TPM).

/UC[30/ Start Compartment

A client that intents to start a new compartment invokesGbhenpartment Manage-
ment Service and provides it with the image and configuration parametebgtused
for the compartment. Th€Eompartment Management Service loads and measures
the image and the configuration parameters (the image bestgntiated according
to the given parameters). The measurements taken are si&ireptheConfiguration
Provider[]. As the end result of the start compartment invocation@bmpartment

"The measurements can be retrieved from @unfiguration Provider at a later time by, e.g., a
Compartment for attestation purposes.

Open_TC Deliverable 05.1



78 OpenTC D05.1 — Basic Security Services

Management Service passes th€ompartmentID of the created compartment to
the client. ACompartmentlD is generated in a way that prevents collisions with pre-
viously generated IDs (even if the corresponding companrtsieo longer exist).

/ UC[4Q / Start Legacy Operating System

In this special case of / UC B0 /, the compartment to be stist@begacy operating sys-
tem, the configuration parameters of which may include teesfistem images utilised
by the legacy OS.

As in / UC[30 /, the client that intends to start the new compartt invokes th€om-
partment Management Service, this time providing it with the image and config-
uration parameters of the legacy OS, e.g., Linux. Teenpartment Management
Service loads and measures the Linux kernel including its configama(i.e., com-
mand line) parameters. After that, the Linux kernel is resiae for the continuation
of the layered secure boot process — for example, by measarfite system that it
intends to mount.

/UC[EQ / Stop Compartment

A client that intents to stop a compartment invokes@umpartment Management
Service and provides it with th&€ompartmentID of the compartment to be stopped.
The Compartment Management Service stops the compartment and releases the
resources associated to it. This includes the measurerakm@ssstored by th€onfig-
uration Provider. After that, theCompartment Management Service informs the
Client about the result of the operation.

/ UC[70/ Store Data

Store (and load) require a component which handles prayitfimsted non-volatile
storage. The store use case is realised with the help ofadetber components. De-
pending on the protection options selected, different@seing needs to be carried out.
If content is supposed to be bound to a compartment configardheConfiguration
Provider is queried for that configuration of the storing compartmditiis informa-
tion is stored in metadata, which is held confidential angifness-protected. For this
option, as well as TCB binding, the data is transformed usimgnternal key of the
Transformer.

User binding is done similarly, however, encryption andrgption keys are han-
dled by theUser Management Service, which is queried for an encryption key for
the specified user. Role hierarchies and other “special sttsaneed to be imple-
mented in thaJser Management Service.

Simple integrity checking is achieved by attaching an ugdable signature to
the data object, while freshness can be realised by main¢ggaid signature in the
freshness-protected metadata.

/ UCI[80/ Load Data

Loading data is realised very similarly to / UC|70/. The stgraomponent needs
to access its metadata to determine what protection optibiese specified for the
requested piece of data, and if it is even known. If a pieceaté ds unknown, this
results in an error.
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If the data is indeed known, it is retrieved froNon-Volatile Storage, and its
integrity is verified if so demanded by the metadata. Any yoiions are removed
in reverse order (depending on the order of encryption wisichilised in / UTZ0 /),
making interactions with the same components as in [UC 76dssary. Th&torage
Service will decrypt data encrypted in such a way if and only if the figuration
recorded in metadata matches the current configuratioredbtding compartment.

/ UC[240Q / Local Trusted Channel

A Client requests a trusted channel to Gmpartment from the Trusted-
ChannelEstablisher. The TrustedChannelEstablisher invokes theConfigura-
tionProvider to obtain aConfiguration of the Compartment, and provides it to the
Client. It also opens a secure channel from tfiEent to the Compartment; the
Client can then use th€onfiguration to decide if the channel is trusted.

To enforce least privilegélrustedChannelEstablisher maintains a policy about
which compartment may receive the configuration of anotleenmartment in order
to avoid unauthorised compartments from obtaining conéiioms of other compart-
ments.

/ UC[240 / Remote Trusted Channel

A RemoteClient requests a trusted channel toGampartment from the Trust-
edChannelEstablisher. The TrustedChannelEstablisher queries theCompart-
mentManagementService for the Configuration of the requested destination
Compartment and generates an asymmetric key p&ulflickey, PrivateKey) and
aCertificate on the generated key. The certificate states that the kelypsineen gen-
erated for aCompartment which — at the time of the request — possessed the stated
Configuration. Both Certificate andPublicKey are sent taRemoteClient which ver-
ifies the signature and verifies tHavnfiguration conforms to its policy. A successful
validation implies thatPrivateKey is “bound” to Configuration, and that data en-
crypted withPublicKey is therefore “bound” toCompartment. Thus, an encrypted
communication channel can be established u§inblicKey, which guarantees con-
fidentiality, integrity, and (if communication is succagd$fthe correct configuration
(otherwise, decryption would fail).

/ UC[290 / Remote Trusted Channel via Proxy

A trusted channel betweeRemoteClient and Compartment using Prozy is realised
by establishing a trusted channel betwd&moteClient and Proxzy (see / UG 240 /)
and a local trusted channel betweBrozy and Compartment (see / UG 240 /). The
Prozy then transmits th€onfiguration of Compartment to the RemoteClient.

/ UC[250 / Remote Attestation

Attestation is realised as a trusted channel (cf. 29(hAre no actual data except
a nonce is being sent. THeemoteClient sends a nonce via the trusted channel to the
destinationCompartment. That Compartment proves its ability to decrypt the nonce
to RemoteClient which can then be sure that tli&mpartment is currently config-
ured as described in th@ertificate which was transferred during the establishment of
the remote trusted channel.
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/UC[300/ TPM usage

A compartment uses the interface defined by the TPM spedditat the TCG. It con-
nects to thelPM Interface, which provides it with theCompartmentID of avTPM
instance. With th&€€CompartmentlD, it performs a compartment configuration query
(see / UQ2610 /) to verify the trustworthiness\afPM.

4.4 High-Level Design of a Secure Virtual Private Net-
work

This section provides a high-level design of a secure Mifravate Network for the
PERSEUS security framework. A use case model and an anafygish a VPN mod-
ule are presented, and the design of an L4-based serveatdtserver”) implementing
virtual networking — which is required for the secure VPN déscribed.

A prototype of such a secure VPN solution, called Turaya-\V®a&k implemented
within the EMSCB project.

4.4.1 Introduction

Encryption systems are widely used to protect stored andraamcated data from
unauthorised access. Application areas include devige (eard disk) encryption as
well as Virtual Private Networks (VPN).

Unfortunately, most software-based encryption produaffesfrom various vul-
nerabilities such as insecure storage and usage capebibiti security-critical crypto-
graphic keys and operations. The underlying operatingesysicannot prevent other
(potentially malicious) applications from gaining accésshe critical key data. The
reasons lie in conceptual weaknesses of common compuatfghs, in particular in
insecure OS architectures. This is evident by the huge nuaflexploits and constant
security updates. We present a security architecture tleatsasecure, reliable and
user-friendly encryption of TCP/IP communication. Thewséyg architecture strongly
isolates the secret (key) information and all related sgearitical operations from
the operating system. A security software layer is insidbetween the hardware layer
and the operating system layer to isolate the legacy opegrayistem (including legacy
applications) from security-critical applications. Tligssimilar to a hardware based
solution but far more cost-effective. Moreover, the amttitire is capable of using
Trusted Computing functionalities to protect the secridrimation and to assure soft-
ware integrity during the booting process of the system.

Structure of this Section. Section 4.4 provides an overview of our requirements
and an analysis of a secure Virtual Private Network. Singedhalysis assumes the
availability of virtual networking, the following sectidh.4.3 introduces an L4-based
server that can provide such a virtual network.

4.4.2 Requirement Specification
Overview

This section presents our requirements for a secure ViRtighte Network (VPN) in
the form of a use case model.
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The solution has to establish a VPN by using the security fqulat and there-
fore facilitate protected communication with servers (webvers, email servers, news
servers, etc.) in a protected intranet. The solution mustienthat a user within an
insecure network gets secure access to a protected areaoifimeunication between
the user and the secure area is protected by the OpenTCtggidatiorm. The secret
required for establishing the connection is managed by O@eithe user operating
system has no access to the information.

The bridge server is an isolated network driver for OpenTi@ main goal of the
bridgeserver is to outsource the DMA-enabled network dfhie an isolated compo-
nent that may additionally contain virtual private netw¢v#N) and firewall function-
ality. Clients open (and close) a network device, and reawh ffand write to) a previ-
ously opened network device. Additionally the bridgeseatws to enforce access
control on which clients may open a network device and prewia simple manage-
ment interface. The client interface as well as the managemrface should be as
simple as possible to be easily adaptable to a generic dbad®yice driver interface.

Security Environment

This subsection describes the security aspects of thecgmaint in which the SVPN
is intended to be used and the manner in which it is expected tamployed.

The OpenTC security platform ensures that the secret redjor establishing the
connection is kept in safe custody. The user operating Isyge&ts no access to the
secret. This ensures that compromising the user operatiters does not endanger the
security of the whole VPN, because the secret is not withachief the user operating
system.

Assumptions

A description of assumptions shall describe the securjhgets of the environmentin
which the SVPN will be used or is intended to be used. Thid giude the following:

e information about the intended usage of the SVPN, includingh aspects as the
intended application, potential asset value, and poskibiations of use; and

e information about the environment of use of the SVPN, initigghysical, per-
sonnel, and connectivity aspects.
/A 70/ Correct hardware
The underlying hardware (e.g., CPU, devices, TPM, ...) is=malicious and behaves
as specified.
/A 80/ No man-in-the-middle attack

An attack using a dummy device that relays the whole comnatioic between the
user and the platform to another device does not happen.

8DMA (Direct Memory Access) allows a device to access main wrgndirectly. A malicious device
driver can misuse DMA to read out confidential data from magammary.
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/A 90/ Trusted Administrator

The compartment administrator of the system must be trisstee he will have access
to all encrypted data.

Threats

A description of threats shall include all threats to theetss@gainst which specific
protection within the SVPN or its environment is requirect®that not all possible
threats that might be encountered in the environment ndaellisted, only those which
are relevant for SVPN operation.

/T 160/ Key spoofing

An adversary may try to eavesdrop the cryptographic key tmeehcryption/decryp-
tion.

/T 170/ Spoofing of authentication information

An adversary may try to eavesdrop the user authenticatfommation.

/T 180/ Key manipulation

An adversary may try to violate integrity requirements af tiryptographic key used
for encryption/decryption.

/T 190/ Faked user interface

An adversary may try to deceive users by a platform providifaked user interface.

/T 200/ Faked identity
An adversary may try to bypass control mechanisms by pratgradfaked identity.

/T 210/ Software manipulation

An adversary may try to violate security requirements byicr@lsly manipulating the
security kernel.

/T 220/  Device driver manipulation

An adversary may try to manipulate device drivers such that\ware functions (e.g.,
direct memory access) are used to violate security policies

Use Case Model

Additional use cases can be found in Appendix/A.4.

The use case “Client Authentication” describes how a cligmicess (e.g. a
browser) from the user system accesses a server (e.g., aewalr)docated in a pro-
tected intranet. To obtain access to the server’s servisengcessary that the SVPN
system establishes a protected channel to the corresgpmiianet gateway server
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Figure 4.12: Use Case: Client Authentication

on request of the user system. Subsequently, the clienepsds able to exchange
confidential data with the server.

At this point, the user system has to authenticate itseli@server. The authen-
tication is carried out by a secret protected by the SVPNesystEvery user system
request is proceeded through the OpenTC security platfortimet SVPN system, gets
encrypted there and is transmitted to the gateway of thepted intranet. Additionally
to the encryption, the integrity of the data transmittedrfithe gateway of the protected
intranet is also ensured.

Consequently, two communication channels with differetusity properties ex-
ist. The communication channel between the user systemhen8&YPN system is
managed and protected by the OpenTC security platform. dmenication channel
between the SVPN system and the gateway of the protectethéitobtains its secu-
rity by an encrypted connection. The secret required fat®ishing the connection is
protected by the SVPN system and not accessible by the ustensyThe encryption
is transparent for the user system.

Roles and Actors

Role Client The client wants to access a network (e.g., Internet, Ietravirtual
Private Network, WLAN).

Role Server The server provides network access and enforces accesslcont

Role Compartment An isolated compartment that is running locally on top of the
Security Kernel.

Role AuthorizedEntity An authorised combination of user, compartment, and plat-
form specified by a security policy.
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Use CASE UNIQUE ID

/uc 20/

TITLE

Create Connection

DESCRIPTION

A client process running on the user system

wants to establish a connection to a server

a protected intranet.

n

RATIONALE

The server demands an authentication (pre-
shared key, certificate, ...) to approve a con-
nection establishment. While establishing the

connection, a session key, which is used to
crypt the subsequent communication, is tra
mitted securely.

en-
ns-

ACTORS

Server, client

INCLUDES

Authentication

PRECONDITIONS

The client requests data from a server.

POSTCONDITIONS

Once a connection is established, the clien
able to access all data provided for it.

[is

NORMAL FLOwW

1. The client sends a request for connect
establishment to the server.

2. The server demands the client’s authe
cation.

3. The client authentication is successful.

4. The server approves the connection
tablishment of the client.

on

nti-

ALTERNATIVE FLOW

1. The client sends a request for connect
establishment to the server.

2. The server demands the client’s authe
cation.

3. The client authentication fails.

on

nti-

4. The connection establishment is aborted.

Functional Requirements

/FR 10/ Network Device Selection

Clients may choose different network devices to open by eotimng to different bridge-

server instances.

/FR 20/ Fast Communication

The bridgeserver realises String IPC. Shared memory cornuaition via the Drops
Streaming Interface (DSI) is planned for a later release.
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/FR 30/ Packet Scheduling

The bridgeserver realises best effort packet delivery.

/FR 40/ Network Transparency

The bridgeserver offers full transparency of packet/fral@lé/ery on all network lay-
ers, i.e., no packet/frame headers are parsed or modifiecke®aame processing
(e.g., masquerading) is done by common Linux system compysrseich as netfilter
and racoon.

Security Requirements

This part defines the security requirements that have totisfisd by the SVPN.

/SR 60/ Access Control

The management interface should implement a rudimentagsaccontrol. The task
ID of applications that have permission to open a network @éeshould be explicitly
defined over a management interface.

/SR 70/ Denial of Service

Denial of service of the bridgeserver is prevented by therbdr{d robin) task sched-
uler, i.e., each application only has a limited amount o&timoccupy the bridgeserver.

General Architecture Description

In the context of the OpenTC environment, a certificate-ttageN shall be imple-
mented. The following requirements to the communicaticanctel are made:

e Integrity of the transmitted data
e Confidentiality of the transmitted data

The host system which is operated by the user. The VPN destabove is based
on a security platform such as OpenTC. All platform secuaipects are also reflected
by and part of the security mechanisms of the complete system

In the following, we will distinguish between the user systée.g., Linux) and the
Platform-VPN system. Both work on a host system and are nezhhy the OpenTC
security platform. The user system is the user operatingsythe user interacts with.
Every input (keyboard, mouse, etc.) is processed by thesystem. The Platform-
VPN system is executed in parallel through the securityf@lat on the same host
system. Every network request of the user system is forwkt@¢he Platform-VPN
system by the core security platform. There, the requestslassified and processed
according to their security property. This can mean thatRlegform-VPN system
establishes a secure connection to a protected intraretgatnd the data transmitted
are encrypted.

9A task ID unambiguously identifies an application duringtime.
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Figure 4.13: Architecture Overview

4.4.3 Design of Virtual Networking for L4

In this section the design of the bridgeserver implementirtgal networking, which
is required for the secure VPN, is described.

Architecture Description of the Bridge Server

The architecture of the bridge server is illustrated in FéfdiT4. Clients and server use
a Linux TUN device driver which provides a virtual networkerface. Communication
between client-side and server-side TUN interfaces isemginted with the L4 Inter-
Process-Communication (IPC) facility.

Implementation

Figure[4.T5 illustrates the client-server protocol. Qliend server first initialise a vir-
tual network device (tun device). The server task registeedf at the naming service
so that the client task can do an open()-call. Upon sucdessfiopletion of the open()-
call, client and server maintain a mapping from each otharsad id to their virtual

local network device. Ethernet frames written to a virtuatwork device are then
transferred via IPC to the peer task.

Command line synopsis

The command line options for the bridgeserver set the bsieiger in client or server
mode, and specify the number and names of the virtual netivaekfaces (TUN
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devices):

- create tun-device
- ask naming service
for "bridgeserver"

' map tun-device to server
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- call open()

\- server_loop()
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Bridgeserver

- create tun-devices

- register main thread
as "bridgeserver"

- server_loop()

- on open() call:
map tun-device to client
thread id

Figure 4.15: Protocol

bri dgeserver2 -c|-s <tun-device> [<tun-device>
<t un-devi ce>]
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Chapter 5

Security Services Management

S. Cabuk, D. Plaquin, C. I. Dalton (HPL)

This chapter introduces a hypervisor-agnostic integrignagement solution that em-
ploys Trusted Computing technology in ways to provide a nflesgble and dynamic
trust management scheme for virtualised platforms. Fggcifics of an abstract in-
tegrity management model are detailed that is agnosticstaitiderlying platform and
the component structure. Then, a security services maregdramework (SSMF) is
presented that (1) hierarchically represents securityices on virtualised platforms,
(2) keeps track of their static and dynamic measuremenksnéBages their security
credentials while regulating the access to them, and (dyvalthird-parties to attest
their integrity.

5.1 Integrity Management Model

In this section, the integrity management model that presia fine-grained and a dy-
namic view on what to trust and under what conditions to dossimtroduced. The
model is centred around two key concepts: First, a treeeh@gresentation describes
the componenthierarchy in a platform based on the integeifitions between the com-
ponents. Second, the dynamic measurement model enhaecesrtent static TCG
model and enables more flexibility in terms of componentgritg measurement. The
model is additionally evaluated in comparison to the TCG ehoth brief, the model
provides (1) a finer-grained representation of platform gonents, (2) a more scal-
able and efficient measurement model, and (3) a more flexibégiity management
scheme that enables components to switch between differ@es of operation with-
out requiring a restart.

5.1.1 Objectives and Definitions

Our model is based on the Trusted Computing technology,ehesecborrow some of
the basic terminology, constructs, and mechanisms frortitémature [7/101]. In par-

ticular, integrity measurements and immutable logs (iogs that cannot be modified
and provide trustworthy evidence) are the building blodkhe design.

88
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Design Objectives

The model is designed to provide generic integrity managefo@ctionalities to sup-
port a large range of platform components (e.g., securityices) while minimising
the software complexity for its implementation. Hence, dbgectives are two-fold:

Generic Trust Managementhe primary objective for the management model is to
devise a generic management interface that is not boune tarttherlying platform ar-
chitecture and the component structure. That is, the medggnostic to usage models
and component types.

Minimal Trusted Computing Bas@he secondary design objective is to minimise
the set of components that require hardware-protected tafsteulogs for a minimal
Trusted Computing Base (TCﬁ)Hence, a side objective is to define the critical set of
platform components that are required to be in this set atehdxhe trust chain to the
rest through the functionality provided by this minimal.set

As a final note, this work is different from the on-going reséathat focuses on
reducing the TCB size that yields a smaller trusted [59. (®om0 in Xen[[8]).
Although, we are particularly investigating a similar plerin for an integrity manage-
ment framework.

Component Structure

The scheme introduced in this section manages the integfétion between platform
components. Below, a semi-formal definition of a platforrmpmnent is provided that
is generic enough to comply with the first design objectiegest above.

Component definition.A component () is a generic platform entity that can
change the state of the platform through execution. As amplea a component can
potentially be a service residing in a virtual domain (as éct®n[5.2) or a group of
such services. Alternatively, a component can be the Vidomain itself if the man-
agement model is used to represent the integrity dependetayeen virtual domains.
Hence, the exact granularity in defining platform composéepends on the granular-
ity of integrity management that is required on the platform

Nevertheless, this abstract definition of a component iaeodéd below while keep-
ing its generality. In particular, a component is compriséd

1. Anexecution environmerino in which the functionality group executes.
2. A configuration groupb ,,,, that defines the parameters fono.

3. A functionality groupF' : (Sgnv, PEnv) — Sg,, that provides the necessary
component functionality and changes the platform state f§do S’ that is local
to Enw.

In addition to these, a componentis required to employ a Measent Agent (MA)
(e.g., either as part of its implementation or as a plugfia} tvill monitor ongoing
changes made to the component structure.

A central point that will allow us to devise a component hiehg is the concept of
the execution environment. We claim that if a compon@iststate changing impact

1n this work, the TCB is equivalent to the set of componentssehmeasurements are stored on trusted
hardware (e.g., on a Trusted Platform Module).
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DYNAMIC
TRUSTED ENTITY

ID & Assoc. Data

[ CHILD DYNAMIC COMPONENT

| Integrity Metrics Manager |
F [ @& || Policy | Env}-_

[ PARENT DYNAMIC COMPONENT ]

Figure 5.1: A parent and a child dynamic component coupléld thie child compo-
nent's dynamic trusted entity.

(through execution or changes made to the component) isio@at within its execu-
tion environment, then the integrity of the componentsdiegi outside this execution
environment will remain unaffected through this state geanThe level of isolation
that can be guaranteed by the execution environment deperids technology used to
implement such an environment. An example execution enmient with such capa-
bility is the Java virtual machine (JVM). Another example &irtual domains running
on secure hypervisors that are hosted directly on hardveage Ken) or within a host
operating system (e.g., VMware).

Component typesA component can be of static or dynamic type. Static com-
ponents comprise the minimal set of components that resitleei TCB and provide
trust management functionality to the rest of platform comgnts (i.e., dynamic com-
ponents). These components serve as the software ronisbffor their descendant
components in the component hierarchy and offer protettedge, dynamic measure-
ments, and cryptographic operations through trustedfades (i.e., dynamic trusted
entities as explained in the following section). A platfoommponent that is not a
static component is a dynamic component. Dynamic compsngs# trusted inter-
faces provided by the closest static component in the tdkyafor example, to request
access to secrets stored in persistent storage on beh&kmf tThe specifics of the
access are controlled by a policy that is enforced by theestamponents.

5.1.2 Hierarchical Integrity Model

Each dynamic component; is created by its parent componérit ; within the par-
ent’s execution environment. When such a dynamic compasiéninched by a parent
component, a special type of trusted entity is associatéd itvon a one-to-one basis
(this special type of trusted entity is hereinafter callédynamic trusted entity” — or
‘DTE’ — to indicate that it is related to a dynamic componenithe DTE is a trusted
entity that runs in a trusted environment (e.g., in a sepdrasted compartment). As
depicted in Figur€5l1, the DTE has a persistent identityintetfaces that provide
access to a static and a dynamic register that hold integeysurements made on the
dynamic component in protected storage.

Figure[5.2 shows a hierarchical arrangement of two dynamimponents (;,
Ci+1) each with its own dynamic trusted enti®p ' E;, DT E;+1). Each dynamic com-
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C(i+1)

EEE

DTE(+1)

Figure 5.2: A hierarchy of dynamic components and their eiased dynamic trusted
entities.

ponentC}; is created by its parent componeTit ; along with the associateB7 F;.
Hence, each child component’s execution environment idbaesiof its parent’s exe-
cution environment. Thus, each componé€ntan only have one immediate ancestor
(i.e., parent). The resulting dependency relation can peesented with a component
tree that is rooted in the root-of-trust of the trusted latf concerned.

In a real platform, these components form a dependencyitrekaisto the one il-
lustrated in Figur€5l3 in which each dynamic componentt@vtircle) is associated
with a respective dynamic trusted entity DTE. The dynamimponents are organised
hierarchically. In the figure, six dynamic components arensh) individually identi-
fied by the lettersB to G, but only the DTE of the dynamic componefithas been
shown for reasons of clarity. The DTE holds a persistenttideon behalf of the com-
ponent it represents. Further, it provides access to thie stad dynamic registers of
the component that are actually stored in the protectedgoby a static component
that forms the root componentof the hierarchy; by way of example, Figlirel5.3 shows
in protected storage the static and dynamic registers iaéedavith the dynamic com-
ponent. The static component also holds the expected nerasut values for each
descendant dynamic component.

The static componend, like the dynamic components, preferably comprises a
functionality group, an execution environment, and a caméigon group. Addition-
ally, it provides protected storage and cryptographicueses for use by the dynamic
components. The integrity manager of each DTE of Fifurk BrBaily serves as an
interface to the static component. Dynamic componentshesetinterfaces to update
their respective associated static and dynamic registetd¢aarequest access to other
secrets stored in protected storage on their behalf.

In this setting, the static component is part of the trustadputing base, TCB, of
the platform (the trusted computing base being the cotleaif entities, including the
static component, that can potentially affect the trusthioess of the platform). The
trust chain of the platform extends from its root of truspfpally based on a hardware
trusted module) to the static component and then on thrcuwghierarchy of dynamic
components, to the extent that their respective state§yjtisis.

The static componet holds data detailing the structure of the tree of dependent
components and the software to manage this tree. For sitgpbioly a single static
component has been described in Figuré 5.3, but the abmezioled arrangement can
be generalised to multiple static components each withvits tvee. Dynamic com-
ponents do not possess any information about the tree wteuekcept the identity of
their parent components (this information is held by theesponding DTE).
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Figure 5.3: An example representation of platform compoherarchy with a single
static component4{) and an example DTE associated with the dynamic compaiient

5.1.3 Dynamic Measurement Model

In the following description of the measurement model, ¢femnto which a platform

component may be subject to are divided into first (irrevde3iand second (reversible)
types. The categorisation of a change as first or second $yg@niponent dependent,
being set in a ‘change-type’ policy associated with the congmt, but as a rule of
thumb:

e A change of the first (or irreversible) type is one that regsiithe component
to be restarted to re-establish its integrity. Such a chasmgme made to the
integrity critical part of the component; that is, to the eaut other data of the
component that has a potential impact on the ability of themanent to im-
plement its intended functionality correctly. For convarie such a change is
referred below to as a “critical” change. An example of aicaitchange might
be a kernel loading a new driver in its memory or an applicatading a plug-in
in its memory in a way that will affect its behaviour.

e A change of the second (or reversible) type is a change that isf the first type.
Such a change is one made to a non integrity-critical patt@tbmponent; that
is to code or other data of the component that has no impatteocamponent’s
ability to implement its intended functionality. A changktbe second type is
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referred to below as a “non-critical” change. A particulaample of a non-
critical change might be a configuration or mode change.

As an alternative definition, a platform component for whétith a classification
of changes is made and used in determining the integrityeo€timponent is referred
to below as a dynamic component (“dynamic” because itswirshiness may change
any number of times).

In addition to code providing the component’s intended rarfanctionality, a
dynamic component comprises a change-type policy elenoenise in determining
whether a change to the componentis a trust-irrecoveralresi-recoverable change,
and measurement agent(s) for measuring changes to the nentpiself. An appropri-
ate mechanism is provided for enabling the dynamic compdnesommunicate with
its associated DTE. Both the change-type policy and the unemsagent, although
shown as part of the dynamic component, can be separatlysdid while remaining
associated with the component.

An integrity measurement stored to the static register ef DITE in FiguredL 5.l
is combined with the existing value held in the registert feathe register value is
extended (for example, in a manner similar to the way a PCRteneded). In contrast,
an integrity measurement stored to the dynamic registeplgineplaces the previous
value held in that register. The DTE further comprises aagrity metrics manager
providing the interface for storing integrity measurensesnd reliably reporting the
register values. The DTE may also allow access to the expr@ctasurement values
for the component.

When the dynamic component is created, the parent compacgunires an in-
tegrity metric of at least those parts (code and other ddtd)eodynamic component
that have a potential impact on the ability of the dynamic porent to implement its
intended functionality correctly, and puts the value o thietric into the static register
using the DTE. The parent component may also acquire anritytegetric of at least
those parts (code and other data) of the dynamic comporeriidlee no impact on the
component’s ability to implement its intended functiotgland puts the value of this
metric into the dynamic register using the DTE. From thentba,static register can
only be updated by the component itself (with the aid of thegrity metrics manager)
whereas the dynamic register can be updated (via the ibtegeatrics manager) both
by the component and the parent (assuming the latter hassatz¢he policy or has
equivalent knowledge to be able to recognise a non-criticahge).

The dynamic component is entitled to measure and reporiggsato its structure.
Thus, when a change is determined, the dynamic componesumessdits effected part
(that is, either its integrity-critical parts in the caseaotritical change or the non-
integrity-critical parts for non-critical changes). Forcatical change, the resultant
measurement is used to extend the value in the static regiftectively creating a
permanent indication that a critical change has taken plaea non-critical change,
the new integrity measurement simply replaces the prewialue held in the dynamic
register.

Depending on the measurement values stored in both regigterdynamic compo-
nent can be in one of three local integrity states: If the @slin the static and dynamic
registers are consistent with the expected measuremergsydhe integrity is ‘intact’
(the component itself is trustable). If the value in theisteggister is consistent with
the expected measurement value but the value in the dynagister is not, the in-
tegrity is recoverable. In all other cases, the integritiyriscoverable. The relations
between these states is depicted in the state diagram inefgd

Open_TC Deliverable 05.1



94 OpenTC D05.1 — Basic Security Services

LOAD
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Non critical change

RECOVERABLE
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IRRECOVERABLE

Figure 5.4: State diagram depicting platform componegrity states.

The foregoing arrangement enables a dynamic componerttdisainly been sub-
ject to non-critical changes to be restored to its trustabledition and have this re-
flected in its integrity metric values stored in both registélso, a user may be willing
to trust a dynamic component which according to the expeegidter values known
to the DTE is in its recoverable state because the dynamisteegnatches an expected
value known to the user and not the DTE.

5.1.4 Evaluation of the Model

Lastly, the security model is evaluated in comparison toctireent TCG model. The
new security model has many advantages over the currentim®dhe level of flex-
ibility it provides. However, one has to prove certain isiola properties as a prereq-
uisite to employing the model. Therefore, the model may reatditable for platforms
for which no such guarantees can be given.

Advantages

Manageability. The hierarchical dependency model (i.e., tree-of-trigsgn improve-
ment over the current solutions that offer linear modeks. (ichain-of-trust). If the
necessary isolation properties are guaranteed, the moalatps a finer-grained in-
tegrity management solution that allows:

Better representation The hierarchical model enables components with no depen-
dency relation (in terms of integrity) build separate imiggchains. Thus, the
integrity of a component only involves the integrity of ifsplus its ancestors.

As an example, in Figurle 8.3, the integrity of compon&ntioes not depend
on the integrity of the componett. Therefore, one can still potentially trust
component even though componet may be in an untrusted state.

Isolation Changes to the platform components are isolated only to pipeoariate
branch of the integrity chain, thus do not affect the compf@atform. As a
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result, a critical change will no longer require restartargd re-measuring the
complete platform but only the appropriate branch. Using game example
from above, an irrecoverable integrity state for comporénhly requirest to
be restarted whilé’ can continue its operation.

Scalability The measurement model provides a more scalable schemétheurtent
one because the latter requires hardware registers tothmomplete set of
integrity measurements. Because we use software measurearal store the
values in software registers in protected storage, our huashesupport virtually
infinite number of such measurements.

Dynamic measurements and adaptabili@®n-going monitoring and reporting al-
low components to reflect their latest state in a distribatedner. This provides up-to-
date information about the platform components. Moredkerdynamic measurement
model enables components to re-establish trust withoutrieqg a complete restart un-
der certain conditions. This is particularly advantagdouplatforms with components
that change frequently and operate in various security siode

Limitations

Two challenges are listed in implementing the new model. fliisé challenge is to
prove both vertical and horizontal isolation properties gtatform components. As
illustrated in Figurd 513, horizontal isolation guarastéieat components that do not
share the same execution environment (hence do not havecastgnrelationship —
such ag” and D) do not have any impact on each other in terms of integrityil&rly,
vertical isolation guarantees that a compromise on a cloifdponent’s integrity does
not compromise its parent’s integrity. As an example, sti@alch VM residing on a
secure hypervisor be a platform component, then a compeahM# should not have
an impact on other VMs’ integrity (horizontal isolation)chan the secure hypervisor's
integrity (vertical isolation). Our management model ithogonal to both horizontal
and vertical isolation and relies on the underlying techgylto provide such guaran-
tees.

The second challenge is to prove the non-critical naturewdnsible changes (i.e.,
second type) on component structure and configuration tleat aomponents to al-
ternate between a trusted and a less trusted state. Therapalhere is to prove that
the change is reversible and does not have any future effied¢tee componentin ques-
tion or any side effects on other platform components. Begauoving both claims are
hard problems, a conservative approach is taken to deenmofitbst changes as critical
(first type). In fact, only well-defined configuration reldtehanges will be regarded as
reversible (second type).

5.2 Security Services Management Framework

In this section, the security services management franme(@8MF) is presented that
realises the abstract trust management model describld prévious section for vir-
tualised platforms. The framework mainly manages the talations between security
services that provide higher-level functionality to susp® users.
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Figure 5.5: Components that comprise the security servigasagement framework
(SSMF) and the corresponding interface (SSMI).

A crucial service offered by the framework is the managemésecurity creden-
tials that are used by these services to perform secuiitigadroperations requested
by service users. A popular practice is to couple each ctedevith an access policy
and allow its usage if and only if certain security propertiee met. For example, the
framework employs integrity policies to provide guarasteeusers that these creden-
tials will be accessed iff the integrity is intact. This wauspecting users can verify
the correct operation of the security services plus thé@iatbefore exchanging data
with them. The SSM framework orchestrates this and similgsttrelations between
the security services and users, and provides the necdsssted interfaces.

5.2.1 Framework Architecture

The SSM framework is comprised of basic management modueptovide the core
functionality and add-on enhancements that provide fut@pabilities such as creden-
tial management. Figute.5 illustrates this arrangemdatnly, the core framework
is responsible for managing the hierarchical integrity elas well as orchestrating
the dynamic integrity measurements. Two crucial enhano&etroduced on top of
the core SSM provide service interfaces for credential gameent through a creden-
tial manager, and third-party interfaces for remote serlével attestation through an
attestation manager. The resulting framework (with cord @mhanced functionality
combined) offers the security services management iefaSMI) that is both used
by the services (for life-cycle management, credentialagement, and integrity re-
porting) and users (for remote attestation). In partigulfe combined SSM interface
allows services to

e Create dynamic child service components within the pasex@&cution environ-
ment and manage the life-cycle of these children services.

e Store their security credentials in protected storage.

e Access their security credentials according to the comedimg access control
policies (i.e., integrity policy).

e Report ongoing static and dynamic (i.e., first and second)tghanges to their
structure and configuration, respectively.

e Report their integrity status on service-level.
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Effectively, the SSM framework is a stripped down implenagioin of a virtual
TPM [10] with two enhanced functionalities: service hietar and dynamic measure-
ments. Therefore, SSMF employs existing definitions andaeeh around software
TPMs and reuses existing interfaces especially for créamlenfinagement. These in-
terfaces are enhanced to support a hierarchy of multi-staét and dynamic measure-
ments.

5.2.2 Core Security Service Management

The core management framework serves as the static comipomeuced in the
management model in Sectionls.1. Itis the central compan&8MF that keeps track
of the service hierarchy and enables dynamic measurembntsarticular, the core
SSM (1) manages the DTE dependency tree, (2) provides stdoagneasurements
and secure storage for credentials, and (3) provides seavid reporting interfaces for
dynamic service creation and integrity reporting, respelt

DTE Dependency Tree

Each dynamic service component is coupled with a DynamistédiEntity (DTE)
whose structure is depicted in Figlirel5.1. To keep trackefiynamic service hierar-
chy, the core SSM manages a data structure whose nodes gresehof DTES. The
resulting data structure is a tree similar to the one ilatstl in Figuré 5]3. Each tree
node is a DTE representing the corresponding service coemiokach DTE denotes
the location of the service component in the hierarchy. Harrteach DTE provides
the necessary interface to its service that will allow thieefeto interact with the SSMI
through a trusted channel.

DTE ldentification

Every SSMI command requires identifying the requestingiserto determine whether
the service is a managed service, and if so, to locate it irs¢neice hierarchy. The
actual nature of identity management and authenticatiogrees employed by the core
SSM is implementation dependent. Two identity managemeilats are investigated
that use DTEs in different ways to guarantee service identit the simple model,
each DTE and the attached dynamic component is identifiedviigek / strong and a
temporary / persistent identity, depending on the platf@quirements. In this setting,
each SSMI command requires the requesting service to sgalsifidentify itself using
the identity provided to it during registration. Alternadly, DTE interfaces can be used
as a means of identifying the services. In this case, a sivino longer required to
explicitly specify its identity if it is capable of using IBTE interface to interact with
the SSMI. Both alternatives are investigated in more detdil5].

Protected Storage

The core SSM keeps track of dynamic and static integrity omessents for each ser-
vice component. Further, security credentials used by sanfice are managed and
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stored by the core SSM. Both pieces of information are seaslata and the core SSM
employs a protected storage service to store each pieceafataeach component.
Specifics of this storage is implementation dependent. Asxample, a secure storage
service can employ a trusted hardware module (TPM) to pretetsitive information
stored on ordinary storage.

Registration and Reporting Interfaces

Access to the DTE tree and measurements is regulated thregggtration and re-
porting interfaces. Theegistration interfacas used by dynamic services to register
child services with the system. A service may choose notdister with the SSMF.
However, services are not allowed to access their credentidess they go through a
registration process during which the corresponding DTiEseeated and the service
is added to the service hierarchy.

Registration can be requested via a singlgster() request. Upon receiving the
request, the component manager

1. authenticates the requesting service (i.e., the pausitiy the underlying au-
thentication model,

2. creates the DTE and optional identities for the child iserv
3. updates the DTE tree with input from (1) and (2), and

4. initialises both the static and dynamic registers for ¢héd service with the
initial measurements.

Upon successful completion of the above steps, the compomemager returns a
full handle to the DTE to the child service and a restricted tmthe parent (i.e., for
future dynamic measurements).

Thereporting interfacas composed of a singleport() request that can be used to
report both static and dynamic changes. Upon receiving aueljuest from a service,
the reporting manager

1. authenticates the requesting service using the undgrathentication model,
2. locates the requester service in the service hieraraoly, a
3. updates the static or dynamic register for the servicerdaagly.

Further details on both interfaces can be foundin [15].

5.2.3 Credential Management

Credential management is central to the operation of the 8&iMework. Services
employ security credentials in a variety of ways. For examnpl credential can be
an asymmetric cryptographic key that is used by a servicégio data. In this set-
ting, ability to sign data can give service users sufficiaobpthat the service can be
trusted. Access policies can be used to define the conditiothsr which the services
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e (19

Figure 5.6: An example service hierarchy. Grey nodes des@tgce components,
black nodes denote TCB components including the static oot A (i.e., the
SSMF), and boxes denote the static and dynamic registers foorach service com-
ponent. An empty rounded box indicates that the servicetsutative integrity is intact
whereas a filled rounded box indicates that it is not.

are allowed to access these credentials. If the underlyatéppm that enforces these
policies can be trusted, users can potentially deduce ltleegervice can access to the
credential iff the policy conditions are satisfied.

The SSM framework provides verifiable means to securelgstoanage, and pro-
vide access to these security credentials. Further, itigggs\guarantees that the man-
agement and usage of these credentials will be performeribiet entities that can
be verified by third-party users.

Integrity policies play a crucial role in credential managmt. In particular, the
SSM framework uses cumulative integrity policies to defesmwhether a service can
have access to its security credenti@umulative integrityof a service component
is defined as the accumulation of the integrity of the servitseancestors, and the
underlying platform (i.e., the TCB). A service can accesis@ecurity credential iff
its cumulative integrity is intact. As an example, in Fig[€, the dynamic service
component’ can have access to its credential iff the integrityo{”, B, and the TCB
are intact. Note that, for example, the integrity/othas no effect on the cumulative
integrity of F'.

An important security property is that at no time the framedweveals the security
credentials to the requesting services. That is, securdigentials are always kept on
the trusted framework side. Access to these credentiatdysatiowed through the cor-
responding credential usage interface. This is becausedhdce obtains possession
of its security credential, the framework can no longer kevthe credential should
the dynamic service component reports a static or a dynanainge. Hence, in this
setting, services do not possess their credentials butiaea gccess to them through
trusted channels.
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Management and Usage Interfaces

Credential management involves two phases: provisionidgusage. The former is a
one time phase during which the credential is registerel thi¢ platform and sealed
to the protected storage along with its access policy. Toojdhe requester uses the
credentiaprovisioning interfaceo invoke aprovision() or agenerate() request. Upon
receiving the request, the credential manager

1. authenticates the requesting service using the undgratthentication model,

2. locates the service for which the credential will be psaied or generated in
the service hierarchy,

3. generates a credential for the service with the givenqutags if generate() is
issued, and

4. employs the underlying secure storage interface to stgeeure storage.

Upon successful completion of the above steps, the credenginager returns a
ticket that can be used later by the requester service to requestsate the sealed
credential.

In the usage phase, the service component uses the crédsate interfacand
the ticket to access its security credential. Initiallystimterface is internally used to
unseal the service credential iff the platform integritynigact. Upon receiving such a
request, the credential manager uses the ticket to unseatédential from protected
storage.

Once the credential is brought into the framework, servaa@suse the same in-
terface to access their secrets. Such access should nat emyeinformation on the
nature of the credential to the requester service compoRearther, credentials are not
allowed to leave the SSMF. Therefore, the external usagefame is a simple crypto-
graphic interface that is merely composed ofeanrypt() and adecrypt() operation.
Upon receiving either request, the credential manager

1. authenticates the requesting service using the undgrathentication model,
2. locates the service in the service hierarchy,

3. retrieves the credential using the ticket if the credgrsi stored on the secure
storage (one-time operation),

4. evaluates the cumulative integrity of the service,
5. performs thencrypt() or decrypt() operation if (4) is successful, and
6. returns the resulting blob to the requester.

The details of the above interface can be foundiid [15] whesefaware TPM-
based interface that is enhanced to support service higrarcd cumulative integrity
is described.
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5.2.4 Remote Attestation

Lastly, the framework provides an optional service-levttstation scheme to third-
party users that would like verify the integrity of the see/ibefore exchanging data
with it. The attestation protocol is the same as the one sty the TCG in[[7]
with one difference. In the current setting, instead of ingra full-scale platform
attestation, the framework allows users to run a much fingingd service integrity
quote. This way, a user can requestt¢henulative integrityf any service in Figule 5.6
from B to I.

Attestation Interface

We implement two types of attestation protocols that diffiethe choice of the entity
that verifies the integrity results (i.e., the user or thefptan). Both protocols are
initiated using the singlettest() request with the proper option.

Attestation Protocol I. Supposing that a third-party user that attests a service com
ponent, say’, also acts as the verifier of the integrity (i.e., has acaefiset expected
values for all components on the platform including the TAB)his setting,

1. The verifier uses the attestation interface to attestritegyiity of serviceC' and
request the signed copies of all related current integrggsnrements.

2. The framework locate§' in the hierarchy using the identity of itSpr 5.

3. The framework returns the integrity 6f, B, and the TCB (i.e., the register val-
ues) plus a signaturgign 4 (Sign 4 (Ic, I), Signpy (ITcp)) that is composed
of signed copies of the integrity @f, B, and the TCB signed by the static com-
ponentA and a trusted module TM, respectively.

4. Upon receiving the measurements and verifying the sigast the user com-
pares the current register values for all three with the etqukones and decides
whether to trus€' or not. (In this particular exampl€;’s cumulative integrity is
intact).

Attestation Protocol Il. In this setting, the verifier is the platform and the user ei-
ther receives arusted answer with a proof or a singleot_trusted answer. The first
two steps of the protocol are the same as above. In the thap] ststead of return-
ing the integrity measurements, the framework comparesuhent and the expected
configuration. For example, for servi€g it returns atrusted answer after compar-
ing the static and dynamic measurements of @thnd B to the expected values.
Along with the answer, the framework returns the integrityh@ TCB and the signa-
tureSignr,, (Irc ) as the proof. This is because, the user still needs to véwdfythe
answer is generated by a trusted platform. However, if, Xangple,G is attested and
anot_trusted answer is returned, the user requires no further proof.

The details of the above interface can be foundin [15].

Open_TC Deliverable 05.1



102 OpenTC D05.1 — Basic Security Services

5.3 Conclusions and Chapter Summary

This chapter introduced a hypervisor-agnostic integrignagement solution that em-
ploys Trusted Computing technology in ways to provide a nfleséble and dynamic
trust management solution for virtualised platforms.

The Model.First, specifics of an abstract integrity management mdulis ag-
nostic to the underlying platform and the component stmecivere detailed. Using the
execution environment argument combined with verticaltaorizontal isolation guar-
antees, platform components were modelled hierarchicedlylting in a dependency
tree. Further, a dynamic integrity measurement model thatiwes that changes to
component configuration may be less critical than changesrtgonent structure was
devised. This observation yielded a more flexible integsitheme as compared to
static TCG measurement models that deem every change\zey sitde.

The FrameworkSecond, the model was realised concretely with a securitjces
management framework (SSMF) that employs the abstractintm¢®) hierarchically
represent security services on virtualised platformskép track of their static and
dynamic measurements, (3) manage their security credientidle regulating the ac-
cess to them, and (4) allow third-parties to attest the@grity.

In theory, the framework is sufficiently generic to be uélison platforms with
any hypervisor type, including Xen and L4. Although, the m@zh mainly targets
architectures that are comprised of various disaggregat@gonents that run in small
compartmen& In Xen-speak, each compartment is a virtual domain. In pdag,
each compartment is a task. Currently, L4 provides bettsagdjregation of services
that run on the hypervisor, hence the framework can be baitsied on an L4 hyper-
visor. Recent Xen research aims at a similar approach tselemaller compartments
with disaggregated services running on them, which will enttle SSMF approach
more desirable for integrity management on Xen.

Future Work.In the short-term, a Xen-based prototype implementatigdhefatter
will be presented that implements a subset of the SSM framewb challenge here
is to determine the minimal set of functionality these medubrovide that will be
essential to our framework (to support the minimal TCB otiyeg. This prototype will
be used to manage components of varying granularity. As ampbe, the prototype
will manage security services that reside in a single VM ornrtualised platform.
Alternatively, it will be used to manage the trust relatiama hierarchy of VMs.

In the mid-term, the security model will be fully formaliseshd the framework
interfaces will be documented in detail. In the long-terhe focus will be on the
integration of this framework with other layers of the tediplatform (e.g., the basic
management interface, or BMI).

2|f the model is employed at the application granularity,stneompartments can be execution environ-
ments that enable sufficient separation of applicatiorts,(@ava virtual machines)
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Chapter 6

Public Key Infrastructure

P. Lipp, M. Pirker (IAIK), G. Ramunno, D. Vernizzi (POL)

6.1 Introduction

This chapter outlines a basic design for integration of fBdi€omputing (TC) features
into a Public-Key Infrastructure (PKI). The adoption of $ted Computing technolo-
gies demands an enhancement of existing infrastructuregehsas an adaption of
procedures within PKIs. One can identify multiple areas netreew development for
Trusted Computing is needed:

e First, the design of a trusted platform agent (TPA). Its taslo support initial-
ising, activating and deactivating the TPM security chaider user control. It
supports the most important mechanisms and services fati@ne(or request
creation) of keys and credentials related to Trusted Coimgutt is capable of
communicating with network PKI services.

e Further, a so called “Privacy CA’, an entity offering PKI spBons (certificate
issuance, validation, ...) just like traditional certifiom authority services, but
specialising in Trusted Computing specific tasks. Thisudek the handling of
the TPM Attestation Identity Key credential creation cyated managing asso-
ciated request/response messages, keys and credent@ds.offering services
for determination of current status and possible re-evi@noaf credentials.

e As a communication protocol between local services (TPA)ragtwork service
(privacy CA) the XML Key Management Protoc6l[107] is empaly It offers
functionality to transport traditional PKI operations a@dough flexibility for
new Trusted Computing specific operations.

e Advanced services are out of scope of this document, onlic Is@svices are
covered here. The implementation experience of the basiices will lead
to a refinement of the services design. Additional services @g., the inte-
gration of Subject Key Attestation Evidence (SKAE) extenssupport, Direct
Anonymous Attestation (DAA) as a replacement concept fepttivacy CA, and
automated policy checking plus validation support. Furtbiece the XKMS im-
plementation reaches a stable state, an alternative coratiom protocol will
be researched.

103
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6.2 Basic Trusted Computing PKI

A public key infrastructure is a framework enabling autheation, confidentiality and
integrity services using public key cryptography. It halpsusers of a (public) network
to, e.g., authenticate the identity of communication pantrand thus establish levels
of trust and/or secure communication channels.

The Trusted Computing concept introduces new types of ggaredentials and
procedures. Some fit established structures, some requat adoptions and some
represent new concepts.

Associated with the credentials is a life cycle of introdgcihem to the infrastruc-
ture, exchange of information between nodes in the netwogkyalidation/evaluation
of their information value and finally withdrawal from use.

The new components of a basic Trusting Computing PKI areudied in the fol-
lowing sections.

6.2.1 EK Certificate

Every Trusted Platform Module (TPM) is (should be) acconigdiby a corresponding
TPM Endorsement certificate. This certificate contains titdip part of the Endorse-
ment Key (EK) pair, which can be viewed as a TPM identity. Thegte part, called
the private Endorsement Key, is stored permanently in§iddPM and can not be re-
trieved once inserted. The certificate is (typically) sidjbg the TPM manufacturer and
represents an assertion that the specific TPM conforms héthetquired specifications
and the private Endorsement Key is kept safe by a TPM.

Extraction

As per [94] specification a distinct location of non-volafRAM on the TPM chip is re-
served for the TPM EK certificate. Further, the TPM commandstract non-volatile
memory content from the TPM are standardised. Thus, an ab¥imction of the TPA
is to extract the EK certificate. Unfortunately, to this ddte only manufacturer to
include a TPM EK certificate on chip in every shipped TPM isriatin.

Creation

If a TPM is shipped without a manufacturer issued certificatéate” construction of
an EK certificate may be applicable in selected scenarigs, & limited deployment
in a department wide setup. Tools for creation of an EK cedié, utilising the real
public Endorsement Key of a TPM, are already available frquei®r C partner IAIK.
Integration of this functionality into a TPA is aimed for.

Who signs the TPM EK certificate and thus vouches for its iritgds of crucial
importance. In a limited deployment scenario a centrakes#iy can issue homegrown
EK certificates as well as offer services for their validatio
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In the case of TPM vendor Infineon the necessary certificatedbr validation is
freely available for download from the manufacturers hoatgp In the case of a self
made certificate, the signing authority certificate must beemavailable and accessible
to a validation entity later.

Note that a proof of possession of an EK private key can onlgidoee with a full
AIK cycle (see section 6.2.3). This is an intentional limfitlee TPM design.

Note also that a TPM EK certificate is the only proof that theesponding public
Endorsement Key actually belongs to a specific type of TPMy @reertificate signed
by a manufacturer (or equivalentimportant entity) is pribeft the referenced TPM is a
hardware TPM. Self created certificates may contain an EKipkéy which actually
belongs to a TPM software emulator (e futtp://tpm-emulator.berlios.de/)

Validation

Validation of an TPM EK certificate may be accomplished in tiplg steps:

e Alocal user can read the public EK key from the local TPM anahpare it to the
one contained in the sample TPM EK certificate. Upon match,aam assume
the certificate belongs to the TPM in the local machine.

e If the issuer certificate chain is locally available and thesited Platform Agent
contains the necessary cryptographic support, a cryptbgraalidation of the
signatures of the certificate chain is possible.

e Athin TPA with minimal footprint may offload certificate véidation to a remote
service with more resources. In this design the usage of Xk\Bggested (see
sectior 6.414).

Note that the “how” is not as important as the security imgtians of remote
verification. The EK uniquely identifies the TPM, thus, evepgration showing
the EK to third parties must ensure that the third party canrbsted. Also,
security of the communication link with the remote servies to be considered.

e Full validation also requires a check with a PKI of the mawtieer of the spe-
cific TPM model (or series), if there are any known conditi@ffecting the
security of the TPM. This infrastructure is out of scope ftwaaic infrastructure.

Revocation checking is not part of the Basic PKI.

6.2.2 Platform Certificate

The platform manufacturer vouches for the parts of a platf@ith a Platform Endorse-
ment (PE) Credential. It represents an assertion that #afgpplatform incorporates
a properly certified TPM and the necessary infrastructucering to TCG specifi-
cations. There is a requirement for a “root of trust” (CRTM)de a starting point for
building a “chain of trust” and related security measuretsane implemented to check
the integrity of the platform.
So far no PE certificate is known to have been regularly shippiéh a platform.

However, atool to create PE certificates is available frorarjC partner IAIK. As the
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PE certificate is primarily part of the AIK cycle (see sec{b@.3) to be implemented
for the basic PKI, the creation of a fake PE certificate withntom” values is aimed
for as proof of concept.

6.2.3 Attestation ldentity

As the Endorsement Key uniquely identifies a TPM and henceeifsppiece of sur-
rounding hardware, the privacy of the user(s) is at risk & BK is used directly for
transactions. As a consequence, the TCG introduced Altastdentity Keys (AIKs)
and associated AlK certificates (standard X509 Public Keyif@zmtes that include ex-
tensions defined by TCG), which cannot be backtracked diireca specific platform.
The only entity that possibly knows more details is a trustedl party that issues the
AIK certificates, the so called Privacy CA.

AIK certificate creation cycle

In order to create an AIK certificate the following steps alesh:

e The Trusted Platform Agent (TPA, see secfion 6.3) running emachine con-
taining a TPM, calls th€ollateldentityRequest function of the Trusted Software
Stack (TSS) layer.

e This creates an Attestation Identity RSA key pair and a feeation request in-
tended for the Privacy CA.

e The request is transported to the Privacy CA, using propérmpkrational pro-
tocols.

e The Privacy CA validates the request content (and includ€cuid PE certifi-
cates). On success it issues an AlK certificate, encrypttdtie public EK key
of the TPM and thus only readable by the indented recipient.

e The Privacy CA result is communicated back to the TPA.

e The TPA calls theActivateldentity function of the Trusted Software Stack, thus
unwrapping the AIK certificate.

e The TPA stores the AIK certificate locally.

Summarising, an activated AIK identity comprises a) an tiiitg” TPM keypair and
b) an associated certificate proving that the keypair bedom@ “valid” TPM, vouched
for by a Privacy CA entity.

Privacy CA

The role of the Privacy CA (PCA) is of being a trusted thirdtpahat works as an
anonymiser. For privacy reasons the unique TPM EndorseK@nshould only be
shown on a “need to know basis”. In the concept of the AIK cyslee previous
section) the Privacy CA issues AIK certificates for a “dedVAIK key. This ensures
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better anonymity of the EK key holder, but still containsgfrof the underlying Trusted
Computing supported hardware.

Operation of a Privacy CA is guided by a published policy. Hbsld clearly de-
scribe how the relationship EK certificate versus issued Aéktificates is managed.
The implementation options for a Privacy CA cover a spectinom “remember every-
thing” to “know enough for the specific operation, forgetgikring after completion
of operation”. Thus, the usage of a specific PCA may be usagesio dependent.

Implementation of a Privacy CA covers functionality for

e A network front end for receiving/sending requests/resgsnThe design in this
document uses the XML Key Management Standard (XKMS).

e A unitimplementing the AIK cycle.

e Localstorage. The PCA handles multiple types of certifaltereceives Trusted
Computing specific certificates (EK, etc.), it issues AlKtifmates and needs
foreign certificates for validation (e.g., EK manufacturertificate chain). The
storage must accommodate multiple types.

e A validation unit, capable of determining the status ofifiedtes.

In the easiest scenario the validation concerns self isseificates, thus trans-
forming a validation operation to a simple signature checkookup in local
storage. Further, the validation unit should be preloadi#u manufacturer cer-
tificate chains (e.g., those already available from Infingidpossible, too.

The more complex case of actively contacting externaliestibr missing pieces
required for validation is out of scope for a basic PKI.

6.3 Trusted Platform Agent

A PKI requires both server side components, such as cetéfaathorities, as well as
client side applications that provide access to PKI sesvide the context of Trusted
Computing such a client application is referred to asTttusted Platform AgerPA).
For wide user acceptance it is crucial that the TPA makesrakt€éd Computing re-
lated functionality available in a consistent and usesrfdly way. Ideally, the TPA
is designed and implemented in a modular way that providesaay integration of
additional advanced services later on. Furthermore, imgesf user friendliness the
TPA is expected to provide an abstraction of the underlyygiesn concepts that is
understandable and manageable for an average user: fauiipiesse a simple API is
provided as well as console commands running on top of it. P& largely relies
on the services provided by the TSS stack. The overall @dhite design of the TPA
and the individual system layers is presented in FigureBatk grey boxes represent
components that will be possibly developed for the Advarkigt

The initial basic core functionalities provided by TPA fail the following cate-
gories:

e TPM and platform management. This category includes ojp@itsuch as
TakeOwnership, enabling and disabling the TPM and reading TPM status in-
formation.
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Figure 6.1: Trusted Platform Agent (TPA) and underlyingelesy

e TC credentials management. This category includes opesatieeded to man-
age the life cycle of TC credentials (EK, PE, and AIK certifecs) by interacting
with TC-enabled authorities. The TPA and the latter comrmaiiei through net-
work protocols, XKMS will be used for the first prototype (t8ed extensions
will be developed as needed)

— EK certificate: extraction, creation, validation
— Platform certificate: creation, validation
— AIK certificate: creation, validation, reissue, revocatio
e Light support for standard X.509 credentials. A simplifieghgort to request a
standard X.509 certificate is provided: it is possible to aggncertificate with
standard profiles using the TC-enabled PKI. This suppors$ s include the

interaction with standard PKI authorities; however thesinperability of the
issued certificates with existing standard PKIs is guaeghte

e Local storage for TC-related and standard keys and cetéfica

e Integrity measurement and reporting. This category inesutie following TPM
operations: extending PCRs, reading PCRs, activatingitoen(i.e., AIK cer-
tificates) and TPM quote operation.

e API to access all functionalities provided by TPA.

In addition, the TPA can also act as an integration point fuurrmber of other services in
the context of Trusted Computing. The main benefit of thigaagph for the user is that
all Trusted Computing related tasks can be done from a spwjtg, the TPA. Adding
additional services is facilitated by the modular naturehef TPA. These additional
services might include (but are not limited to):

e Management of the DAA communications among the differefgs@Trusted
Platform, Issuer and Verifier)

— Standard formats for the exchanged DAA data and messagassiitg
DAA as a standalone protocol or integrated within other @cots

— A network protocol for using the DAA as a standalone appiacaprotocol
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Support for another TC-PKI operational protocol likertificate Management
Messages over CMEMC) [41] in addition to XKMS.

Support for the Subject Key Attestation Evidence (SKAE)esion for X.509
credentials.

A front end for key backup and key migration.

A user and policy management framework.

6.4 XKMS mapping

A public key infrastructure integrates multiple actors iewts, certification authorities
and specialised services. Over the years multiple prasogete developed in the area
of PKI and credential management. For Trusted Computing iiteicessary to carry
traditional PKI services as well as TC specific attributegrges and data blobs.

XML Key Management Services (XKMS) [1D7]) is chosen for atfivasic Trusted
Computing enabled PKI setup, which is in line with the coasadions of the TCG in
[©5] (chap. 6.5.2/p.43) and their recommendation:

“XKMS provides a way to express certificate managementimmat XML, while
providing a wrapper over legacy CA services designed fo0X &ertificates. As such,
XKMS provides the most attractive solution for credentianagement for existing
CAs in the PKI industry.”

XKMS supports four standard registration service functioRegister, Recover,
Reissue and Revoke. These offer a wide range of paramettthamcover the whole
life cycle support of credentials.

Further, two key information service functions, Locate &atidate, provide search
and status query functionality about credentials deplaye¢lde PKI.

Considering the PKI components outlined in seckion 6.2[aBdif the following
sections a mapping of PKI operations to XKMS specific requestd responses is
established and interaction with Trusted Computing uségmidsed.

6.4.1 Message Structure

XKMS is an XML based protocol for common PKI operations. Taeised edition 2.0
of XKMS [L07] reached recommendation status in June 200%rder to reduce du-
plicate descriptions in the following sections, the commXd#fl structures of a typical
XKMS request and response message are discussed.

Request

The following block outlines the structure of a typical XKM&quest:

<?xml version="1.0" encoding=UTF-8"?>

<...Request xmIlns="http: //www.w3.0rg/2002/03/xkms#”
xmlns:dsZhttp: //www.w3.0rg/2000/09/xmldsig#”
xmlns:xencZhttp: //www.w3.0rg/2001/04/xmlenc#”
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d="..."
Service=http://opentc.iaik.tugraz.at/xkms/..>
... payload...

<Authentication>

</ Authentication>
</...Request-

The XML tag name of an XKMS request message always en&equest . Exam-
ple tag names areocat eRequest, Val i dat eRequest , etc. The XKMS XML
schema includes the schemata of the XML digital signatumadstrd [[108] as well
as the XML encryption standard [109]. A good solution is teigis the default XML
namespace to XKMS and assign easy recognisable prefixégefordlusions, as shown
above.

Every XKMS message must carry a unidueidentifier generated by the originator
of the message. Typically this is a random string of at minim®2 characters (to
provide sufficient entropy against attacks).

The Ser vi ce attribute contains the URI of the network service endpokdr a
basic PKI infrastructure the HTTP protocol is sufficient @smsport medium. Thus, a
XKMS request is mapped to a HTTP POST operation:

POST /xkms /... HTTP/1.0
Content-Type: text/xml
Host: opentc.iaik.tugraz.at
Connection: Close
Cache-Control: no-cache
Content-Length:

<?xml version="1.0" encoding=UTF-8"?>
<...Request ..... >

The path componentxkns/ . . . " is used to distinguish categories of

requests. An obvious mapping would be, e.g., '/ ai k” for all AIK specific
requests and.”. . / ek” for EK related operations. Implementation experiencexis e
pected to define useful groupings.

An optional Aut hent i cati on component is employed for operations which
are restricted to specific clients or need proof of knowledpa shared secret. The
XKMS standard contains a description of an algorithm to \ae@ cryptographic
key from a secret string (e.g., password). One can then usekély to generate
a XML digital signature inside théut hent i cati on message component which
references th&eyBi ndi ng type payload of the request. If the validation of the
Aut henti cati on element fails at server side, the response message contains
“Resul t Maj or =Sender "with “Resul t M nor =NoAut henti cati on”.

Response

The following block outlines the structure of a typical XKM&sponse:

<?xml version="1.0" encoding=UTF-8"?>
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<...Result xmIns=http: //www.w3.0rg/2002/03/xkms#”
xmlns:ds=http: //www.w3.0rg/2000/09/xmldsig#”

xmlns:xenc=http: //www.w3.0rg/2001/04/xmlenc#”
ld="..."
Requestldz...”
ResultMajor=http: //www.w3.0rg/2002/03/xkms#Success”
ResultMinorZhttp: //www.w3.0rg/2002/03/xkms#...”"
Service=http://opentc.iaik.tugraz.at/xkms/..>
<Signature xmlns=http: //www.w3.0rg/2000/09/xmldsig#
... global message signature of XKMS responder ...

</ Signature>
... payload...

</...Result

The XML tag name of an XKMS response message always erfi@ssnl t . Example
tag names areocat eResul t, Val i dat eResul t, etc. Note that there also exists
a basicResul t response message. This one is emitted by the server whemhetca
properly parse an invalid request and thus cannot detertiméngore specific type of a
request.

In comparison to the XKMS request message the result messaggins additional
components:

e Request | dis a copy of thd d of the corresponding request message. It en-
ables a client with multiple XKMS messages in transit to rha&guest-response
pairs.

e Resul t Maj or specifies the overall outcome of the request. In case of psace
ing of the request without failure 8uccess result is expected. In the case of
an errorResul t Maj or contains an indication who is assumed to be the cause
of the errorSender orRecei ver.

e An optionalResul t M nor specifies additional details of the result status of a
request, if the value ilResul t Maj or can not alone represent all interesting
information.

A response by an XKMS service is expected to be always sighkis XML digital
signature encloses the whole XKMS message. In order forlidvet ¢o verify the sig-
nature, the public key of the XKMS service must be known orctieat side. Typically
the public key is shipped to the client in form of a X509 typetifieate.

The result received from an XKMS request submitted using FIPDST typically
looks like:

HTTP/1.1 200 OK

Date: .....

Content-Type: text/xml; charset=UTF8
Content-Length:

Connection: close

<?xml version="1.0" encoding=UTF-8"?>
<...Result .....
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6.4.2 RegisterRequest

A XKMS RegisterRequest is used to build a binding of inforimaf typically to a
public key(pair). The registration request message cositaprototype of the requested
binding.

In the context of Trusted Computing a RegisterRequest mepipe the following
functions:

Creation of an EK certificate

The TCG infrastructure concept requires the public endoese key of a TPM accom-
panied by a certificate. To integrate TPMs (or TPM emulatai)out a certificate, a
function to create one from a public key is desired.

Structure of a request, including a RSA public key:

<RegisterRequest ...>
<PrototypeKeyBinding I1d="..... ">
<Keylnfo ...>
<KeyValue>
<RSAKeyValue>
<Modulus>...</Modulus>
<Exponent>...</Exponent>
</ RSAKeyValue>
</KeyValue>
</ Keylnfo>
</ PrototypeKeyBinding>
<Authentication>
... Signature referencing PrototypeKeyBinding...
</ Authentication>
</RegisterRequest

Creation of an AIK identity

The exchange between a client system TPM/TSS and a Privadp Create an AIK
certificate is almost fully standardised in the TCG spedifices. Basically, it com-
prises a transfer of an encrypted binary blob (namely aryafraytes) to the Privacy
CA, resulting in 2 binary blobs as an answer. Unfortunatedyfeatures of the XKMS
protocol do not allow for an obvious mapping. To preventearbdification of XKMS
we decide to transfer the blob information in this case in@GhaqueC i ent Dat a
tag. As the name suggests the content of this tag should lipiepa the server, how-
ever the gain of experience of getting a running prototygeefahas priority. In a later
implementation of an advanced PKI the use of, e.g., the XKM&3$ageExtension
feature for a cleaner solution may be considered.

Structure of the request:

<RegisterRequest ...>
<PrototypeKeyBinding ld="..... ">
<KeylInfo ...>

Open_TC Deliverable 05.1



CHAPTER 6. PUBLIC KEY INFRASTRUCTURE 113

<KeyValue>
<RSAKeyValue>
<Modulus>...</Modulus>
<Exponent>...</Exponent-
</RSAKeyValue>
</ KeyValue>
</Keylnfo>
</ PrototypeKeyBinding>
<Authentication>
... Signature referencing PrototypeKeyBinding...
</ Authentication>
</ RegisterRequest

The bl ob element containing the binary blob as returned by the
CollateldentityRequest function of the TSS.
Structure of the response:

<RegisterResult ...>
<Signature>...</Signature>
<KeyBinding>
<KeylInfo ...>
<X509Data>
<X509Certificate>...</ X509Certificate>
</ X509Data>
</ Keylnfo>
<Status StatusValuezhttp: //www.w3.0rg/2002/03/xkms#Valid*
</ KeyBinding>
</ RegisterResult-

With bl obl containing the synCaAttestation and blob2 the
asyntCaCont ent s answer of the Privacy CA, to be passed to ftweivateldentity
function of the client TSS.

For a discussion of othédut hent i cat i on possibilities, see also sectibn 614.5.

6.4.3 LocateRequest

A XKMS LocateRequest provides a discovery function. It hess the passed query
keybinding and matches request information with local an@/mote data. The answer
of a Locate service makes no assertions to any validatiterieri However, a result of
a Locate service may be forwarded to a validation serviceif possible, additional
trust verification is done locally.

The following services are useful in a Trusted Computingexin

Query for an AIK certificate

AIK certificates do not contain a subject distinguished naftne certificate owner,
but only al abel , chosen freely at AIK certificate creation time by the cliasér. To
retrieve a specific AIK certificate a locate request for a gjpdabel name is desired.
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An obvious mapping to XKMS would be to use th&09Subj ect Nane in the
Keyl nf o portion, however, as some XKMS libraries may check this fafittly for
X509 name rules compatibility (and the AIK label specifioatis less restrictive) this
is avoided and thEey Nane field used instead.

Thus, a query for a specific AIK certificate looks like:

<LocateRequest ...>
<RespondWith>http: //www.w3.0rg/2002/03/xkms#X509CertRespondWith>

<QueryKeyBinding>

<Keylnfo ...>
<KeyName>labelOfAikCertificate</KeyName>
</ Keylnfo>

</ QueryKeyBinding>
</LocateRequest

An answer is of the form:

<LocateResult
ResultMajor=http: //www.w3.0rg/2002/03/xkms#Success...>
<Signature>...</Signature>
<UnverifiedKeyBinding >
<Keylnfo ...>
<X509Data>
<X509Certificate>...</ X509Certificate>
</ X509Data>
</ Keylnfo>
</ UnverifiedKeyBinding >
</LocateResul®

Note that depending on the policy of the Privacy CA the AlKdaimay not be unique
and in thex509Dat a component multiple certificates may be returned.

6.4.4 ValidateRequest

The operations of an XKMS ValidateRequest are similar to eat®Request (see pre-
vious section), however, the returned status of a bindiegatuated from well defined
validation criteria. A validation service returns onlyanfnation which has been vali-
dated by the service. Its validation policy is expected tpliglicly available.

In order to validate a specific certificate, it is sent to thwise:

<ValidateRequest ...>
<RespondWith>
http: //www.w3.0rg/2002/03/xkms#X509Chain
</ RespondWith>
<QueryKeyBinding>
<Keylnfo ...>
<X509Data>
<X509Certificate>...</ X509Certificate>
</ X509Data>
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</Keylnfo>
</ QueryKeyBinding>
</ValidateRequest-

The expected result upon positive validation isX¥X609Chai n, a certificate chain
build from the supplied certificate to a trusted root.

<ValidateResult
ResultMajor=http: //www.w3.0rg/2002/03/xkms#Success...>
<Signature>...</Signature>
<KeyBinding>
<KeyInfo xmins=http: //www.w3.0rg/2000/09/xmldsig#
<X509Data>
<X509Certificate>...</ X509Certificate>
<X509Certificate>...</ X509Certificate>
<X509Certificate>...</ X509Certificate>
</ X509Data>
</ Keylnfo>
<Status StatusValue=http: //www.w3.0rg/2002/03/xkms#Valid”
<ValidReason>
http: //www.w3.0rg/2002/03/xkms#lssuerTrust
</ValidReason>
<ValidReason>
http: //www.w3.0rg/2002/03/xkms#Signature
</ValidReason>
<ValidReason>
http: //ww.w3.0rg/2002/03/xkms#Validitylnterval
</ValidReason>
</ Status>
</ KeyBinding>
</ValidateResult>

The corresponding result message contains the certifibate as an array of certifi-
cates and &t at us component describing more detailed evaluation results.

In Trusted Computing it is of interest to check the statuskBiad AIK certificates.
For a basic PKI the XKMS validation message exchange is time ar both cases.

Note that a PE certificate is an attribute certificate wheXd&dS is designed for
X509 certificates. An attribute certificate may be includethehow in raw form as
array of bytes, but the feasibility of this concept still hade determined.

Note that it is a policy decision of the service whether thevise only validates
its own issued certificates or also uses external resouegg, validation of an EK
certificate may be done locally at the server if the certificdtain is known, however
proper validation should also include a revocation chedk wimanufacturer PKI, if
available.

6.4.5 RevokeRequest

An XKMS RevokeRequest manifests the desire to invalidatesgipusly issued bind-
ing. The payload consists of what to revoke, a certificate; et
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<?xml version="1.0" encoding=UTF-8"?>
<RevokeRequest ...>
<RevokeKeyBinding ld="...">
<Keylnfo ...>
<X509Data>
<X509Certificate>...</ X509Certificate>
</ X509Data>
</Keylnfo>
<Status
StatusValuezhttp: //www.w3.0rg/2002/03/xkms#Indeterminatg?®
</ RevokeKeyBinding>
<Authentication>
... Signature referencing RevokeKeyBinding...
</ Authentication>
</RevokeRequest

It is expected that this function is always restricted to ec#fir client population, thus
always requires aAut hent i cat i on element.
The response consists of a simleccess (or not):

<?xml version="1.0" encoding2UTF-8"?>

<RevokeResult ...
ResultMajor=http: //www.w3.0rg/2002/03/xkms#Success”
<Signature ...>

</ Signature>
</RevokeResult-

The XKMS options ofAut hent i cati on and/orRevocat i onCode require re-
examination under Trusted Computing. Both represent arrasse to the service that
one is a valid entity, allowed to withdraw/revoke infornaetifrom the PKI.

In the case of use of Revocat i onCode during the RegisterRequest (see sec-
tion[6.4.2) a code is specified and only if a RevokeRequegtli@gthe identical code
again the revocation is accepted.

TheAut hent i cat i on signature can be generated from a shared secret — a pass-
word. Usage of a (TPM) private key itself to generateAam hent i cat i on XKMS
signature (effectively a proof of possession signatureptsaalways feasible in a trusted
computing context. The private endorsement key is not atalfor generic crypto-
graphic operations and the private key corresponding tol&ncArtificate is also not
designed to be used for arbitrary signing operations.

6.4.6 ReissueRequest

XKMS ReissueRequests are similar to RegisterRequestsérion 6.412), the goal
being to issue the same item again. The obvious applicatitm forward an expired
certificate and obtain a fresh one of same content, but wittmavalidity period (the
old one getting revoked).

Issues ofaut hent i cat i on are similar to those described in section 8.4.5.
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Reissuing Trusted Computing related credentials is outops for a basic PKI.
This point may be revisited when more experiences with fagate life expectancy,
usage scenarios and validity periods are available.

6.4.7 RecoverRequest

The XKMS RecoverRequest serves to recover a private keyciased with a previ-
ously binding. This is only possible if the private key was\jously escrowed at the
server or server generated. In the context of a basic Tr@baabuting infrastructure
there is no application for this type of request, as this wanValidate the concept of
TPM bound keys, thus can be ignored.

6.5 Open Issues

Design and implementation of a basic trusted PKI for Openighllghts multiple
issues to be considered. Among them are

e Certificates and issuing authorities require clear andndispolicies. This in-
cludes human readable text as well as associated Objedtfieiesn(OIDs) for
automated processing. Only standardisation of these emsieroperability and
spreading of a Trusted Computing PKI.

e The basic PKI outlined in this document assumes XKMS as pamprotocol
and no specific schema extensions for Trusted Computing eMexveven a ba-
sic scenario suggests that new URI string definitions forlleage, UseKeyWith
etc. would be useful to clearly distinguish TC specific oieress from common
PKI operations.

e The public documents of the TCG currently only discuss sgcaredentials
in X509 certificate format. Some documents however hint atpibssibility of
future XML based credentials. The inclusion of XML credeisidirectly in
XKMS is a tempting outlook, however the resulting schemaesions and ef-
fects on alternative protocols and designs have to be drefinsidered.

e At time of this writing the only TPM manufacturer shipping Ekrtificates with
its TPM chips is Infineon. There are no known public platfoertificates. There
is no known public AIK cycle test. A first basic PKI implemetitan is hopefully
a stimulus for accelerated development, but this hightighat this area is still
under major development. Future design adoptions are tgfereed.

e The software platform designated to implement this firstgfesn is Linux with
its Trusted Software Stack (TSS) called TrouSédrp(//trousers.sf.net). At
the time of writing this document this is the only freely daale fully imple-
mented TSS for the Linux platform. Therefore all experinsearid prototyping
is using the TrouSerS specific implementation of the AIK eydeing heavily
tied to low level C structures, level of compatibility of theouSerS implemen-
tation with other TSS implementations is unknown.
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e We have developed prototype implementations of key TCG BKimonents. We
solved the cryptographic challenges of interacting withRMT To our knowl-
edge we are the first to actually demonstrate a working publicrivacyCA
cycle, using TCG style certificates and a dedicated clientes network setup.
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Chapter 7

Advanced Security Services

7.1 Privacy-enhancing Protocols

M. Schunter, E. Van Herreweghen (IBM), H. Lohr, C. Stil#leR. Sadeghi
(RUB)

The TCG solution for (remote) verification of platform intdg is a mechanism
called (remotegttestation more concretelpinary attestationLoosely speaking, this
mechanism measures all code executed by using a certaiic ragtt some system
components assumed to be trusted.

Unfortunately, this raises substantial privacy concetfigidividuals are forced to
reveal their complete configuration, their machines caiydasidentified. In addition,
if traditional public key schemes are used, each machin®dedraced by its key pair.

In order to overcome the privacy challenges of trusted camguechnology, we
propose several technologies. The first step is priva@ndily certificates that only
prove that a person owns a platform with a TPM without revepiny identifying
information. This “Direct Anonymous Attestation” schensecbvered in WP3 and will
be described in a WP3 deliverable.

Our focus is on preventing identification of users by meartheir platform con-
figuration. In order to resolve this challenge, we propmepertybased attestation as
a privacy-protecting alternative to binary attestation.

This report is based on two earlier research papér[78, 7ddrikeng the general
idea of property-based attestation. The article proposesuarity architecture required
to securely attest properties of a machine. Moreover, tpepsuggests several ideas
on how to prove properties based on different trust assemg@tie.g., using a zero-
knowledge protocol. Such a zero-knowledge protocol riedjia delegation-based ap-
proach to property-based attestation that relies on ptpgenfiguration certificates
has been published recently (se€l[19]).

The idea of property-based attestation is to use TPM teolgydb provide a ver-
ifier with evidence of well-defined security properties ofeanote verified platform
without the ability (and need) to know what exact impleméatahas been used on
that platform. In the following chapters we will describdfelient approaches for the
implementation of property-based attestation.

Property-based attestation improves scalability as wellexibility. It resolves
the privacy, security and discrimination issues since thfigation proxy hides the
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configuration information and it enables openness sincsahee security property can
be provided by many implementations by multiple vendors.

As a consequence, a verifier only learns that a given platéatisfies his security
requirements without learning the detailed configuratids.a consequence, configu-
rations can no longer be used to trace individual machines.

7.1.1 Outline of this Section

This section is structured as follows: The next subsectipteéns the terms and defini-
tions, including the basic system model. Seclion T.1.3lgnieviews the main aspects
of the TCG specification. Sectidn 7.11.4 introduces a comedjmg abstract model of
the TCG functionality and discusses why the offered medmasishould, in our opin-
ion, not be used on more abstract system levels. In SecfibA, Ave introduce the
basic idea of property-based attestation, while Se€fibn discusses several practical
realisations of property-based attestation that difféh&ir assumptions and their trust
models. Sectioh 7.1.111 explains our solution based on keécnels. Sectioh 214 dis-
cusses work that is implicitly or explicitly related to thiport. Finally, Sectionh 7.1.12
briefly reviews the open problems and concludes with a shonhsary.

7.1.2 Terms and Definitions

Power set: Given the setF := {ey,...en} We denote the power set of the dét
with P(E).

Protocols and Algorithms: We denote the execution of a protoddiot ocol (),
i.e., aprotocol run between two partied and B as follows:

(A: outa; B: outp) « Protocol(A:ina; B :inpg;*:)

where the identifier * denotes the common input both partee@laccess tap 4 re-
spectivelyinp represent the individual inputs ef and B, andout 4 andout g denote
the outputs of the protocol td and B after the protocol run. The protocol outputs
may include an indicatoind € {true, false} indicating that the corresponding party
accepts/rejects. We sometimes omit the common input imatigirotocol notation.

Cryptographic Primitives: An encryption scheme is denoted with the tuple
(GenKey(), Enc(), Dec()) for the key generation, encryption and decryption algo-
rithms. The tupld PK x, SK x) denotes the public and private key of a pakty Fur-
ther, a digital signature scheme is denoted with the t(@deKey(), Sign(), Verify())

for the key generation, signing and verification algorithidéith o « Sign g (m)

we denote the signature on a messageusing the signing key\SK x. The re-
turn value of the verification algorithrind « Verifyp; (0,m) is a Boolean value
ind € {true, false}. A cryptographic hash function is denotediysh(). A certificate
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on a quantity@ with respect to a verification kef?K x is a signature generated by
applying the corresponding signing kSKXEl

If we are concerned with local algorithms performed by a leingarty, we use the
same notation but omit the corresponding names of the partie

Basic Model

Machines: A machine M is defined by a deterministic finite state machine
(id, S, 1,0, A) whereid denotes the unique identifief, the set of machine states
with sg € S the initial state] a set of input actiong) a set of output actions, and the
transitionA : S x I — S x O. An empty input or output is denoted ly Further,
we use the terrempty machine indicate a machine with empty sdtsO, andA and
only one state.

Channels: Machines exchange information using communication chiannéVe
write Out «— name(In) to indicate that a machine uses a chanmehe sending the
information In and (optionally) receiving the informatiafut. Channels may pro-
vide different security properties. We call a chanseture if it provides integrity,
confidentiality, and authenticity.

Configuration: The configurationC'y, of a machineM is defined by the tuple
(so0, A). Having this tuple one can analyse the state set as well tsrcaspects of the
I/O behaviour of this machine. We denote an encoding of a gordtionC',4 (e.g., an
integer) withcs, and also call it configuration.

An example ofC), is a software binary including the initial state of all véni@s
and the instruction set. For simplicity, we assume thatedusity relevant inputs (e.g.,
configuration files) are included iy and/orA.

Machine creation and initialisation: The secure channek,, := create() indi-
cates that a parent machine creates an empty child machihehei identifierid .
The secure channélit(Cx) is used by the parent to overwrite the configuration of
the child machine. Further, we writeir := exec(Crq) to indicate that a machine
invokes the sequendel v := create() andinit(C).

Platform: A platform PF represents the system architecture under consideration.
PF is a state transition machine that itself is defined as a tregachineg M), i €
1,7 € J; with the index sefl := {0,...,n} identifying the depth and the index set
Ji :=A{0, ..., m;} identifying machines of the layer

We call the parent machinkt! (j € .J; U0) thehostmachine of its child machines
ME |k € K € P(J;). Further, we call the childrem” ; theclientsof M7. More-
over, we assumey, = 0 and call the machingé{ the root hostand the machines
Mi (j € J,,) theapplications

In the context of a TCG-enabled PC, the root host is the basidvware includ-
ing memory, CPU, TPM, and CRTM (Core Root of Trust Measurejn@ee Section
[7.1.3), M could be a virtualisation layer like a microkernel-basehéecture[[57, 69]
or a Virtual Machine Monitor (VMM), e.g., the IBM hyperviseHype [81],(M5),
k € J, the set of operating systems, apt}), I € J; the set of applications.

1we do not consider more complex certificates such as X.5@ficates, but assume that an appropriate
mapping exists.
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Figure 7.1: The basic system architecture including lagérsachines.

For simplicity, in the sequel we only consider the sequeldds, M, --- , M,,)
of machines where only machink(; is the client of the machina1;_;. In this sim-
plified model, however, every platform has only one appiicai1,,.

As we will see in more detail later, the trustworthiness ofeatain machine in
this model depends on the “trustworthiness” of its undadyhosts up to the root host
which is assumed to be trusted.

Properties: We define a property; of a machineM to be a certain aspect of that
machine. We denote a set of properties withand an encoding/value of a property
(e.g., an integer) witlys. We also callps a property.

Examples of properties are abstract descriptions of thehmeas behaviour (e.g.,
subsets of views of the machine’s I/O behaviour), the faat thmachine has been
evaluated according to a specific Common Criteria protagiofile, or a real-time
capability.

Match Function: We define the functiofind <+ match(p;, M) to returntrue only
if the machineM hasthe propertyp; and otherwisdalse. See Sectiofi 7.1.6 for a
discussion about possible realisations ofrifech() algorithm.

Roles
In this section, we consider the main parties involved intousted computing model.

Owner: The ownerQO of a platformPF is an entity that defines the allowed con-
figurationsC' of the underlying platform. Note that this also includestaier
changes to the platform’s configuratiéh In practice, these changes are patch-
es/updates. Typical examples are an enterprise repredngn administrator
or an end-user owning a personal platform.

User: The usei/ of a computing platfornP F is an entity interacting withPF under
the platform’s security policyyP». Examples are employees using enterprise-
owned hardware. User and owner might also be identical.
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Verifier: The verifierV is interested in verifying a certain property of a platforihis
party can be a local user or a remote challenger.

Provider: A provider denotedPR is any party that provides services or content.

Attestor: The attestord is a machine that reports about a client machine in response
to the request of a verifying machiné More concretely,A may confirm a
certain statement or quantity of this machine. In this ceingeproperty attester
A, determines (attests) the property of a client machine, oy attesterA,
determines/measures the configuration of a client maclic@rding to a certain
metric. An attestor can be local, i.e., located on the ptatf® 7, or it can be
distributed.

An example of an attestor is a Trusted Platform Module (TP&&8e(Section
[71.3), or a combination of a TPM and a software componertirigpa machine
to be attested.

Attested machine: This is a machine that has been subject to the attestatiarepro
dure, i.e., attested by the attestdbr We denote this machine with1.

Certificate issuer: The issuer, denoted [$§7Z, is the party who certifies mappings be-
tween properties and configurations. We call such cert#fjdatking a property
ps to a configurations, aproperty-certificateéhat is represented by the signature
of CZ,i.e.,0c1 < Signgk,, (ps, cs).

Trust Relations

We call a machine\, representing a system componéntsted by the partyX’ when
M can violate the security requirementsf If a machine is trusted by all involved
parties we call ifully trusted The attestor is a security-critical component which has
to fulfil certain security requirements. Independentlyief toncrete realisation, the at-
tested machine (or its user/owner) has to trust the attastdo leak information about
its configuration, e.g., in order to guarantee privacy anlhkability requirements.
The verifier, however, needs to trust in the correctnessratadrity of the attestor (e.g.,
in order to guarantee certain security aspects). Thergfoi@r model the root host
My is fully trusted. _

A trusted computing base (TCB) for a client machibt consists of all machines
that are security-relevant for a correct executionf. We denote the TCB of machine
M with TCB ;. Note that the security-relevant machines Ad include all hosts
down to the root host, together with their TCB.

Reconsider, for instance, the hypervisor example discugséhe platform defi-
nition (Sectio 7.1]2): the hypervisavt{ executes several operating systems in iso-
lated domaing.M3). Thus, the TCB of an application? that is client of M3 is
TCB g = { M3, M3, M9, MG} the hardware\g, the hyperviso\1?, the client
operating systenM3, and the security management compartment (domain@)ex-
ecuted in parallel to the client operating system.

Since we assumed in the definition of a platform (see Seffid#)7a platform
model including only one machine per layer (and thus proxdinly one application
M,,), the TCB of M,, isTCBpy,, = {M7|MJ = host(M;),n >1 > 1}.

In practice, a TCB consists of software and hardware comuspand the common
assumption is that it cannot be manipulated. This assumptémslates into different
assumptions on tamper-resistance regarding software amlvare: For instance in
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the context of TCG the hardware component Trusted PlatformdNe (TPM) [102]
and the software componehtusted Software Stagf'SS) [93] are both trusted, how-
ever, one usually relies more on the tamper-resistanceeol BM. Hence, in many
applications, the TPM is fully trusted whereas the TSS iy tmisted by the platform.

As mentioned before, the trustworthiness of a certain nmechi our model de-
pends on the trustworthiness of its underlying hosts up ¢ortiot host which is as-
sumed to be trusted.

Further, certificate issuing parties lik& are usually assumed to be fully trusted,
i.e., by both attestor and verifiers.

Attestation

The main parties involved in the attestation procedure arerifier V and an attestor
A. The machine to be attested is denoted\ly where) receives the resuttue only

if M fulfils a certain requiremen® which is the common input to the protocol. We
denote this protocol with

(V:ind; A: —) « Attest(V : —; A: M; *: R).

In this context, we use the terbinary attestatiorif the verifier requires the machine to
have a certain configuratiar, and the ternproperty attestatioiif the verifier requires
the machineM to have a certain propergy

Since the behaviour of a machivd,, depends on its configuration and the con-
figuration of its TCB, i.e.{M; ... M,_1}, all machines{ M, ... M, } have to be
attested in a chain of attestati¢hsThe chain of attestations starts with the root host
M, (that is fully trusted and thus does not have to be attestdeBtang the machine
M, which then becomes the new attestor to atfest and so forth. The attestation
chain ends with the applicatioM,, attested by machin&1,, ;.

The attestation of all machines of a platfodf := { M, ... M, } is then consid-
ered as an attestation of the whole platfgp#.

Sealing

Sealing is the protocol between a provideR, an attestord, and a machine\,
where M receives the informatio® only if M fulfils a certain requiremerR of PR,
otherwise an empty string This is denoted witliD) . We define the sealing protocol
as follows

(PR:—; A:—, M:(D)g) < Seal(PR:D,R; A: M,R; M : —)

where the main inputs d?R and.A are the data) and the maching respectively.
Similar to the attestation algorithm described in SecfidhZ the providePR has
to perform a chain of sealings based on the mach{ves ... M,,_1} before it can
perform a sealing protocol with the applicatign,, of platformPF.

7.1.3 Main Aspects

In this section, we briefly review the main functionalitiés;luding binary attestation
and binary sealing, of the specifications version 1.1b [96] 5.2 [102] of theTrusted
Computing GrougTCG).

2Note that the functiorinit() allows hosts to overwrite the configuration and thus the Wieba of a
client machine.
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TCG Components

The main components of the TCG proposal are the hardwarea@uenplrusted Plat-
form Module(TPM), a kind of (protected) pre-BI(E&alled theCore Root of Trust
for MeasuremenfCRTM), and a support software call@dusted Software Sta¢kSS)
which performs various functions like communicating witke trest of the platform or
with other platforms.

Trusted Platform Module (TPM) A TPM is the main component of the specifica-
tion providing an RSA key generation algorithm, cryptodragunctions like RSA en-
cryption/decryption, a secure random number generatorvotatile tamper-resistant
storage, and the hash function SHiA-1

TPMs can be compared to integrated smart-cards contain®iglyqg some mem-
ory, and special applications. The assumption is that tlige istamper-resistant and
mounted on (or integrated in) the motherboard. The main cbigains a special se-
curity controller with some internal, non-volatile ROM ftire firmware, non-volatile
EEPROM for the data and RAM. Furthermore, it contains a @ggphic engine for
accelerating encryption and decryption processes, a hastesator and a random
number generator (needed to generate secure cryptogiegpsr Figuré 7]2 shows
the main architecture of the chip.

Trusted Platform Module (TPM)
Controller Cryptographic
Engine
ROM
Low Pin Count
Input/Ooutput EEPROM
(LPC-1/0) RAM
Platform Random
Configuration Number
Registers (PCR$) Generator

Figure 7.2: Simplified architecture of the TPM

The TPM uses the synchronous Low Pin Count-I/O-InterfadeQil/O) on the
motherboard to communicate with the host PC. The data trias&m is done through
a FIFO inside the TPM LPC-1/O interface which can be accefsed both sides. The
connection of the TPM to the motherboard is illustrated iguFe7.8. The protocols
defining the order of commands and transmissions betwedmotteand the TPM are
a challenge-and-response dialogue, i.e., after everyectts the host waits for the
corresponding response from the TPM before it sends a navestq

Due to the physical properties of the LPC interface, chetlssior block protection
are not required. To configure the chip, configuration registan be used to enable or

3Basic I/0 System

4SHA-1 [63] generates 160-bit hash values from an input ehéat) arbitrary size. One of the stated
security goals for SHA-1 was that finding any collisionusttake 28° units of time. Recently, Wang et. al.
described an algorithm to find such collisions in tiaf€, see also[[55]. Though attacking SHA-1
would be challenging, SHA-1 clearly has failed its stateclisigy goals. In contrast to some applications,
full collision resistance is essential in Trusted CompuititHence, we anticipate revised specifications to
switch to another hash function.
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Figure 7.3: Integration of the TPM into a PC platform.

disable functions of the TPM chip, and to configure the I/Oradses for communica-
tion with the chip. Data registers are used for data trarsfareen the host PC and the
TPM chip; status and command registers are used to audit@rttbtthe performed
operations. Depending on the used TPM chip, different lyeay exist above the
hardware to transport control information, vendor-spedifformation, or application
data (e.g., data to be signed or commands to generate keys).

We can abstractly describe a TPM with the tu@lg, SRK, 7): the endorsement
key EK, an encryption key that uniquely identifies each TPM; tha&je Root Key
(SRK) or Root of Trust for Storage (RTS), uniquely created insieeTPM. Its private
part never leaves the TPM and is used to encrypt all other &eeged by the TPM;
the TPM stateZ” contains further security-critical data shielded by théMTP

Moreover, the TPM provides a set of registers caléatform Configuration Regis-
ters(PCR) that can store hash values. The hardware only acc€ptsdgjister changes
in the following form: PCR,; 1, « SHA1(PCR;|I), with the old register valu®CR;,
the new register valu®CR, .1, and the input. This process is calleextendingof a
PCR.

A TPM can create different types of asymmetric keys:

e Migrateable keygMK): Migrateable keys are those cryptographic encryption
keys that are only trusted by the party who generates thegn the user of
the platform). A third party has no guarantee that such a leyihdeed been
generated on a TPM.

e Non-migrateable keydNMK): Contrary to a migrateable key, a non-migrateable
encryption key is guaranteed to reside in a TPM-shieldedtios. A TPM can
create a certificate stating that a key is an NMK.

o Certified-migrateable ke€MK): Introduced in version 1.2 of the TCG specifi-
cation, this type of encryption key allows a more flexible keydling. Decisions
to migrate and the migration itself is delegated to two &dstntities, chosen
by the owner of the TPM upon creation of the CMK with a sepacat@mand
TPM.CMK_Cr eat eKey: TheMigration-Selection AuthoritfMSA) controls the
migration of the key, but does not handle the migrated kejfitin contrast, the
Migration Authority(MA) handles the migration of the key: To migrate a CMK
to another platform, the TPM commam@®M.CMK_Cr eat eBl ob expects a cer-
tificate of an MA stating that the key to be migrated can bediemed to another
destination. Furthermore, the certificate of the CMK thatdlwner/user uses to
prove that it was really created by a TPM contains infornra#ibout the identity
of the MA resp. MSA.

Open_TC Deliverable 05.1



CHAPTER 7. ADVANCED SECURITY SERVICES 127

o Attestation identity keyfAIK): These non-migrateable signature keys provide
pseudonymity resp. anonymity of platforms including a TENKSs are locally
created by the TPM. The public part is certified biPiavacy Certification Au-
thority (Privacy CA) stating that this signature key is really undentrol of a
secure TPM. In order to overcome the problem that this paatyliok transac-
tions to a certain platform, version 1.2 of the TCG specificatiefines a cryp-
tographic protocol calle®irect Anonymous AttestatidDAA [L3], eliminating
the Privacy CA.

TPM signatures: The TPM can create a TPM signature denotedrby,,. There
are two possible ways of generatingp,,. The first one is a DAA signature. The
second way is a DAA signature on an arbitrary attestationisgkey Al K together
with an ordinary signature under the kdy K. For simplicity, we do not distinguish
these two cases, and denote the private signing key use@atecfPM signatures
orpm + Signgk ..., (m) on a message: with SK rpy and the corresponding public
verification key used to verify rpys with PK 7pjy.

TCG Functionality

Based on this functionality, the TCG specification definag faechanisms calleid-
tegrity measuremenattestation sealing andmaintenancevhich are explained briefly
in the following. Note that our descriptions focus on the §ecific realisation of the
TCG specification [103].

Integrity measurement: Integrity measurement is done during the boot process by
computing a cryptographic hash of the initial platform stafor this purpose, the
CRTM computes a hash of (“measures”) the code and paranaétigrs BIOS and ex-
tends the first PCR regisﬁuy this result before passing control to the BIOS. Similarly
the enhanced BIOS has to measure the master boot record (bfBR3 boot device
before passing control to the boot loader. A chain of trusistablished if the boot
loader also measures the loaded code (e.g., the operastengybefore it transfers
control.

This chain strongly relies on explicit security assumptiabout the CRTM. The
PCR valuesPCRy, ..., PCR,, provide evidence of the system’s state after boot. We
call this state the platformsonfigurationi.e.,cs := (PCRy, ..., PCR,,).

Note that the TCG specification does not define the code thsatchbe measured
by the boot loader. Thus, different strategies can be emhliShe boot loader can
measure the whole system state including operating sysipplications, and data.
Alternatively, the boot loader can only measure the opegatystem kernel which may
itself provide mechanisms to attests single applications.

Attestation: The TCG attestation protocol is used to give a verifi@ssurance about
the platform configurations. To guarantee integrity and freshness, the TPM must sign
this value and a fresh nonégprovided by the verifier with aAttestation Identity Key
(AIK). The challenger can then decide whether the attedttbpm is in configuration

c¢s or not. For increased flexibility, the attestation protaaitdws the attested machine
to consider only certain PCR values (e. ¢ R,, PCR3, and PCR7) that can be

5During a reset, all PCR registers are initialised with zero.
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defined by a binary vector. Sectibn 711.5 describes the TQfoagh to attestation in
more detail.

Sealing: Data D can be cryptographically bound to a certain platform coméigu
tion ¢s by using theTPM.Seal command. We denote this command abstractly with
(D)cs < Seal(PR : ¢s, D) meaning thatD is sealed forthe configuratiorrs. The
TPMUnseal command releases the decrypted data only if for the currftgura-
tion c¢s’ it holds thatcs’ = c¢s, i.e., D = Unseal((D)cs) < ((D)es < Seal(PR :
cs, D) A (es' = cs)).

Thus sealing allows software, e.g., an operating systehintbsecrets like a master
encryption key to its current configuration and thereforvpnts that security mecha-
nisms can be bypassed by rebooting a maliciously modifigtbpha configuration.

Maintenance: The maintenance functions can be used to migrate the SRkothen
TPM: The TPM owner can encrypt the SRK under a public key of iR vendor
using theTPM.Cr eat eMai nt enanceAr chi ve command. To finish the migration
in case of a hardware error, the TPM vendor can decrypt the &RKintegrate it into
another TPM.

Unfortunately the maintenance function is only optionall,ato our knowledge,
not implemented by currently available TPMs. Furthermtitremaintenance function
works only for TPMs of the same vendor.

7.1.4 TCG Model

We introduce an abstract model for the basic functionalifieovided by TCG-
compliant platforms as illustrated in Figurel7.4. It cotsisf several state transition
machines: the machin®t represents a client machine to be attested, while the host
of M is the attestord. Note that in the TCG modelM represent the software com-
ponents and hardware devices of a computing platform, whitepresents, e.g., the
TPM, the CRTM, and the CPU. The third machiveepresents a (remote) verifier, and
machineg/ the local user.

iplatform |
< ‘ 7777777 send(m
M 77777777 receive(m —
Tdat (b T exec(Gy attest (hash(G))
A » seal (hash(G,, D)
- 77777777 boot (G ) U
"""" insecure channel — secure channel

Figure 7.4: Abstract Model of the TCG functionality

The machines are connected by insecure and secure (aothetdgger and con-
fidential) directed communication channelg:can communicate with\ using an
insecure input channeknd() and an insecure output channekeive(), which are
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used for common communication. The attestor offers an ingdnitialisation channel
boot() to the usei/ [ It accepts a configuratiofi := (so0, A) of M which is locally
stored and then used to execut¢ on top of A using the channelzec(). This en-
sures that the attestor always knows the configuratioviof Compared to the boot
example discussed in Sectibn 7]1C3represents the hashed chain of the basic mod-
ules (i.e., BIOS, boot-loader, and operating system) atitihe the operating system is
bootstrapped.

A secure output channettest() returns to) the hash values := Hash(C) of the
configurationC' of M. A secure input channel od calledseal() receives datd and
a hash of the desired configuratiesi. If cs is equal tocs’, the attestord sendsD to
M using the secure output chandeta().

Assumptions
The functionality mentioned above is provided under thefaihg assumptions:

1. The platform configuration cannot be overwritten afteameement, i.e., after
the hash values are computed and securely stored in TPMisTaisimportant
assumption, because the attestor only makes statementisthbanitial state of
M. If malicious modifications would be possible after meament, verifiers
could not rely on the information provided by the attestar. our model this
assumption is fulfilled sinca1’s configuration can only be modified by the ma-
chine itself and the attestor using thét() channel (which models a reboot).
Unfortunately, currently available operating systemshsag Windows or Linux
can easily be modified, e.g., by exploiting security bugsyochanging memory
which has been swapped to a hard disk.

2. Given the hash value representifitjs configuration, the verifier can determine
whether the platform configuratiafi is trustworthy. In our model, this assump-
tion is fulfilled since we assumed that the verifier can detileemachine’s be-
haviour from(sp, A). The trusted computing base of today’s operating systems
is very complex, which makes it very difficult, if not impokk#, to determine
their trustworthiness.

3. The secure channels can be established. This assungpfidfilied using three
different mechanisms:

(&) The channels between hardware components (e.g., befwdé and CPU)
are assumed to be secure since both components are integnatee same
hardwarédl

(b) The communication between attestor and verifier is sgtbased on a
public key infrastructure (PKI [102].

(c) The operating system has to provide a secure commuuricatechanism
between machines, e.g., between attestor and attestedn@ach

Hence, a secure operating systems is required that (iytie#gcprevents unautho-
rised modifications, that (ii) is small enough to allow anleation of its trustworthi-
ness, and that (iii) provides a secure inter process conuation (IPC) mechanism.

6The reason why the chanrielot() is modelled as insecure is that in practice even local usemsat be
sure whether a secure operating system has been loaded.

"Experience shows that this assumption does not hold fontirerttly available TPM platforms, since it
is possible to observe resp. modify the communication betw@PU and TPM.
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Figure 7.5: TCG Attestation Architecture

However, such a secure operating system can be efficieydgad by security kernels
based on micro-kernel architecturges|[69,[77, 30].

7.1.5 The TCG Approach: Binary Attestation

The TCG specification$ [96, B7] define mechanisms for a TP&bkd platform to
reliably “report its current hardware and software configion to a local or remote
challenger”[[7]. This ‘binary attestation’ (based on meaastents of binary executa-
bles) is based on (1) the platform building a chain of trustrfithe hardware up to the
operating system (and, potentially, including applicasipby measuring integrity met-
rics of modules and storing them in the TPM, and (2) the TPN¢aible to report on
these metrics in an authenticated way. A verifier obtaininghsauthenticated metrics
can then match them against the values of a known configaratid decide whether
the verified machine meets her security requirements or not.

Binary Attestation Architecture Figure[Z.b represents a modularised architecture
corresponding to the TCG concept of binary attestation.
The following entities are involved in the attestation aedification process:

Verified Machine A machine that has a Trusted Platform Module (TPM) and a com-
puting base that may execute untrusted code.

Verifier Machine The machine of the verifier. All modules on this machine am@tm
and trusted by the verifier.

Directory Servers Servers that provide additional authenticated infornmatdout
components in signed component directories. ExamplesidecTripwire di-
rectoriesvww.tripwire.com.

We make certain definitions to speak about this architecture
Verified Platform The computing environment on the verified machine.

TPM The Trusted Platform Module (TPM) on the verified machines lised by the
verified platform to store measurements of code executéetindrified platform.
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Configuration Validator The module that obtains a (TPM-authenticated) measure-
ment and reconstructs the platform’s configuration. To @& thuses a configu-
ration log file (see Sectidn 7.1.5) additionally providedtbg verified platform
as well as configuration descriptors certified in Componered@ories.

Configuration AssessmentGiven a configuration, the assessment determines whether
this configuration satisfies the requirements of the verifibis assessment typi-
cally involves matching the configuration against a set offigurations allowed
by the verifier.

Component Directory A signed repository of information related to components. A
example of a componentdirectory is a software vendor'ddetaproviding hash
values and associated descriptions of its latest products.

Binary Attestation and Verification Mechanisms We now explain the interactions
that implement binary attestation. The ability of the TPNiadely to report on the
verified platform’s computing environment follows from thi®M-enabled measure-
ment and reporting. Our description in the following paeagrs focuses on the PC-
platform [7].

The measurement and storage of integrity metrics is stdoyethe BIOS Boot
Block (a special part of the BIOS which is believed to be urgared) measuring itself
and storing the measurements in a TPM PCR (Platform ContigarRegister) before
passing control to the BIOS. In the same way, the BIOS thersarea option ROMs
and the Boot Loader and records these measurements in a TRVbEGre passing
control to the Boot Loader. The process continues as the Boader measures and
stores integrity metrics of the OS before executing it, tf& i® turn measuring and
storing integrity metrics of additionally loaded OS compots before their execution.
If support by the OS is provided, applications can also besuweal before being exe-
cuted.

The measurement and reporting processes are depictedrimpéfisid manner in
Figure[Z.6, in whichH represents the cryptographic hash function SHA-1. Duriing i
tialisation, various PCRs as well as a configuration log §tered on the platform) are
initialised; this log file keeps track of additional infortien such as descriptions or file
paths of loaded components [84] ; its integrity need not h@ieily protected by the
TPM. During subsequent measurement of components, thiddog extended, while
metrics (hash values) of the executables are stored in theUdhg thetpm_extend
method replacing the contents of the appropriate PCR sxgisth the hash of the old
contents and the new metrics. We do not discuss which metrestored in which
PCR; it suffices to say that metrics of loaded componentseligbly stored in the
TPM.

When a remote verifier wants to assess the security of théedeplatform, she
sends a challengeto the platform. The platform uses this challenge to queriyh(a
tpm_quote command) the TPM for the value of the PCRs. The TPM respontisavi
signed messag‘iignA,K(ﬁ7 ¢) containing the PCR values and the challéhgie
platform returns this signed quote to the challenger (\@jifogether with information
from the log file needed by the verifier to reconstruct thefieatiplatform’s configura-
tion; the verifier can then decide whether this configuraiscacceptable.

8The TCG specifications specify a quote over specific PCR satgher than the full set; for simplicity,
we assume in this discussion that a quote is always givenatveCR values.
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Platform TPM

Initialisation:

log :={} PCR; :=0

‘ Measure Components: ‘
measurelesc; asezec;
log := log||(desc;, exec;)
m; = H(exec;)

tpm_extend(z, m;)

PCR, := H(PCR,,m;)

‘ Report Measurements: ‘

tpm_quote(c, AIK)

Sign 4k (PCR, ¢)

-—_—

Figure 7.6: TPM-Enabled Measurement and Reporting Process

The key used for signing the quoté /K, is an “Attestation Identity Key” of the
TPM; as a TPM may have multiplé /K s, the key or its identifier has to be specified
in the tpm_quote request. An Attestation Identity Key is bound to a specificMf P
its public part is certified in an Attestation Identity Key@iicate by aPrivacy-CAas
belonging to a valid TPM. The verifier of a quote signed with a (correctly certified)
AIK believes that the quote was produced by a valid TPM, morefggaly, by the
unigue TPM owning thatA/K. This belief is, of course, based on the assumption
that the TPM is not easily subject to hardware attacks andeffi@ctive revocation
mechanisms are in place dealing with compromised keys.

Note that the above measurement process does not proleleiition of untrusted
code, it only guarantees that the measurement of such cdideergiecurely stored in
the TPM. Thus, if malicious code is executed, the integritghe platform may be
destroyed; however, the presence of an untrusted (or siomigown) component will
be reflected by the TPM quotes not matching the ‘correct’ xpé&eted’ values.

Deficiencies of TCG Attestation and Sealing

While the attestation and the sealing mechanisms provigietido TCG allow many
meaningful applications (see, e.q..|[B0] [31,[56, 84]), thieeuse of the platform con-
figuration (e.g., to bind short-term data to platforms oretedmine the trustworthiness
of applications) has some important drawbacks:

e Discrimination.Sealing and attestation have the potential to isolatertzté/e”

9n the remainder of this paper, we will always assume thavéhmdier of a quote is in possession of, or
can obtain, the appropriate certificate certifying thE< but we will not explicitly represent the transport of
such certificate in protocols.
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software products (e.g., OpenOf@@r WINEH and operating systems such as
Linux), and it would be more difficult (if not impossible) féhem to enter the
market. It is easy to imagine a situation where global playerch as content
providers and large operating system vendors collaboratecsaclude specific
operating systems as well as applications. This barrientoy effectively un-
dermines competition and prevents the self-regulatinghaeisms of an open
market.

Moreover, sealing can have negative consequences sintesdionm vendors can
bind the application data to their application, making ipwssible for alternative
software products to be compatible. With TCG a vendor coudggnt OpenOf-
fice from reading Word documents.

e Complexity. The number of different platform configurations expondhtia
grows with the number of patches, compiler options and softwersions. This
makes it hard to keep track of the trustworthiness of a giwetiiguration.

e Observability.The recipient of the attestation protocol or an observes geact
information about the hard- and software configuration opectic platform.
This makes attacks on such platforms much easier since asaay does not
need to perform any platform analysis.

e Scalability. Since the sealing mechanism provided by the TCG hardwadsbin
encrypted content to a specific system configuration, sysigmates make the
encrypted content inaccessible. For example, any patds kesa new configu-
ration and thus to modified PCR values.

7.1.6 Attesting Properties

A more general and flexible solution to the attestation grbis an approach called
property-based attestatiofr8,[71]. It means that attestation should only determine
whether a platform configuration or an application has arddgiroperty. This avoids
revealing the concrete configuration of software and hardwamponents. For ex-
ample, it would not matter whether the application was WidwiserA or B, as long
as both have the same properties. In contrast, the attestaid sealing function pro-
vided by TCG-compliant hardware attests the system corstgur of a platform that
was determined at system startup. For (nearly) all prdctigglications, the verifier
is not really interested in the specific system or applicationfiguration. As we have
argued in Sectioh 7.1.5, this even has a disadvantage dine tmltitude of possi-
ble configurations a verifier has to manage. In fact, the ehgr is only interested in
whether the attested platform provides the desired prigsethformally, gproperty, in
this context, describes an aspect of the behaviour of theryidg object (platform/ap-
plication) with respect to certain requirements, e.g. casty-related requirement (see
Section Z.1P). In general, properties for different augton levels are imaginable.
For instance, a platform property may, e.g., state thattéopha is privacy-preserving
i.e., it has built-in measures conform to the privacy lawshat the platform provides
isolation, i.e., strictly separating processes from each other, mnoiidesMulti-Level
Security(MLS) and so forth.

10www.openoffice.org
www.winehg.org
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The question whether there is a correct or useful propettgleggends strongly on
the underlying use case and its requirements. Attestingepties has the advantage
that different platforms with different components may d&alifferent configurations
while they all offer the same properties and consequentily flle same requirements.
As mentioned in Sectidn 7.1.2, we consider the desired ptiesef an application as
a certain input/output behaviour.

The idea of property-based attestation, as presentedsicdimtribution, was pro-
posed in[[78], and later if_[71]. Other related work is coesadl in Sectiof_2]4.
Whereas|[[711] proposes a high-level protocol for propeeyedal attestation], [78] pro-
poses and discusses several protocols and mechanismgfdrandheir trust models,
efficiency and the functionalities offered by the trustethpenents. In particulaf, [78]
discusses how th&rusted Software Staqd'SS), the TPM library proposed by the
TCG, can provide a property-based attestation protoc@das the existing TC hard-
ware without a need to change the underlying trust model. yitographic protocol
realising the approach outlined in Section 7.1.10 was megdn [19].

Requirements

In this section, we informally consider the main securityuieements thatleal attes-
tation and sealingnechanisms should fulfil.

1. Security The attestor only attests properties provided by the @iatfresp. ap-
plication. More precisely, if the outcome of the attestafior a machineM on a
certain property; is true (i.e., accepted by the verifier) then the attestedhimac
M matches this property, i.e., the outcome of fteetch (p;, M) is true.

2. Privacy/non-discriminationThe attestation should neither reveal any informa-
tion about the platform/application configuration (beydhdt it falls under a
certain property) nor should it be able to favour selectedigarations.

3. Unlinkability: It should be infeasible to link different attestation sess of the
same attestor.

4. Availability: When modifying a platform configuration without changirget
provided properties, access to sealed data should stilbssige.

5. Reduced ComplexitySecurity enhancements to the platform should not be
costly.

A further requirement, which we do not consider in this citmttion, isaccount-
ability. Although a trusted third party like a certificate issuer twabe trusted by all
participants, it is desirable to detect its misbehaviour.

Ideal World Model

An ideal attestor that fulfils the requirements of an idetdsiaition and sealing func-
tionality is capable of determining the set of propertiés= {po, ..., p,} provided
by a system configuratiofi and to decide whether it has a specific propertit per-
forms aproperty-based attestaticandproperty-based sealingiechanism as shown in
Figure[7.7.

Unfortunately, it is in practice difficult, if not impossidlto determine or compare
properties enforced by a platform configuration. Today,evetn content providers are
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M I Seﬁd(,") ,,,,,
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""""" insecure channel — secure channel

Figure 7.7: The ideal model of a property-based attestdtinction

able to formally specify the demanded properties; howekierwould be necessary to
enable the use of proof-carrying code or formal analysis.

Property Detection

Before the attestor can make statements about a machinapfitepriate properties
have to be determined using the functiaatch() which itself can do this directly or
indirectly. We group mechanisms that determine the pragseof a machine into three
categories:

e Code contral The property attestor is trusted to enforce that a machame c
only behave as expected. In our machine model this meanshihaittestor4d
compares the 1/O behaviour ¢#1 with that defined by the desired propefty
An example would be to use SELinux as a reference monitor @attést both
SELinux and the enforced security policy, as describedij. [6

e Code analysisThe property attestor directly analyses the code of thehmac
to derive properties. Alternatively, it verifies whethee ttmachine provides the
claimed properties. In our machine model, the attestanas to be the host
of M and to decide based gy, A), whethermatch(p;, M) = true holds.
Practical examples in this context are proof-carrying déd=65] and semantic
code analysig[35].

e Delegation Instead of determining properties directly, the propeaitgstor can
also prove that another party has certified the presenceafdbired properties.
Obviously, this third party has to be trusted by both thestéie platform and the
verifier. A practical example in this context are propertytifieates issued by
a certificate issuer: The matching algorithm reture if a property certificate
exists and was issued by a third party who is trusted’ by

Code control methods and code analysis (cf. semantic reatiegtation,[[35]) are
out of the scope of this report. We elaborate on the delegadiea in Sectioh 7.117
where we present several concrete solutions.

7.1.7 Delegation

The basic idea of property detection through delegationskastly described in Sec-
tion[Z1.6. In this section we are going to focus on some @iralelegation-based
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solutions. The main reason is that the delegation-basedipte is well-suited to the
TCG trust model and the related infrastructure that alreadyires trust in third parties
(e.g., Privacy CA, certificate issuer in the context of DAAMigration Authority for
migrateable keys.

In the following, hybrid attestatiormeans a two-level chain of attestations, where
the first attestation is based on binary configurations amdelcond one based on prop-
erties. Since we assume in our model that applications testadl by the operating
system, we now focus on the question how the translation ftonfigurations into
properties based on certificates can be realised on a lovteotire level (ideally by
the root hosiM,).

For this, the ideal model is extended with a trusted thirdypée.g., a certificate
issuerCZ) who attests that a given platform configurat@rulfils a desired property.
Thus, we replace the automatic property derivation basecbafigurations, required
for the ideal attestor (see Section 711.6), by a propertificate oc7 issued byCT.
This relaxed model is shown in Figurel7.8.

send(m)
‘ M ’4 recei ve(m -
?dat a(D) ¢ exec(Gy

certy A attest(p) V
CI p seal (p, D
Ab < boot (G U

insecure channel secure channel

Figure 7.8: General architecture of a property attegdipbased on a binary attestdy,
and a certificate issu€¥Z that translates configurations into properties

The certificate is simply a signature@f which we callproperty certificate Note
thatCZ confirms the correctness of the correspondence betweetatf@m configura-
tion and certain properties according to defined criteriawéler, following common
practice such organisations are only liable for intentiaonesbehaviour and not for
undetected weaknesses (compare with safety and secustisydecommon criteria).
Parties likeCZ are fully trusted (i.e., by the attestor and the verifier)csiboth have to
assume thatZ certifies only configurations that really have the attestegerty.

The following solutions are based on[78] ahd|[53] that ps®pseveral possible re-
alisations of property attestation using delegation. Adilgosed solutions realise hybrid
attestation but they differ in their functional requirerteas well as in the underlying
trust model: Some of them require extensions to the exigihgardware (TPM), oth-
ers propose to implement the required extensions by meam8idly trusted software,
or to reuse the existing TPM implementations while keepirgdame trust model as
the current TCG specification.

Hardware-based Certificate Verification

This solution adds a property certificate verification pchae to the TPM function-
ality. Any party that the verifier trusts may issue propemytificates. The following
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protocol defines property attestation in this framework:
(V :ind; TPM : —) « Attest(V : —; TPM : ¢s; * : PK¢r, 007, ps, Ny).

The attestor is in this case the TPM with a signing key &K rpn, PK 7p0r)
where the signature verification k¥ py; can be seen as a pseudonym. The com-
mon input to the protocol is a public ke K 7 of the certification issue€Z, a
property-certificatercr := Signgg ., (ps’, cs’), the desired propertys and a nonce
N,. The input of the attestor (here the TPM) is the configurationf M. The output
to the verifier isind.

In the above protocol, the TPM evaluates the property ceatdio-7 in order to
verify whetherps’ = ps andcs’ = cs. If 0, it returnso rpys = Signgy ... (ps||Ny),
which V verifies. Note that in the concrete realisation of the abawe¢ogol,V gen-
erates the common inpu¥,. Fulfilling the unlinkability requirement should not be
problematic since CA-based pseudonyms, or the DAA prot@eol hide the signature
key PK rppr. A new TPM command can efficiently be implemented (5eé [53)).

The use of certificates that guarantee platform propertsste known problem of
public key infrastructures such as certificate revocatog,, when new bugs become
public that violate certified properties. Allowing to revo& property certificate (revo-
cability requirement) thus requires additional TPM supgoisuring that verifiers can
recognise if a revoked property certificate was used. A sniplt still unsatisfactory
solution is the use of short validity periods of propertytifieates.

Group Signatures

A group signature scheme allows a group member to sign messagpnymously on
behalf of the group. In case of a dispute, the identity of aaigre’s originator can
be revealed, but only by a designated enfityl [18]. In our frwork, the public group
signature keyPK " represents a properys while the corresponding private keys
(SK%; ,...,SK?; ) generated by a Trusted Third Party (TTP) represent difterem-
figurationscs; (i = 1,--- ,n) providing the same properps. Since the verifier of a
group signature cannot decide which secret key has beernaigederate the signature,
it does not get information about the configuration of the hivae to be attested. This
satisfies the non-discrimination and unlinkability reguaients.

The abstract description of the protocol is as follows. hsists of two phases, the
issue phase and the attestation phase. In the issue ph@EBegemerates the signature
keysSK?; , seals them undes; and publishes the resulting blo Icgi]f:f;,cs,) that
can only be unsealed by TPMs of typg under configurations,.

The protocol for the attestation phase is defined as follows:

(V:ind, A: —) — Attest(V : —; A: cs; x: ps, PKP?).

The common input is the properpyg and the public group key?K?°. The attestor
inputs the configurations. The output toV is ind.

More concretely, in the protocd! chooses a noncd,, and sends it tod (more
concretelyhost(M)). A sends the signature := Sign g (N,,) to the verifier who
verifies it using the public group signature k&% ??. If V trustsCZ and the TPM, it
concludes that the user platform indeed proviges

Some group signature schenies [6] allow a designated emityclude group mem-
bers, thus selected (e.qg., insecure) configurations caevoked (revocability require-
ment). They also allow the designated entity to add new gmambers and thus to
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add new compatible configurations (availability requirethe Users of the machine
M can decide which group signature key they load onto theithinaqand thus which
property the platform can attest), therefore also the pyivaquirement is fulfilled.

Trusted Software Service

A software-only solution avoids the need for modificatiohthe TPM hardware. For
example, a separate trusted software service might ttensteestation requests into
configurations. However, online services are often peréoroe critical. A way to
solve this problem is to enhance the existing TPM functiothwiTrusted Attestation
Service(TAS), a fully trusted software service that is part of thiestor.

The trust model of this solution requires the TAS and consatjy other machines
that host the TAS (e.g., operating system) to be fully trdigtes., by both the veri-
fier and the platform owner/user). Note that this trust cdédestablished by binary
attestation of the TAS.

In the following, it is shown how a TAS could be implementethgsa verification

proxy.

7.1.8 Property Attestation

Property attestation addresses the privacy, opennesscalabiity problems associ-
ated with binary attestation. With property attestatiomesfier is convinced of high-
level security properties of a remote platform without ieice the remote platform’s
configuration information. Examples of security propertee the absence of certain
vulnerabilities or the ability to enforce certain policisscurity properties also include
privacy and availability statements. The Swew.suse.com common criteria evalu-
ated Linux enterprise edition can prove that it satisfieupamsce Level EAL2+ for the
Controlled Access Protection Profile. A server farm shoddble to assure a verifier
that it has a high-probability of 24x7 availability. A enpeise can certify that a given
set of files belong to it's base installation (while othersndd).

High-level View of Property Attestation Figure[7.9 depicts property-based attesta-
tion at a high level. The verifier and verified platform engaga protocol to prove
that the platform satisfies the verifier's security requieais. If the verifier is satisfied
with the offered properties, they can engage in the exchahgervices.

The actual properties offered are determined by a matchmgakiocess between a
verifier policyand aplatform policy The termpolicy stands for a collection of static
and/or dynamic security and privacy requirements, trust@ptions and properties:

e The verifier policyincludes the verifier's property requirements as well as the
trust policy describing which entities she trusts for signor certifying certain
property-related statements. A verifier may trust a sofévelistributor to state
correct product information in a component directogyg( which binaries be-
long to which product), but may not trust the distributor éertifying security
properties about the software. In our architecture in 8aEfi1.8, security prop-
erty certification will be performed bgroperty certifiers In addition to having
a trust policy, a verifier may have a privacy policy specifyifior example, to
whom she wants to disclose security requirements and talisiyontents.
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Figure 7.9: High-Level View of Property Attestation

e The platform policyincludes the properties that can currently be assured by
the platform, as well as privacy and trust policies spenifyivhich information
(properties or configuration) can be disclosed to whom.

The matchmaking and negotiation process between verifeepkatform policies can
differ depending on the entities involved. The question fgatwportions of the lo-
cal policies are communicated? Individuals are often tahicto reveal their privacy
policies while enterprises are often reluctant to reveairttiust policies and property
requirements. We envision the following scenarios:

B2C If a business platform wants to prove its properties to a goves, it will reveal
what properties can be offered under what trust policy. Tdresamer then lo-
cally decides whether this satisfies his requirements. Tmswmer does not
reveal any information.

C2B If a business verifies a consumer platform, it will send itstipolicy while the
consumer platform then proves the corresponding proertie

B2B If a business verifier verifies a business platform, it wilteal its trust policy
while the business platform responds with the propertiasdan be guaranteed
under this trust policy.

In practice, proving properties and revealing (parts ofjgpes can be an iterative pro-
cess where parties gradually build up trust as in[[85, 86,[112].

In the following sections, we will focus on the C2B scenarihvsimple privacy
policies: the verified platform’s privacy policy simply foids that the verifier receives
actual PCR measurements; and the verifier is willing to rekiea trust policy but
not her specific security requirements. The verifier is thilbng to send her trust
policy and the verified platform attests to the propertie=ait assure under that trust
policy. These assumptions will allow us to illustrate theecooncepts of property-
based attestation; a description of a generic matchmakaneps for complex privacy
and trust policies is not within the scope of this paper. Aaregle of a more complex
platform privacy policy may be not to attest to any propefrthé verifier’s trust policy
is too restrictivep.qg, if a verifier’s trust policy specifies trust in only a singleftsvare
vendor, then attesting to a high-level property under tesirictive trust policy reveals
that the verified platform is running only software from tkehdor.
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Figure 7.10: Property Attestation Architecture: Actorsl&asic Message Flows

Property Attestation Architecture Figure[7.1D shows the component architecture
of a property-based attestation system. New parts of theepty-based attestation
architecture are:

Property Certifier An agent that describes (and certifies) which security ptase
are associated with which component. Example include nsatwfers that cer-
tify properties of their products (such as offering certs@mvices), evaluation
authorities that certify their evaluation results (suctcasimon criteria assur-
ance level for a given protection profile), or enterprisestbier owners of the
machines that self-certify the code that they deem acckptab

Verification Proxy Towards the verified platform, the verification proxy acta.a®r-

ifier of binary attestations; towards the verifier, it actshasverified platform in
the high-level property-based attestation view of Figu& ¥Vhen receiving a
platform verification request by the verifier, it challengfes verified machine for
integrity measurements. These measurements are thefotraed into a plat-
form configuration through configuration validation, anésequently into plat-
form properties through property validation. The propejidation is based
on property certificates (binding components and configamatto properties)
issued by property certifiers.

Property Verifier This module engages with the property prover in the proplesised
attestation exchange. Its requirements are based on tifiewvpolicy (property
requirements and trust policy) that it requires as an input.

Property Attestation Trust Model We outline certain deployment-dependent secu-
rity assumptions that are made by our design. In seEtiodd e show how to guar-
antee that they are satisfied.

The verification proxy is a core component of the design. Téwdfied platform
(or its user/owner) needs to trust in its integrity (correperation and authenticated
channel) and confidentiality (confidential channel and fermation leakage) in order
to guarantee privacy. The verifier needs to trust in the nitiegf the verification proxy
in order to believe the properties that the verification growtputs. In addition, the
verifier needs to know a verification proxy signature key (mjbrivate key pair) that
are used by the verification proxy to authenticate its vettion results.
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Figure 7.11: Trust Model for Property Attestation: Enstiend Keys (bold identifiers
denote key-pairs)

Figurd 711 depicts the trust model for property attestatiéach entity is shown to-
gether with the public signature verification keys that #deto know. Bold identifiers
represent key-pairs of the entity. The arrows in the figupeasent trust relations be-
tween entities (or, in fact, trust policies associated pitblic keys): The/erified Plat-
formowns an attestation identity key/K and knows the verification proxy’s (public)
key VP. Ittrusts the owner of/P to protect the confidentiality of its measurements. In
the simplified privacy policy model discussed§if. 1.8, the verification proxy is thus
the single entity to which the verified platform wants to seadfiguration information.
The Verification Proxyowns its signature key-pairP. EachComponent Directory
owns a key-pailCD; with which it certifies configuration descriptors. Edefoperty
Certifier i« owns a key-pairPC; with which it certifies properties related to (sets of)
components. Thé&/erifier knows knows the platform identity (public) key/K of
the platform about which it wants to receive property-basesstation; it trusts that
measurements authenticated with that key correctly reptéke configuration of the
platform based on the TPM certified with/K (even though he does not see them).
The verifier also knowd/P and trusts the integrity of property-based attestationls wi
that key. The verifier trusts configuration descriptionshanticated withCD; . ; and
property certificates authenticated wittf’; ;.

7.1.9 Property Attestation Protocols

We now describe the protocol for property-based attestdiassed on the above trust
model; it is represented in Figure 7112. The exchange igérigd by the verifier who
requests to receive property attestation about the pfatiesociated wittd /K. We
name the protocol steps corresponding to the names of basisage flows and com-
ponents in Figure 7.10.

Platform Verification Request The verifier sends a message to the verification proxy
which contains a randomly generated 160-bit challenged@pnthe attestation
identity key AIK about which she wants property-based attestation, andustr t
policy TPy. As mentioned ing [7.1.8, we assume that the verifier does not
protect the privacy of her trust policy; we also assume thatverifier receives
all the properties the verified platform can guarantee utidgtrust policy.

Measurement RequestUsing an authenticated channel, the verification proxy for-
wards challenge and /K to the verified platform. The platform decides whether
or not to continue based on its policy and trust model. Werasdihe platform
knows VP as the key of a trusted verification proxy and continues byesting
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TPM Platform Verification Proxy Verifier

challenge:
¢, AIK, TPy
AR

authyp (67 Al K)

-—_—

¢, AIK

—

—_—
qu = Signyk (PCR, ¢)
_

confyp(log, qu)

verify log
reconstruct binary config
derive propertieprop™
from confige
authyp (prop*, ¢, AIK, TPy )

[

verify prop-
erties

prop”

Figure 7.12: Property Attestation Protocol

a TPM quote. Note that the challenge used between verificptioxy and plat-
form (and TPM) need not be the same as the challenge useddretwsdfication
proxy and verifier. Indeed, it is up to the verification proxgree to judge the
correctness and freshness of the actual TPM quote.

TPM Quote Request/Responserhe platform requests and receives the/K-
authenticated quote using the challenge.

Measurements The platform sends the quote and the log-file to the verificgbiroxy
using a confidential channel (described below).

Config Validation The verification proxy can now reconstruct the platform’afigu-
ration using the authenticated metrics (PCR quote), théllwgnd (potentially)
config descriptors certified by keys withifiPy, .

Property Validation The verification proxy derives properties of the platforietsn-
ponents based on property certificates certified by keyswiti#y, .

Platform Property Status The verification proxy returns an authenticated message
containing the Platform Verification Request and the prigethat can be as-
sured. The verifier checks whether this response is autfaet with a key
which her policy considers to belong to a trusted verifigagooxy. If so, she
trusts that the properties returned can currently be gteedrby the platform
associated wittld IK underTPy,.

Note that the protocol assumes that the security of the gatifin proxy is guaran-
teed. In addition, we assume that messages from the vaofigatoxy to the platform
and the verifier are authenticated while messages from #tph to the verification
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proxy are kept confidential (denoted byth andconf, respectively). How this will be
guaranteed depends on the deployment and will be descri®eitiori 7.1.70.

Note that more complex privacy policies (e.g., the verifigatfprm also protect-
ing which properties can be proved to which verifiers undeictvitrust policy) may
require also authentication by the verifier of the initiafjuest message, as well as
confidentiality protection of the verification proxy’s resyse to the verifier.

We assume that high-level security properties about agstattan be guaranteed
only if all components on the platform are measured; thismgs that the measure-
ment process as depicted in Figlirel 7.6 continues up to tHeatipn level. Thus the
verification proxy should not attest to any properties umiesan convince itself that
the verified platform’s configuration indeed supports tha¢eded measurement.

7.1.10 Deployment Scenarios

In previous sections, we assumed the existence of a key/paised by the verification
proxy for authenticating messages as well as the estaldishof a confidentiality-
protected channel with the verified platform. Verified pdath as well as verifier were
assumed to trust this key to belong to an untampered andcteesfication proxy.

In this section, we now outline different deployment sc@sachieving the above
goals. Each scenario enables the verification proxy to ksfiadn authentic channel
and to communicate confidentially with the verified platfaand provides guarantees
to the verifier and the owner of the verified platform that tleefication proxy is un-
tampered.

Verification Proxy on a Dedicated Machine The verification proxy can be deployed
on a dedicated TPM-enabled machine and convince otheepdvterifier and verified
platform) of its own integrity through binary attestation.

If we assume that there are only a few approved standard coafigns of verifier
proxy platforms, we can expect the ‘verification proxy verifi(the platform or the
verifier in the property-based attestation) to know a setoéptable verification proxy
configurations, sa){P—C}%l, ceey ZD—Of%n}. The verification proxy can now prove its
trustworthiness with a TPM quote (using a validly certifi¢dK’) attesting to such an
acceptable configuration:

. —_—
Sign 4 rxc,, (PCR, c)

The key used for authentication and key distribution in ropattestation protocols
can then either bel /Ky p or another key protected by the TPM and which can be
shown to be associated with/K v p.

For efficiency reasons, it is recommended that the dedicatezhine also stores
recent copies of the directories with certified materiabfyarty certificates and com-
ponent certificates).

A special case of this deployment is a verification proxy odvbg the owner of
the verified platform itself. E.g., the platform owner is argmany, verified platforms
are employee machines, and the verification proxy is the eoyip firewall hiding
details of employee machines’ configuration towards compdternal property-based
attestation verifiers.

Self-Attestation: Verification Proxy on the Verified Platform The idea here is to
deploy the verification proxy on the verified platform itsédee Figuré 7.13). This
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Verified Verification Verifier
Platform Proxy Property Attestation A
(Compartment) (Compartment) | Machine

Measurement Service | Measurement Service
|

Microkernel

Measurement (TPM.).

Figure 7.13: Deployment of Property Attestation on a Mikewnel-Enabled Platform

effectively implements a self-verification of the platfariRecent microkernels allow
to execute multiple operating system instances on a singtehime [36/ 60]. On such
platforms, the TPM can be virtualised such that each comysrt has its own vir-
tual TPM [31]. This mechanism can be used to execute two TRébled machines
on the same piece of hardware. The deployment is then esemdientical to the
two-machine deployment. Since the microkernel usuallyioies services for secure
messaging, authentication and encryption is not neededdéssages between the ver-
ification proxy and the platform.

As described in the two-machine case, the verifier is reduoeerify the integrity
of the verification proxy using binary attestation. In thése, the scope of this verifi-
cation would be the compartment that executes the veridicgtioxy, while the con-
figuration of the compartment executing the platform is nstldsed. This verification
would be based on the services provided by the virtual TPMarcompartment where
the verification proxy is executed.

Cryptographic Proofs

To solve the shortcoming of the TAS approach described iptaeious section, it is
sufficient for the verifier to securely verify the presence ckrtain property by means
of a cryptographic proof. Since the verifier can check th@fibdoes not need to trust
the implementation of the software components anymoréiisnnhodel, only the user
of the platform has to trust the software performing the@eot not to leak information
about the platform configuration. The TCG calls the softwarder this trust model
the Trusted Software Stack (TSS)[93]. The implementaticthe following protocol
can be seen as an extension to the TSS.

In the following section we present two possible ways ofiséa such a property-
based protocol.

Proving Possession of a Valid Property-Certificate The basic idea of this approach
is as follows. An acceptable configuration is certified by difteate issueiCZ who
publishes certificates on mapping between propegtieand configurationgs. As
mentioned before these certificates are represented thsigigatures -7 of CZ. For
property attestation of, host(M) proves to the verifiey that there is a valid link be-
tween the conventional attestation signatuye generated by the attestor (here TPM),
and the certificaterc7 attesting that the configuration specificatian provides the
property specificatiops. Note that in this protocol the prover proves directly that i
configuration complies with that in the certificate withohbwing the certificate. In
opposite to the hardware-based solution suggested inoBEEH.T, this approach does
not need extensions of the underlying trusted computindvisaire.
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The protocol includes two main phases, the issue phase amadtéstation phase. In
the issue phas€7 locally generates property certificaiesr < Signgy., (ps, cs). In
the attestation phase, the property-based attestatiooopidas performed. It is defined
as follows:

(V:ind, A: —) «— Attest(V : —; A: cs; *: ps, PKcz, N,).

The common input is the properpy, the public keyPK o7 of the certificate issuer
CZ and the noncé&V, (chosen by).

More concretely, the TPM signs the messdgie|| N, whereB,., denotes a com-
mitment to the configuratioms. The resulting signature is denoted bypy; «—
SigNgk 1y, (Besl|Ny). A extends the TPM'’s signature to a signatarand sends it
to V. ThenA proves in zero-knowledge that @) contains a valid property-certificate
for the propertyps, (ii) the content of the commitmert., (which is signed by the
TPM) is the same as the configuration certified in the certdieaz. V also verifies
that the noncéV, (obtained by the same verifi®)) is signed by the TPM.

Note that the certificatecz is the secret input to the protocol since the verifier
should not learn information about the platform configumatis. For the concrete
protocol one can deploy the group signature and cryptogeapbhniques similar to
those used in the context of DAA [18j.

The unlinkability requirement can be realised by uskigrr», as an anonymous
session signature key that was verified by the verifier uspspadonym certified either
through a Privacy CA or through DAA.

To fulfil the revocability and the availability requirementhe underlying protocol
should offer the possibility to verify whether or not thisniguration is still valid.
However, revocation-related issues occur just like in ywartificate-based solution
(see Sectioh 7.11.7). Hence, the protocol should providecharésm to securely prove
that the current certificate is not on the certificate revioodist.

A concrete realisation of such a protocol is proposedin:[T8E property-based at-
testation (PBA) protocol presented there includes thetioreand verification of PBA-
signatures, as well as a configuration revocation protdde. certificate issuetZ has
to provide property certificates but is not involved in thiestiation and revocation pro-
tocols. Certificate revocation lists are not necessaribliphed byCZ (although this is
an option, of course): they can be published by anyone, ar beenegotiated among
A andV before they execute the revocation protocol.

Proving Membership A way to securely prove that the machind to be attested
has a certain property is to prove that the correspondinfjgumation is in a set of
configurations accepted by all parties involved in the &dtes protocol. The agree-
ment on this set can be realised in different ways dependirth@trust model. More
concretely, the agreement can be achieved between thengramd verifying parties
by means of negotiation or by means of a third party trusteldils of them.

In [54] a mechanism is proposed based on the second apprdaehdea is that
A signs a configuration encrypted under the public key of aeduthird party and to
sign a contract betweew and M that guarantees that the platform has the properties
requested by. This approach makes it impossible for providers to disanate

12A slightly extended protocol can be used for property-baszding: The machind1 has to prove that it
knows a valid certificater ), on an encryption ke’ K pys generated by the TPM, and a valid property
certificateocz.

13Note that this requires changes to the TPM since currenggpiecification allows the TPM to sign PCR
values and not values encrypted by a third party.
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an operating system or to force users to use a specific platfonfiguration. Since
the TPM also signs the encrypted values, verifiers are edshee the attested config-
uration is valid. In case of a conflict, the trusted third padn decrypt the encrypted
configuration to verify whether the user is cheating.

For example, if a bank requires that users only use trusteHihg software cer-
tified by another party, and if the user accuses the bankrtiséet third party can
decrypt these values to verify whether the user used theadryanking software.

The problem of this approach is that verifiers cannot vehfy property enforced
by the user platform online. In the following we discuss amiioved method that
allows online verification. Instead of letting a trusteddhparty decrypt the configu-
ration offline, the platform cryptographically proves tlhatommitted configuration is
a member of the set of certified configurations. More conbydtethis proof of mem-
bershipprotocol for property-based attestation, the TTP (e.geréficate issue€Z)
publishes the set of all platform configuratio§”® := {¢sy, ... cs, } that provide a
specific propertys, and a signaturecz on this set. To attest properties, a local soft-
ware service performs a conventional attestation prot@itblthe TPM where it hides
the signed configuration. Then, a cryptographic protocoVes the following: First
the committed configuration valus is contained inC'S, and second the TPM attes-
tation signature is valid. The abstract protocol definii®aimilar to that presented in
previous sections (for example, see Sedfion 711.10).

To fulfil the revocability and the availability requiremesnthe underlying proof of
membership protocol should offer the possibility to dyneeily remove configurations
from the list and to add new configurations into the list.

Assessment of Delegation-based Solutions

In this section, we briefly consider the advantages and disaeges of the delegation-
based solutions described in the previous sections.

The solution in Section 7.1.7 requires an extension of TPMfionalities in hard-
ware. A variant of the solution in Sectién 711.7 could alsdrbplemented by an ex-
tension to TPM hardware. Enhancing the TPM with propertgefunctionality has
two major advantages: First, the trust model related tortsted computing platform
does not change since the TPM has to be fully trusted by agssamamyway. Hence,
the requirements security, accountability and privacylwafulfilled (see also Section
[71.8). Second, since the realisation of property-bagedtation within a TPM does
not depend on external components, changes to the platfmmfigaration cannot lead
to unavailability of sealed data which fulfils requiremEhfa#ailability). The disad-
vantage of this approach is the additional complexity of iR which may make the
TPM more complex and expensive. Nevertheless, the reqoaoeglexity should be
acceptable compared to the complexity of the DAA protdc8].[1

The solution in Section 7.1.7 is based on a strong trust mamttthas limited func-
tionality which may not be satisfactory: This solution isheir inefficient or verifiers
have to trust a software service running on the platform tattested. Note that for the
desired security targets to be satisfied the software seMAS must be fully trusted
since otherwise this component (machine) can simply dischdl secret information, in
particular privacy-relevant information, to a verifier. \etheless, the software-based
approach discussed above can be realised based on existitgnisms (e.g., a TPM),
as shown in, e.g.. [61].

The solutions introduced in Sectibn 7.1.10 can be realisdtbut requiring all in-
volved parties to trust the software component used in tiestation process. This is
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very useful and effective for many business models and egijins. Efficient cryp-

tographic techniques exist to construct the building béook these proofs. 11 [19],
the authors show how to use them in order to realise a protbtmkever, the overall

protocols may become complex and costly for certain apidica such as those for
embedded systems.

7.1.11 Implementation

This section describes a practical realisation of propbayed attestation based on
existing technology, e.g., a TPM. The approaches discuss8éctior 7.1]7 assume
a secure operating system, since the @sdras to trust the operating system not to
leak information about the platform’s configuration and teeifier VV has to trust all
attestors.

Therefore, the following subsection shortly introducestihsic system architecture
we used to realise property-based attestation. Subséfiiofl discusses a hybrid
attestation model, i.e., a model using binary and propleaised attestation. Although
such an approach still uses binary attestation, it keeparh@unt of binary attested
software components small.

The Basic Architecture

The trustworthiness of a TCG-enabled computing platfortimged by the trustwor-
thiness of the corresponding TCB. Today’s operating sysi@m inappropriate for use
as a trusted software basis, because they can be malicimasiipulated after a re-
boot}

In practice, it is very difficult for a verifier (challengep tlecide whether a concrete
system configuration provides a desired property. Everiétiforcement mechanisms
of the trusted computing base would be highly trustworthg.(edue to its evaluation
at EAL), the property obviously depends on the locally enforcemisty policy,
too. To make the analysis of the platform’s trustworthinegse realistic, it would
be meaningful to provide a policy-neutral operating sysbase that delegates the en-
forcement of policies to the application level softwares(B&7]). Since the underlying
TCB is now much simpler, it has only to fulfil basic securitguérements as described
below:

Secure PathThe TCB has to provide a secure path between provider arltapn,
e.g., it has to ensure that only the application that fulfissprovider’s policy can
access the content. This requirement implies that the geownd the TAS can
communicate securely.

Isolation The TCB has to prevent an attacker (e.g., the local user onaewrent ap-
plication) from accessing or manipulating the code or thta dhthe application
(which is similar to overwriting”). This requirement ensures that the code and
the data of the TAS are protected against attacks of contprecesses.

In this context, the PERSEUS architecture][69] is an opememdevelopment
project based on TC hardware that aims at fulfilling theseiregqnents. This security

14Note that the operating system has no access to the cryptigrikeys stored in TPM, but to all de-
crypted content.
15Evaluation Assurance Level, sée[[22].
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framework is currently being developed within the EM$ERBnd OpenT@ projects.

Hybrid attestation

Since currently available TC hardware, e.g., a TPM, onlyig®s binary attestation,

the availability requirement cannot be fully satisfied,csirthanges of binary attest-
ed/sealed data still leads to inaccessibility of the sedbdd. Nevertheless, it makes
sense to keep the complexity of binary sealed software all ampossible to reduce

the probability of an update.

For instance, in the Enforcer proje€t [62] cryptographigsare bound only to
so-called long-lived data: the boot loader, the Linux kéraed the Enforcer module.
However, this solution is still unsatisfactory since Linkernel updates happen quite
often.

In the PERSEUS project, we have combined authenticatedrgpdhe personal
secure bootstrap architecturel[43], and the idea of cetifibased attestation to further
reduce the complexity of the data that has to be binarytatieand binary-sealed (see

Figure[7.14).

send(m
‘ M receive(m -
+dal a(D) + exec( Gy
| |
| TSL |
Tdat a(D) T exec(CrgL) V
cert attest(p)
a J
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insecure channel secure channel

Figure 7.14: Simplified model of the bootstrapping desicalised by the PERSEUS
security architecture

The general idea behind [43] is that in the boot chain everghime M; checks
whether a valid certificateertc7 of the executed machingt;; exists. For this pur-
pose, we are using an enhanced boot |&HdBrthat itself loads the public signature
key PKcr representing a property of a certificate issue€Z. We assume that the
BIOS stores the configuration of the boot loaderAn'R; and that the boot loader
stores a hash value of theK-z in PCR,; ;. When booting the subsequent system
(e.g., a security kernel)3 checks whether a valid certificate issuedd¥ exists. If
not, it extends?CR; .1 by a random valugd

Now, a verifier) can ensure that, e.g., the security kernel of a remote phatfas a
certain property certified b§Z by attesting resp. sealing agai#3t'R;, andPCR; ;.
The expressiveness of only one certificate is limited. Nixedess, it can be used to
attest elementary security requirements, e.g., isolasiecure communication, and the

16http://www.emsch.de

L http://www.opentc.net

8http://www.prosec.rub.de/trusted_grub.html

1%We decided to extend the appropriate PCR instead of simpyriipting the boot process, because we
do not want to prevent users from executing non-certifiececod
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fact that the loaded system itself provides property-basetation. More complex
properties of subsequent modules can then be attested bgc¢hgty kernel itself.

In our architecture, the boot loader executes the PERSEU®&isekernelT'SL
which itself attest properties of applications (e.g., Lifitlx, security-critical applica-
tions, or a Trusted VM) using any of the solutions discusse&ections 7.1]16 and
[Z1.7. Alternatively, th&d'SL could delegate the attestation of applications by execut-
ing a machine (e.g., a Trusted VM) that itself can attestiapfibn properties. This
approach, which can also be applied to architectures basad/stual machine mon-
itor (VMM), allows us to seal data only to the binary configiima of the boot loader
that itself ensures that the data can only be unsealed ifdhfigeiration was authenti-
cated by the appropriate cryptographic Kl -7. To further decrease the complexity
of binary-attested code, one could realise the suggestetisoby the BIOS instead
of the boot loader.

7.1.12 Open Issues

The open problems can be separated into three differentgnotiasses:

The first one deals with the question on how property-bagedtation and sealing
can efficiently be implemented. The approaches discusseedtiorf 7.1]7 and Section
[ZI11 all have their advantages and disadvantages, bytatieeall far from being
perfect. To fulfil the availability requirement, an extemsiof the trusted computing
hardware seems to be necessary. However, it is improbadtléatmal methods (e.qg.,
semantic code analysis) will be performed by trusted comgtardware in the future.
Thus, the currently best and cheapest solution seems to &relevdre extension based
on certificates[53].

The second class of problems is the question how propegiegfficiently be de-
rived. Today, an evaluation, e.g., according to the Commuotei@, followed by a
certification of a trusted third party seems to be the maxinthem can be done for a
huge class of software. In the future, however, improvethsot-engineering meth-
ods based on formal methods, proof-carrying code, and s&r@ode analysis may
give the chance to formally or semi-formally derive profesrfrom code directly and
thus to prevent the need of a trusted third party.

The third problem class is related to properties themseBesides the important
guestion which classes of properties of software can beetbin general, it remains
unclear which aspects of properties are meaningful andiitapb We hope that the
properties required by a small security kernel that maittlysas software on an appli-
cation level is manageable. On an application level, how@reperties to be attested
may become complex and difficult to manage.

Finally, the suggested approaches, like nearly any otlergg mechanism, rely
on the assumption that the underlying operating systencisreenough, e.g., to pre-
vent leakage of its own configuration. Especially the cutyeavailable operating
systems do not fulfil this elementary requirement and therigccommunity has to
put a lot of effort into providing a secure operating systeasdadl on open standards.

7.1.13 Summary

One of the most recent and notable initiatives of the conmrpatiistry announced to
increase the security of computing platforms by means ofmeatware architectures.
This initiative, the Trusted Computing Group (TCG), aim®fiéring new functional-
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ities allowing to verify the integrity of a platform (attedton) or bind quantities to a
specific platform configuration (sealing).

In this contribution, we firstly point out the deficienciestbe so-called binary
attestation and sealing functionalities proposed by ttexifipation of the TCG: If
naively used, these mechanisms may discriminate compplifiprms, i.e., their op-
erating systems and consequently the corresponding ve@négrarticular problem in
this context is that of managing the multitude of possiblefiurations. Moreover, we
highlight other shortcomings related to attestation, Agusystem updates and backup.
Secondly, we introduce the concept of property-basedtaties: The idea is that at-
testation should not depend on the specific software andfaiware, but only on the
properties that the platform provides. In contrast, progpbased attestation only ver-
ifies whether the attested platform has the sufficient ptagsethat fulfil certain secu-
rity requirements of the party who asks for attestation. \Wippse a framework for
property-based attestation/sealing and present a varietylutions based on Trusted
Computing (TC) functionality and cryptographic techniguBloreover, we give some
concrete constructions for one class of these approacae®ly, delegation-based at-
testation. Thirdly, we discuss the implementation issoepfoperty-based attestation
protocols based on the existing TC hardware such as theetri&atform Module
(TPM). Lastly, we consider some open problems regardinggmntés.

7.2 Dependability Enhancements Using Virtualisation

H. Ramasamy, M. Schunter (IBM)

7.2.1 Introduction

We address the issue of using virtualisation as a buildingkfor enhancing depend-
ability not just in data centres, but also in more generairggt. With few exceptions,
current solutions in this space have largely been ad-hoereT$eems to be an increas-
ingly prevalent tendency to think of virtualisation as aesail. Suggestions to shift
almost anything that runs on a real machine to a virtual nmechind to move services
(such as networking and security) currently provided bydhperating system to the
VMM are becoming commonplace (e.d., [32]). The related workhis research has
been summarised in Sectibn2.5.

7.2.2 Virtualisation: New Opportunities for Dependability

Commodity operating systems provide a level of dependglitfilat is much lower than
what is desired. This situation has not seen much changesipdkt decade or so.
Hence, the focus has shifted to designing dependable systemand the OS problems.
Virtualisation enables such a design in at least two ways Way is to encapsu-
late the OS and applications in a VM and introduce depenitiabithancements at the
VMM level, which are transparent to the guest OS and apjdinat Such a design al-
lows the VM to be treated as a black box. For example, checkipgiand recovery can
be done at the granularity of VMs instead of processes. Agtatlay is to instrument
applications, middleware, and/or the guest OS with exgkivdbwledge of their running
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on a virtual as opposed to a physical machine. For exampbeogramming languages
supporting VMs (such as Java and OCAML), checkpointing fiieation state at the
VM level or byte-code level (as opposed to native code) chowahe saved state to
be restarted on a hardware platform different from the onehiich checkpointing was
done[3].

Virtual machines offer a degree of flexibility that is not pitide to obtain on phys-
ical machines. That is mainly because VM state, much liks,fitan be read, copied,
modified, saved, migrated, and restored [32]. In this sacti® propose various new
methods to improve dependability that are based on vigatidin.

Coping with Load-Induced Failures: Deploying services on VMs instead of physi-
cal machines enables higher and more flexible resilienczai-induced failures with-
out requiring additional hardware. Under load conditiche, VMs can be seamlessly
migrated (using live migratiori [20]) to a lightly loaded om@ore powerful physical
machine. VM creation is simple and cheap, much like copyifitea In response to
high-load conditions, it is much easier to dynamically pstmn additional VMs on
under-utilised physical machines than to provision adddi physical machines.

Patch Application for High-Availability Services: Typically, patch application in-
volves a system restart, and thus negatively affects semiailability. Consider a
service running inside a VM. Virtualisation provides a wayr¢move faults and vul-
nerabilities at run-time without affecting system availiéyp For this purpose, a copy
of the VM is instantiated, and the patch (be it OS-level ovieerlevel) is applied on
the copy rather than on the original VM. Then, the copy isastl for the patch to take
effect, after which the original VM is gracefully shut downdafuture service requests
are directed to the copy VM. The patch is applied at the copyarid the copy VM is
restarted while the original VM still continues regular ogéon, thereby maintaining
service availability. To ensure that there are no undelgiisiie effects due to the patch
application, the copy VM may be placed in “quarantine” forudfisiently long time
while its post-patch behaviour is being observed beforethgnal VM is shut down.
If the service running inside the VM is stateful, then aduitil techniques based on a
combination of VM checkpointing and VM live migration [20]ay be used to retain
network connections of the original VM and to bring the copyta-date with the last
correct checkpoint.

Enforcing Fail-Safe Behaviour: The average time between the point in time when
a vulnerability is made public and a patch is available i steasured in months. In
2005, Microsoft took an average time of 134.5 days for iggudritical patches for
Windows security problems reported to the company [1].  Dmpiag patches for a
software componentis a time-consuming process becaulse néed to ensure that the
patch does not introduce new flaws or affect the dependebetesen the component
involved and other components in the system. In many casssvéce administrator
simply does not have the luxury of suspending a service ineelgl after a critical
flaw (in the OS running the service or the service itself) lmees publicised until the
patch becomes available.

Virtualisation can be used to prolong the availability oé thervice as much as
possible while at the same time ensuring that the servicalisdfe. We leverage the
observation that publicising a flaw is usually accompanieddiails of possible attacks
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exploiting the flaw and/or symptoms of an exploited flaw. Depig an external

monitor or intrusion-detection system to identify atta@insitures or symptoms of an
exploited flaw may be done independently of the patch dewedop. The monitor may
also be developed much faster than the patch itself, be¢hasmonitor may not be
subject to the same stringent testing and validation reqents.

Consider a service running inside a VM rather than direatly@hysical machine.
Then, a VM-external monitor, running parallel to the VM, dsnused detect the symp-
toms of the exploited flaw and to signal the VMM to crash the \Alternatively, if
the attack signature is known, the monitor can be used tdifgean ongoing attack
and terminate interaction with the attack source. The moribuld be implemented at
the VMM level or in a privileged VM (such as DomO in Xen [8]). itfis important to
revert the service to its last correct state when a patch ldbessme available, then the
above technique can be augmented with a checkpointing misthahat periodically
checkpoints the state of the service with respect to the V.l (E]).

Proactive Software Rejuvenation: Rebooting a machine is an easy way of rejuve-
nating software. The downside of machine reboot is thatéhdce is unavailable dur-
ing the reboot process. The VMM is a convenient layer fooidticing hooks to proac-
tively rejuvenate the guest OS and services running ins\éd i a performance- and
availability-preserving way. Periodically, the VMM can b&de to instantiate i&in-
carnation VMfrom a clean VM image. The booting of the reincarnation VM @md
while the original VM still continues regular operationetieby maintaining service
availability. One can view this technique as a generabsatif the proactive recovery
technique for fault-tolerant replication proposed by Re&nd Kapitzal[73].

As mentioned above in the context of patch application,i&pkes based on VM
checkpointing and live migration may be used to seamlesahsfer network connec-
tions and the service state of the original VM to the reinatiom VM. It is possible to
adjust the performance impact of the rejuvenation proeedarthe original VM'’s per-
formance. To lower the impact, the VMM can restrict the ant@imesources devoted
to the booting of a reincarnation VM and compensate for te&iction in resources by
allowing more time for the reboot to complete.

One can view the above type of rejuvenation aseanory-scrubbintgechnique for
reclaiming leaked memory and recovering from memory erodrthe original VM.
More importantly, such periodic rejuvenation offers a waytoactively recover from
errors without requiring failure detection mechanismsi@htare often unreliable) to
trigger the recovery.

Replica Diversity: In fault-tolerant replication, diversity of replicas is portant to
ensure that not all replicas fail because of the same diseuptent. By deploying
replicas on a combination of virtual and physical machiraher than on physical
machines alone, replica diversity can be enhanced. Algapgi@g replicas on VMs
instead of physical machines opens another layer in whigtrsity can be introduced:
the VMM software. VMM diversity and OS diversity can complent each other to
enhance replica diversity without additional hardwarea£o9n the flip side, using the
same VMM for all replica VMs will actually lower replica divsity even if the replicas
are deployed on different operating systems. That is becateult in the VMM could
lead to failure of all replicas.
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Figure 7.15: Non-virtualised node

Containment: Fault containment is an important aspect of dependabilityntain-
ment among VMs running on the same VMM is much stronger thartatoment
among processes running on the same OS. To better isolafautheeffects of two
services running on the same OS and physical server, onecantbe physical server
into two VMs, with each running one service. On the other hdadlt containment
between two VMs is not as strong as fault containment betvt@enphysical ma-
chines (e.g., because of covert channels). Hence, whersausta restriction (e.g., in
highly-critical space and military applications), rungisoftware components on dis-
tinct hardware would be better for fault containment thamiog the components in
different VMs on the same hardware.

7.2.3 Quantifying the Impact of Virtualisation on Node Rel@ability

In this section, we use combinatorial modelling to perfogtiability analysis of re-
dundant fault-tolerant designs involving virtualisation a single physical node and
compare them with the non-virtualised case. We consider @eivio which multiple
VMs run concurrently on the same node and offer identicaliser We derive lower
bounds on the VMM reliability and the number of VMs requirexd the virtualised
node to have better reliability than the non-virtualisedecaWWe also analyse the reli-
ability impact of moving a functionality common to all VMs baf the VMs and into
the VMM. In addition, we analyse the reliability of a reduntiaxecution scheme that
can tolerate the corruption of one out of three VMs runninghensame physical host,
and compare it with the non-virtualised case. Our resulistyio the need for careful
modelling and analysis before a design based on virtuaisat used.

Combinatorial modelling and Markov modelling are the twammaethods used for
reliability assessment of fault-tolerant desidns [46]. 8hese combinatorial modelling
because its simplicity enables easy elimination of “hog&lehoices in the early stage
of the design process. In combinatorial modelling, a systensists of series and par-
allel combinations of modules. The assumption is that methilures are independent.
In a real-world setting, where module failures may not beepwhdent, the reliability
value obtained using combinatorial modelling should bema&s an upper bound on
system reliability.

Non-Virtualised (NV) Node: For our reliability assessment, we consider a non-
virtualised single physical node as the base case. We meleldde using two mod-
ules: hardwarel{) and the software machiné/{) consisting of the operating system,
middleware, and applications (Figlire 4.15(a)). Thus, thaeris a simple serial system
consisting of H and M, whose reliability is given by = Ry Ry, whereRy
denotes the reliability of modul& (Figure[Z.1b(b)).

Virtualised Node with » Independent, Identical VMs: Figure[Z.16(a) shows a
physical node consisting df, a type-1 VMM (1) that runs directly on the hardware
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Figure 7.16: Node witlw VMs

(such a VMM is referred to astayperviso), and one or more VMs{(M;},i > 1). The
VMs provide identical service concurrently and indeperlygine., without the need
for strong synchronisation). For example, each VM could bietaal server answering
client requests for static web content. Thus, the node isiassparallel system (Fig-
ure[Z.T6(b)) whose overall reliability is given B, = Ry Ry [1 —[];_, (1 — Ru,)].
Here, we consider the reliability of the hardware to be thaeas that in the non-
virtualised case because the underlying hardware is the saboth cases. An obvi-
ous concern is whether the hardware in the virtualised nalieegister a significant
drop in reliability due to load/stress compared to the notualised node. The concern
does not apply to our context of application servers in a datdre in which typical
hardware utilisation in a non-virtualised node is abysynallv (less than 5%) and is
typically in the low tens of VMs.

R%,. > RLY gives the condition for the-replicated service to be more reliable
than the non-virtualised service, i.&y Ry (1 — [[;(1 — Rag,)] > RuRa. For
simplicity, let Ry;, = Ry forall 1 < i < n. This is a reasonable assumption, since
each VM has the same functionality as the software machiria the non-virtualised
case. Then, the above condition becomes

Rv[l — (1 — R]w)n] > Ry (71)

Inequality [7Z1) immediately yields two conclusions. Eii§ n = 1, then again
the above condition does not hol&y{ < 1). What this means is that it is necessary
to have some additional coordination mechanism or protbgii into the system to
compensate for the reliability lost by the introductionted thypervisor. In the absence
of such a mechanism/protocol, simply adding a hypervisperao a node will only
decrease node reliability. SecondRif = R, then it is obvious that above condition
does not hold.

Itis clear that théhypervisor has to be more reliable than the individual Viie
interesting question is how much more reliable. FidurelgHas that for a fixed?
value, the hypervisor has to be more reliable when deploigngr VMs. The graph
also shows that, for fixed values &f,; and Ry, there exists a lower bound on the
n value below which the virtualised node reliability will deiiely be lower than that
of a non-virtualised node. For example, whBp; = 0.1 andRy = 0.3, deploying
fewer than 4 VMs would only lower the node reliability. Thisa useful result, as in
many practical settings?,, and Ry values may be fixed, e.g., when the hypervisor,
guest OS, and application are commercial-off-the-shelTS) components with no
source-code access.

The equation fof?;, ; also suggests that by increasing the number of VMs, the node
reliability can be made as close to the hypervisor religbdis desired. Suppose we
desire the node reliability to b, whereR < Ry . Then,R = Ry Ry [1—(1—Ra)"].
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Figure 7.17: Lower bound on the hypervisor reliability fophysical node withn
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Figure 7.18: Lower bound on the number of VMs to achieve ddgieliability R for a
physical node with, independent and concurrently operating VMs providing tabath
service whemRy = 0.999.

Assume that the hardware is highly reliable, iy ~ 1. Then, the above equation
becomes the inequality,

R < Ry[l — (1 — Ray)"]

— (1-Ry)" <1-4#
= nlog(l — Ra) < log(1l — %)
Dividing by log(1 — Ry/), a negative number, we get,
> )
log(l - RM)

Inequality [7-R) gives a lower bound on the number of VMs iezglifor a virtu-
alised physical node to meet a given reliability requiretnén practice, the number
of VMs that can be hosted on a physical node is ultimatelytéchby the resources
available on that node. Comparing the lower bound with thalmer of VMs that can
possibly be co-hosted provides an easy way to eliminataioechoices early in the
design process.

Figure[7-IB shows the lower bound farfor two different R values (0.98 and
0.998) as the VM reliability £,;) is increased from roughly 0.1 to 1.0, with the hy-
pervisor reliability fixed ab.999. The figure shows that for fixeRy and R, values,
higher system reliability (up t&;/) can be obtained by increasing the number of VMs

(7.2)
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Figure 7.19: Moving functionality out of the VMs into the hsvisor

hosted. However, whemis large, one is faced with the practical difficulty of obtaig
sufficient diversity to ensure that VM failures are indepemd

Moving Functionality out of the VMs into the Hypervisor: We now analyse the
reliability impact of moving a functionality out of the VMsd into the hypervisor.
As before, our system model is one in which a physical node:hasl independent
and concurrently operating VMs providing identical seevi€onsider a functionality
implemented inside each VM. Then, each \W} can be divided into two components,
f andM;, the latter representing the rest ;. Figure[Z.1P(a) shows the reliability
model for a node containing such VMs. Let us call this node configuratian .
Further, suppose that the functionalityis moved out of the VMs and substituted by
componenf implemented as part of the hypervisor. Now, the new hypervsnsists
of two componentd” and the old hyperviso¥. Figure[7.1D(b) shows the reliability
model for a node with the modified hypervisor. Let us call tigsle configuratios.

We now derive the condition fars to be at least as reliable &5. For simplicity,
let us assume theRM; = Ry forall 1 <4 < n. Then, the desired condition is

RC2 > R

sYs sYs

— RHRVRF[]. — (1 — R]w/)n] > RHRV[l — (1 — RfR]W/)n]

[1—(1— RfRun)"]
(1= (1= Ra)"]

It is easy to see from Figuke 7]19 that when there is only one iVtibes not matter
whether the functionality is implemented in the hypervisomn the VM. We can also
confirm this observation by substituting= 1 in inequality [Z.3).

Figured 7.2D(a) and (b) illustrate haf; varies asR; is increased from 0.1 to 1.
The graphs show that for configuratioi to be more reliable that’;, F' has to be
more reliable tharf. Figure[7.2D(a) shows that #&,,, increases, the degree by which
F should be more reliable thahalso increases. Figure 7]120(b) shows that the degree
is also considerably higher when more VMs are co-hosted @sdime physical host.
For example, even with modeBf» and Ry values of 0.75F" has to be ultra-reliable:
Rr has to be more than 0.9932 and 0.9994 i 6 andn = 9, respectively. Thus,
when more than a handful of VMs are co-hosted on the same qalysdde, better
system reliability is likely to be obtained by retaining aoply reliable functionality in
the VM than by moving the functionality into the hypervisor.

Virtualised Node with VMM-level Voting: Consider a fault-tolerant 2-out-of-3
replication scheme in which three VMs providing identicaihdce are co-hosted on a
single physical node. The VMM layer receives client regsiastd forwards them to all
three VMs in the same order. Assume that the service is ardetistic state machine;
thus, the VM replicas yield the same result for the same retiqi@e VMM receives the
results from the VM replicas. Once the VMM has obtained e=pfrom two replicas

= Rp > (7.3)
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Figure 7.20: Plot ofRp >

with identical result values for a given client request,atvards the result value to
the corresponding client. Such a scheme can tolerate tliteaaytfailure of one VM
replica, and is similar to the one suggested in the RESH t&atiire for fault-tolerant
replication using virtualisation [72]. Assuming that th&/¥ fail independently, the
system reliability is given by

RZ =3 = Ry Ry[R3, + (g’) R%,(1 - Ryp)).

sYs

Then,R2-°=3 > RNV gives the condition for the 2-out-of-3 replication schembe

sYs sYs

more reliable than the non-virtualised service. Thus, waiab
3
RHR\/[R?M + <2> R?w(l — RM)] > RHRM

1

_ 7.4
SRu — 212, (74)

— Ry >

Inequality [7.4) gives a lower bound on the hypervisor i#lity for the 2-out-of-3
replication scheme to have better reliability than the mishtalised case. Figufe 7121
shows a plot ofm < Ry < 1. ltis clear from the graph that there exists no
Ry value that satisfies inequalify {¥.4) and is less than 1 wRgn< 0.5. In other
words, if the VM reliability (i.e., the OS and service relilty) is poor to begin with,
then the 2-out-of-3 replication scheme will only make the@eeliability worse even
if the hypervisor is ultra-reliable. This result concurstwthe well-known fact that any
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form of redundancy with majority voting is not helpful for proving overall system
reliability when the overall system is composed of moduléhk imdividual reliabilities
of less thar).5 [46]. The graph also shows that the higher the hypervis@triity, the
larger the range of VM reliability values for which the 2-eft3 replication scheme
has better reliability than the non-virtualised case. Bameple, whenRy, = 0.98,
the range of VM reliability values that can be accommodeadagté€ater than the range
whenRy = 0.9.

7.2.4 Conclusion

We described new ways of leveraging virtualisation to invereystem dependability.
Using combinatorial modelling, we provided a more detad@elysis than was pre-
viously available on how virtualisation can affect one aspd system dependability,
namely reliability. Combinatorial modelling assumes ttinet failures of a VM hosted

on a physical node are independent, an assumption that madyenoet in practice.

Hence, the actual values we have derived in our analysisigows virtualisation sce-
narios should be considered as optimistic values. Howd#vemore significant mes-
sage of our results is that unless certain conditions (@&garding the reliability of the

hypervisor and the number of VMs) are met, introducing ligation could decrease
the reliability of a physical node. In light of the generadrid to move services out
of the guest OS into the virtualisation layer, our resultsipout the need for a more
cautious approach. Future work includes more rigorous ffingend analysis of de-

pendability attributes in the context of virtualisatioarpcularly in dynamic situations
such as VM migration.
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Chapter 8

Conclusion and Future Work

M. Schunter (IBM)

In this report, we have summarised the different securityises to be run on top of the
core security-enhanced hypervisor. Even though our ainibees to keep all security
services hypervisor agnostic, we have found out that dubddlifferent underlying
architectures, a completely synchronised implementégitiard to achieve.

While some aspects (such as the service integrity managexsevell as the poli-
cies to be enforced) can be common, the actual low-levetjdesid implementations
are hard to synchronise.

The main reason is that both hypervisors provide virtualuese abstractions on a
different level of granularity. While Xen provides virtualachines that are intended to
run complete operating systems, L4 virtualises on the miggttdr process level. As
a consequence, the right level of abstraction provided to afe virtual devices (e.g.,
disk, Ethernet cards, ...), while on L4, higher-level olkgesuch as files or communi-
cation channels are advised. The rationale is that thiscediine infrastructure that is
needed by each lightweight process.

While our work has provided deep insight into the properglesif security policy
enforcement on top of hypervisors, there is still a lot of kvahead. For the remainder
of 2007, we will focus on implementing the corporate compgitat home use case
based on the designs presented in this report.

For 2008 we will focus on enhancing our security conceptdldsvascalability and
manageability for large data centres. The focus will be on@hariven management
where data-centre-global policies are used to drive théiguanation of all individual
hosts and virtual machines.
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Appendices

A.1 Design of TPM Controller for TPM Management

Hans Brandl (IFX)

"# TPM Controller =

Ownership| Version | Status | Pin Failure Reset = Certificate Chain | About

fineon

Never stop thinking

TPM Controller
Version 1.0
(C) 2007 Infineon Technologies AG

| OK H Cancel

Figure A.1: TPM Controller Start

A.1.1 Overview

The “TPM Controller” is a GUI application that helps the useéth the initial startup
of the TPM usage. The intention of the tool is not to provideemplete set of func-
tions for handling all capabilities of the TPM nor displagiall possible TPM in-
ternal values, but to “control” the basic functionality flurther usage of the TPM.

160
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There are some other applications handling the former $sdike the “TPM Man-
ager” (http://sourceforge.net/projects/tpmmanager/) or the “TPM Monitor” (http://
sourceforge.net/projects/tpmmonitor/).

The “TPM Controller” tool has been created as a result of ther@ C EU project
and is hosted on their homepdutp://www.opentc.net/. It provides the possibility to
take, change and clear the ownership of the TPM, which aregfly the main things
to do when initiating a TPM.

Further on the current version of the used TSS, the actual Tilvare version
and the vendor name of the TPM are displayed. On the “Staals’the status of
Activation, Enable/Disable and if an owner is already setdisplayed.

With the reset button on the “Reset” tab the owner of the TPEbig to reset the
so called “Pin Failure” count.

The “Certificate Chain” tab tries to verify the TPM built-inéorsement certificate.

A.1.2 Getting started

Preconditions

“TPM Controller” is a Linux Tool developed and tested on Ofase 10.1/ 10.2, but
should work also with other Linux distributions and coulddaesily ported to Windows,
since the used GUI toolkit is available for both platform®xplicitly uses the OpenTC
Trusted Software Stack for TPM 1.2 developed by Infineon. Aking installation of
the stack is indispensable.

For the GUI toolkit the open source version of Trolltech Q2.4.was chosen.
Therefore it is necessary that a working version is insdatie the machine.

An additional dependency relies on the OpenSSL cryptorybithat is used for
cryptographic functionality.

Build & Run

If all preconditions are met, simply run “build.sh” on thenemand line to build the
complete “TPM Controller” GUI application from source.

To run the “TPM Controller”, simply type “./tpmcontrollerith the source code
folder and the tool starts up with a modal dialogue includiegeral tabs with all the
functionality explained in the following chapters. Obvabyithe tool can be simply
copied to a user desired location and run from there.

A.1.3 Ownership

The “Ownership” tab comes up something like the followingegn shot.
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"# TPM Controller =

Ownership | Version | Status | Pin Failure Reset | Certificate Chain | About |

To use most of the functionality of a TPM, it must have an

Ml owner. This button allows to take ownership of the TPM.

Change the password of an already impersonated

W owner of the TPM (owner authorized)

Clear Ownership Clear the ownership ef the TPM (owner authorized).
| OK \ | Cancel ‘

Figure A.2: TPM Controller Start Display

Depending on the current TPM state, one or more buttons maydyed out and
therefore not selectable.

Take Ownership

This should be the first action to be done to use the TPM afisrghysically acces-
sible i.e. enabled and activated. With the “Take Ownershigton the user resp. the
administrator, here called the “operator”, is capable wvingj the TPM an owner. With
this action most of the capabilities of the TPM get functiona

If the TPM has not already been set an owner, the “Take Owiggrbhtton is
activated. On the other hand, if the TPM already has an owhsubsequent “Take
Ownership” actions would fail and in prevention of this, tiiake Ownership” button
is greyed out.

To take the ownership of the TPM the user has to provide amlinivner password.
This password is later used for all owner authorised funstiand has to be safely
stored.

With the means of an input dialogue it is requested twice ftbenuser, to avoid
typing errors:
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# Owner password =

Enter the initial owner password:

Repeat the initial owner password

Figure A.3: Entering Owner Password

If the user cancels to enter the initial owner password, timepiete action of taking
the TPM ownership is aborted and nothing is done at all.

If the user has successfully been input and acknowledgeuhitied owner pass-
word, a check is done if the passwords are identical. If thffgrdhe “Owner pass-
word” dialogue is displayed again. If they're identical th8S is called to issue the
“Tspi_TPM_TakeOwnership” command. After the execution the user gdétsmed
about the result.

In case of a failure:

' Take Ownership =

@ Failed to take the TPM ownership

& OK

Figure A.4: TPM Take ownership failure

In case of a successful execution:

% Take Ownership =

:P The TPM ownership has successfully been taken
i

FOK

Figure A.5: TPM Take ownership successful

If succeeded, additionally the “Change Owner Auth” and ‘&Il®wnership” but-
ton on the “Ownership” tab will be activated. Respectiveig t'Take Ownership”
button will be greyed out and deactivated.

Change Owner Authorisation

The “Change Owner Auth” button is only activated, if an owhas been previously
set. The intention of this action is to change the ownersypaskof the TPM without
consequences to existing key hierarchies.

To change the authorisation of the owner, the user has tadealie current, re-
ferred to as “old”, owner password at first. This is done by nsez an input dialogue:
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®

# Change the owner password =

Enter the old owner password

Enter the new owner password:

Repeat the new owner password

Figure A.6: Change the owner password

In the same dialogue the new password is requested twiceid gyping errors.

If the user cancels this dialogue, the complete action ohgimay the owner au-
thorisation is aborted and nothing is done at all. If the ysesses the “OK” button,
it is checked whether the new password and its repetitiondargical. If they differ,
the “Change the owner password” dialogue is displayed agajonesting the user to
input the passwords again, correctly. Otherwise the tamsgeds changing the owner
password.

Consecutively the TSS is called to issue the “T€piangeAuth” command. After
the execution the user gets informed about the result.

In case of a failure:

% Change the owner password ©

@ Failed to change the owner password

FOK

Figure A.7: Change the owner password failure

In case of a successful execution:

> Change the owner password ~

:P The owner password has successfully been changed
%

#OK

Figure A.8: Change the owner password successful

Clear Ownership

With the “Clear Ownership” button the user is able to remaveristing ownership.
This button is only activated if the TPM already has an owagrerwise the button is
greyed out and the action is disabled.
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To clear the ownership of the TPM the user has to provide theentiowner pass-
word.

"# Clear Ownership =

Enter the owner password

e |

‘ X Cancel ‘

With the means of an input dialogue it is requested:

Figure 9: Clear ownership

Consecutively the TSS is called to issue the “T$piM_ClearOwner” command.
After the execution the user gets informed about the result.
In case of a failure:

"% Clear Ownership

@ Failed to clear the TPM ownership

FOK

Figure A.9: Clear ownership failure

In case of a successful execution:

% Clear Ownership =

' } The TPM ownership has successiully been cleared.
.

$FOK

Figure A.10: Ownership successfully cleared

If succeeded, additionally the “Take Ownership” button ba tOwnership” tab
will be activated. Respectively the “Change Owner Auth” &dear Ownership”
button will be greyed out and set inactive.

A.1.4 \ersion

The “Version” tab is shown like the following screen shot.
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"# TPM Controller =

Ownership | Version | Status | Pin Failure Reset | Certificate Chain | About | -

TSP version: 1.1.1.0
TCS version: 1.1.1.0
TPM firmware version: 1210
TPM vendor info: IFX
TPM vendor name: Infineon Technologies AG
TPM type: SLB 9835 TT 1.2

| OK \ | Cancel

Figure A.11: TPM Version Display

At the start of the application, the different version infations are read from the
TPM. If no TSS is currently running or another error occuraédeading, each entry is
marked as “not available”.

TSP version

The TSP version information displays the version of the Usedted Service Provider.
This is an only software functionality and requires no as¢eshe TPM.

TCS version

The TCS version information displays the version of the ubecsted Core Service.
This is an only software functionality and requires no as¢eshe TPM.

TPM firmware version

The TPM firmware version information displays the currensien of the used TPM
firmware. Itis read out directly from the TPM and is dividetbimajor release, minor
release, major change and minor change.

TPM vendor info

The TPM vendor information displays the vendor of the platfs TPM. As the TPM
firmware version, it is read out directly from the TPM. An exalewould be “IFX".
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TPM vendor name

The TPM vendor name displays the real name of the vendor @dicgpto the vendor
info that was read out from the TPM. The vendor name resubis fa mapping ta-
ble inside the software based in the TPM vendor info andfitkets not require any
hardware access. The suitable string according to the vénfian the last chapter is

“Infineon Technologies AG”.

TPM type

The TPM type displays the identifier of the hardware TPM chiipis is determined
based on the TPM vendor info and the TPM firmware version. Eat TPM type
cannot be read from the TPM. As this determination relies sof@avare internal map-
ping table, no hardware access is necessary for the furitsielh The suitable string
according to the vendor info and TPM firmware version in thet thapters is “SLB

9635TT 1.2".

A.1.5 Status

The “Status” tab is displayed like the following screen shot

"% TPM Controller =

Ownership | Version = Stalus ‘ Pin Failure Reset
enabled: e
activated: r_é
owner set: B
Selftest |

The TPM is enabled

The TPM is activated

The TPM has an owner set.

Initiate & TPM selitest issuing the
Tspi_TPM_SelfTestFull and

Tspi_TPM_GetTestResult commands.

OK

Cerfificate Chain | About |

| | Cancel

Figure A.12: TPM Status Display

At the start of the application, the different status infatimns are read from the
TPM. If no TSS is currently running or another error occuraeteading, each entry is

marked as “not available”.
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TPM enabled

If the TPM is in “enabled” or “disabled” state this is disp&yin textual and graphical
form. For an enabled TPM you get a “thumbs up” icon, for a disdlone a “thumbs
down”icon is displayed.

TPM activated

If the TPM is in “activated” or “deactivated” state this isglayed in textual and graph-
ical form. For an activated TPM you get a “thumbs up” icon, #odeactivated one a
“thumbs down” icon is displayed.

TPM owner set

If a TPM owner is set or not is displayed in textual and graghfiorm. If a TPM owner
is set, you get a “thumbs up” icon, for a TPM that has no owneharhibs down” icon
is displayed.

Self test

This command initiates a TPM self test issuing the TEBM_SelfTestFull and
TspLTPM_GetTestResult commands to the TPM. On successful complét® user
is informed about the result of the test by means of an inftionalialogue.

A.1.6 Pin Failure Reset

"# TPM Controller =

Ownership | Version | Staus | Pin Failure Reset | Certificate Chain | About |

On each wrong provision of the owner password for an
owner authorized command, the TPM internally increments a
T counter. If a dedicated threshold has been exceeded,
ﬂ‘ measures are taken to avoid dictionary attacks. The TPM
owner is able to issue a command to reset this pin failure
counter.

| OK H Cancel ‘

The “Pin Failure Reset” tab is displayed equivalent theofelhg screen shot.
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Figure 14: Reset PIN failure for anti dictionary attack

Reset

On each wrong provision of the owner password for an owndraxised command,
the TPM internally increments a counter. If a dedicatedshotd has been exceeded,
measures are taken to avoid dictionary attacks.

The user is able to issue a command to reset this pin failuatea This is the
purpose of the “Reset” button. As this is an owner authoreggedmand, the password
of the owner has to be inputin the following input dialogue:

"® Pin Failire Heset &

Enter the owner password

= |

I X Cancel ‘

Figure A.13: PIN Failure reset by entering Owner password

Consecutively the TSS is called to issue the “T§PM_SetStatus
(TSSTPMSTATUSRESETLOCK)” command.  After the execution the user
gets informed about the result.

In case of a failure:

"% Pin Failure Reset =

@ Failed to reset the Pin Failure counter

FOK

Figure A.14: PIN failure reset with error

In case of a successful execution:

% Pin Failure Resel &

;P The Pin Failure counter has successfully been reset
N

FOK

Figure A.15: PIN failure reset successful

A.1.7 Certificate Chain

The “Certificate Chain” tab is displayed similar the follogiscreen shot.
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"% TPM Controlle

| Ownership | Version | Status | Pin Failure Reset | Certificate Chain | About ‘

The endersement certificate could not be
verified or there was no endorsement
certificate found in the local TPM.

An endorsement certificate was found in the
TPM. Push the "Check now !" butfon to issue
the verification.

Check now !

The endorsement certificate was verified
against the Privacy CA certificate

| OK H Cancel ‘

Figure A.16: TPM Endorsement certificate chain verification

It displays the state of the certificate chain verificatiofoim of a traffic light. The
certificate chain check can be initiated with the “Check nbhwutton if an endorsement
certificate is found in the platforms TPM and can be arbityagpeated.

Failed / No EK certificate found

In this state the red light of the traffic light gets active. ifimeans that the certifi-
cate chain could not be verified or there was no endorsemetificzge found in the
platforms TPM. The according text label is updated too. ¢réhwas no endorsement
certificate found in the TPM, the “Check now !” button is grdyeut, otherwise it
is activated to be able to initiate the certificate chain &he&ll other text labels are
greyed out.

EK certificate found

This state signals that an endorsement certificate was fiouthe platforms TPM. In
this state the yellow light of the traffic light is highliglt@nd the according text label
is activated, all others are greyed out.

Check now !

This button initiates the check of the certificate chainstRine endorsement certificate
is read from the TPM, the intermediate certificate is dowdézhfrom the Infineon
web page and finally the chain is verified. This button is omlyvated if there was an
endorsement certificate found in the platforms TPM, othesitiis greyed out.
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Verified

This state signals that the certificate chain certifyingltoal TPM could be properly
verified. The green light of the traffic light turns on and tiee@ding text label gets ac-
tive, all others are greyed out. This is the optimal verifmastate that can be reached,
because now it is proofed that your platform works with aiied TPM.

A.1.8 About

“s TPM Controller =

Ownership | Version | Status | Pin Failure Reset | Certificate Chain | Aboul

Cafineon

Never stop thinking

TPM Controller
Version 1.0
(C) 2007 Infineon Technologies AG

‘ OK | | Cancel

Figure A.17: TPM Controller About

Displays some information about the “TPM Controller” tooldsthe copyright notifi-
cation.

A.2 TPM Backup

Hans Brandl (IFX)
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" TS5Archive Handler =

User Persistent Storage | System Persistent Slorage = About

Never stop thinking

TSS Archive Handler
Version 1.0
(C) 2007 Infineon Technologies AG

Figure A.18: TSS Archive Handler

A.2.1 Overview

The “TSS Archive Handler” is a GUI application that helps treer with the backup
and recovery of the persistent storage files of the TSS. A 8 uses two differ-
ent types of persistent storage files, these are also ditfated by the “TSS Archive
Handler”.

One tab is designated to backup and recover the user patssteage file, that
resides in a hidden “.tss” folder in the users home folders Kimd of persistent storage
is used from the TSP of a TCG application and exists once feryaewser. Regardless
if the tool is started as normal user or as root, the usergiergistorage can always be
managed.

Another tab handles the system persistent storage redidithg hidden “/ust/lo-
cal/.tss” folder. It is solely used from the TCS and existy@ame time per machine.
Only a root is able to backup and recover the system perssi@mage.

A.2.2 Getting started

Preconditions

“TSS Archive Handler” is a Linux Tool developed and testeddpenSuse 10.1/10.2,
but should work also with other Linux distributions and abbk easily ported to Win-
dows, since the used GUI toolkit is available for both platis. It explicitly uses the
OpenTC Trusted Software Stack for TPM 1.2 developed by Iofine

For the GUI toolkit the open source version of Trolltech Q2.4.was chosen.
Therefore it is necessary that a working version is ingtadie the machine.

An additional dependency relies on the OpenSSL cryptorybithat is used for
cryptographic functionality.
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Build & Run

If all preconditions are met, simply run “build.sh” on thensmand line to build the
complete “TSS Archive Handler” GUI application from source

To run the “TSS Archive Handler”, simply type “./tssarchiaadler” in the source
code folder and the tool starts up with a modal dialogue ihiclgi several tabs with all
the functionality explained in the following chapters. @lusly the tool can be simply
copied to a user desired location and run from there.

A.2.3 User persistent storage

The “User Persistent Storage” tab comes up something liéallowing screen shot.

eSS Archive Handier =

| User Persistent Storage ‘ System Persistent Storage | About

| Backup Backup the current users key archive

Recover a previously saved users key

T Y
|m| archive

Figure A.19: Persistent Store

For each operator, user or root, it is possible to backup resmver his personal
user persistent storage file.

Backup

To backup the user persistent storage file, referred to &s %&y archive”, of the cur-
rent user, the “Backup” button is intended for. If it is predshe operator is requested
to input filename and location of the saved user key archivaégns of a file dialogue:
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""" Destination file =

Look in: # /homeftest vl @ 4 o[
Name e Size Type Date Modified

[ bin ‘ Folder 31.05.2006 14:21:26

@ Desktop Folder 31.05.2006 14:26:46

[ Documents Folder 31.05.2006 14:21:26

@ public_html Folder 31.05.2006 14:21:26

@ temp Folder 14.05.2007 08:50:26

File name user_pers_storage.xml

Files of type: I‘xml

4

Figure A.20: Backup Destination File

If the operator subsequently presses the “Backup” butt@yser persistent storage
file will be copied. If an already existing file is selectece thperator will be prompted
if he wants to overwrite it. If this is denied or the “Cancellitton is pressed in the
“Destination file” dialogue, the backup is aborted and n@oads taken at all.

Finally the operator is informed about the result of the hegoéperation.

In case of a failure:

“""Backup User Persistent Storage —

° Could not backup the user persistent storage.

FOK

Figure A.21: Backup Destination File Error

In case of success:

(S S BACKUp User Persistent Storage =

Successiully backed up the user persistent storage to
» ‘homeftestiuser_pers_storage.xml

oK

Figure A.22: Backup User Persistent Storage Success

Recover

To recover a previously saved user persistent storage &lefkrator can use the “Re-
cover” button. After this a file dialogue pops up requesting dperator to select the
user persistent storage file she / he wants to recover:
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Select the User persistent storage to recover =

Look in: ‘ﬁ /home/test vI @ 4 o E
Name L4 Size Type Date Modified
@ bin ' Folder - 31.05.2006 14:21:26
@ Desktop Folder 31.05.2006 14:26:46
# Documents Folder 31052006 14:21:26
@ public_html Folder 31.05.2006 14:21:26
@ temp Folder 14.05.2007 08:50:26
[ upsxml 2 KB xmi File 24.05.2007 12:54:30
I user_pers storage.. 2 KB xmi File 24.05.2007 12.5528
File name: ‘useripersfsiurage xml |
Files of type: | *xml ¢| ‘ X Cancel ‘

Figure A.23: Recover: Select the user persistent storage fil

After selection of the desired file to recover, a file checkaealif a user persistent

storage already exists in the .tss folder of the operatonsehdf so, she / he will be
asked if he wants to overwrite it:

e exists =)

.‘”‘-?' A user persistent storage file already exisls.
Do you want to overwrite it?

‘ Overwrite |

Figure A.24: Backup: Destination File exists

If she / he accepts the user persistent storage will be oittewr Finally a short

message is displayed, informing the operator about thét iefshe recovery action.
In case of success:

T Recover the user persistent storage f‘

Successfully recovered the user persistent storage to
b /home/gme/ tss/TSPps xmi

#OK

Figure A.25: Backup: User persistent storage recovered

In case of a failure:

Recover the User persistent storage —

Q Could not recover the user persistent storage

FOK

Figure A.26: Backup: User persistent storage not recovered

In each case the “Cancel” button is pressed, the completeeegis aborted and
no action is taken at all.

Open_TC Deliverable 05.1



176 OpenTC D05.1 — Basic Security Services

A.2.4 System persistent storage

The “System Persistent Storage” tab is shown like the faligvgcreen shot.

"9SS Archive Handler —

User Persistent Storage =~ System Persistent Storage | About |

| Backup Backup the system key archive.

Recover a previously saved system key

Recover .
—toalion archive.

Figure A.27: System Persistent Storage

Since this tab allows the backup and recovery of the systesigbent storage file,
named as system key archive, it is only applicable if theiappibn was started with ad-
ministrator rights. If the application is started as a ndrusar, the following message
will pop up.

=" System Persistent Storage =

To access the system persistent storage please start the TSS
Archive Manager with administrator rights

&FOK

Figure A.28: System Persistent Storage: AdministratohRigre required

Subsequently the buttons and labels on this tab are greyed ou
The system persistent storage file exists only once permaystethis is an use case
for a system administrator.

Backup

To backup the system persistent storage file, referred teystem key archive”, the
“Backup” button is intended for. If it is pressed the operatorequested to input
filename and location of the saved system key archive by na&am8le dialogue:
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Destination file =

Look in [.fhumeflest l'] C o 3
Name o | Size | Type | Date Modified ‘
bin Folder 31.05.2006 14:21:26
Deskiop Folder 31.05.2006 14:26:46
Documents Folder 31.05.2006 14:21:26
public_html Folder 31.05.2006 14:21:26
temp Folder 14.05.2007 08:50:26
. ups.xml 2 KB xml File 24.05.2007 12:54:30
| user_pers_storage 2 KB xml File 24.05.2007 12:55:28
File name: |systemipersismrage xml i
Files of type ["xm\ |v]

Figure A.29: System Persistent Storage: Selection of rktstin file

If the operator subsequently presses the “Backup” buttoa,system persistent
storage file will be copied. If an already existing file is stdel, the operator will be
prompted if he wants to overwrite it.

Backup =

A system_pers_storage.xml already exists
Do you want to replace it?

Yes | No ‘

Figure A.30: System Persistent Storage exists already

If this is denied (“No” button) or the “Cancel” button is peesl in the “Destination
file” dialogue, the backup is aborted and no action is takehl at

Finally the operator is informed about the result of the hgctiperation.
In case of a failure:

(o Backup System Persistent Storage

Q Could not backup the system persistent storage.

Figure A.31: System Persistent Storage: error message

In case of success:

Backup System Persistent Storage

Successfully backed up the system persistent storage to
/home/test/system_pers_storage xml

Figure A.32: System Persistent Storage: Successful

Open_TC Deliverable 05.1



178 OpenTC D05.1 — Basic Security Services

Recover

To recover a previously saved system persistent storagthéleperator can use the
“Recover” button. After this a file dialogue pops up requestihe operator to select
the system persistent storage file she / he wants to recover:

Select the system persistent storage to recover =

Lookin: [E3/momatest -l oewm
Name i | Size | Type | Date Modified
bin Folder 31.05.2006 14:21:26
Desktop Folder 31.05.2006 14:26:46
Documents Folder 31.05.2006 14:21:26
public_html Folder 31.05.2006 14:21:26
temp Folder 14.05.2007 08:50:26
I system_pers_stora... 7 KB xml File 25.05.2007 07:55:44
! ups.xml 2 KB xml File 24.05.2007 12:54:30
| user_pers_storage 2 KB xml File 24.052007 12:55:28
File name Isy’stem_pers_slorage xml I
Files of type: I‘xml ‘vl
“ |

Figure A.33: System Persistent Storage: Selection for e¥co

After selection of the desired file to recover, a file checkamelif a system persis-

tent storage already exists in the “/usr/local/.tss/” &vldf so, she / he will be asked if
he wants to overwrite it:

S File exists &

A system persistent storage file already exists.
Do you want to overwrite it?

|

Figure A.34: System Persistent Storage exists already

If she / he accepts the system persistent storage will bewoitem. Finally a short

message is displayed, informing the operator about thét igfsihe recovery action.
In case of success:

R ECoVer the System persistent storage <

Successfully recovered the system persistent storage to
Jusrflocal/tssTCSps.xml.

Figure A.35: System Persistent Storage: Successfullywezed

In case of a failure:
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S Recover the system persistent storage —

O Could not recover the system persistent storage.

Figure A.36: System Persistent Storage: Recovery Error

In each case the “Cancel” button is pressed, the completeeegis aborted and
no action is taken at all.

A.2.5 About

TS Archive Handier <

User Persistent Storage ‘ System Persistent Storage About

Never stop thinking

TSS Archive Handler
Version 1.0
(C) 2007 Infineon Technologies AG

Figure A.37: TSS Archive Handler: About

Displays some information about the “TSS Archive Handledltand the copyright
notification.

A.3 Use Cases for Security Services

C. Stuble, R. Landfermann, H. Lohr, M. Scheibel, S. ScligldB)

Compartment Management:
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Use CASE UNIQUE ID /UC 30/

TITLE Start Compartment

DESCRIPTION A compartment starts another compartment.
ACTORS Compartment

PRECONDITIONS The Security Kernel is running.
POSTCONDITIONS The new compartment is running.

NORMAL FLoOw

1. Compartment invokes Security Kerne
to start a new compartment.

2. Compartment defines the program, se
curity attributes, and configuration pa-
rameters to be used for the new compart-
ment.

3. Security Kernel starts the new compart-
ment.

4. Security Kernel returns the Comparft-
mentID of the newly created compairt-
ment to Compartment.

ALTERNATIVE FLOW

1. Compartment invokes Security Kerne
to start a new compartment.

2. Compartment defines the program and
configuration parameters to be used for
the new compartment.

3. The Security Kernel detects that the client
is not authorised to perform this operp-
tion.

4. The Security Kernel returns an errpr
value.

Possible error values could be:

e Not allowed to start a new program at all.

e Not allowed to start this progralﬂ.

e Not allowed to use this configuration parameter
e Not allowed to use this security attribute

A parent cannot have different security attributes (e gcusty domain) than its
child, else both could communicate. How to create compartenwith different do-
mains? A trusted function to change the security attribafesy compartment? Or do
we need a trusted compartment for every security domain?

1Cst: Not sure whether we should support these kind of securitigyol
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Use CASE UNIQUE ID

/ucC 40/

TITLE

Start compartment by image

DESCRIPTION

A compartment starts another compartment
cluding a file system.

ACTORS Compartment
SPECIALIZES /ucCl3d/
RATIONALE Although this use case is very similar

/ UC[30/, we decided to include it here to he

in-

(0]

able to describe how a legacy OS is started.
Very often, legacy operating systems are starnted
as images including a file system to be attached

to the operating system.

First a new container has to be created (e.g., by startingvast@age manager
instance) offering the file system of that image. Then thegamment is started using
the newly created container as the root file system.

Use CASE UNIQUE ID

/UC50/

TITLE

Stop Compartment

DESCRIPTION

A client stops a running compartment.

ACTORS

Compartment

PRECONDITIONS

The compartment to be stopped is running.

POSTCONDITIONS

The compartment is halted and all resources

al-

located by the compartment are freed. Mofe-

over, all child compartments of that compa

—

ment are stopped, too. The CompartmentlD
of the stopped compartment is not available for

further use until reboot.

NORMAL FLow

1. The Compartment invokes Security|
Kernel to stop a compartment, providin
its CompartmentID.

2. Security Kernel acknowledges the oper-

ation, and stops the indicated compg
ment.

ALTERNATIVE FLOW

1. The Compartment invokes Security|
Kernel to stop a compartment, providin
its CompartmentlD.

2. Either

e access to the compartment fails o

e Security Kernel detects that the r
guest is not authorised.

3. Security Kernel denies the operation.
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Who is allowed to stop a compartment? Do we need a parerd-aationship?
What about child tasks? are they identical to child compantis? Are compartments
only the first layer of tasks above the compartment manager?

L4-Linux tasks are L4-Subtasks but this should be hiddertherocompartments.
Only another thread with access to a subset of the address spanother compart-
ment. This is at least the model on VMMs and hypervisors. is tiodel flexible
enough for us?

If we prefer a parent-child relationship between compantsteAllowing only the
parent of a compartment to stop that compartment is veryictge, but should be
flexible enough. We may need a function to change the pareatafmpartment?
Another usage of the trusted function to change securitipates of compartments?

Persistent Storage: Containers are objects to store data persistently. Evertagwer
has an assigned security policy defining the security ptmseof that container (in-
tegrity, confidentiality, freshness, ...) and the accessssions.

Containers implement the “Block Device” interface and cparate either on phys-
ical partitions, on subsets of partitions, or on virtualddalevices, e.g., network block
devices.

The creator of a container becomes the container’s ownedefides the security
policy including security properties and the access copthicy.

It is currently an open question whether containers shonld loe created by the
admin, by every user, or whether authorised compartmemisidibe able to create
containers themselves. Probably this is an implementatioican be ignored here.

We currently assume that security policies assigned toaguerts cannot be modi-
fied to ensure that users cannot bypass security policiesaat by applications. To
change the policy a new compartment with a new security pblis to be created and
the data has to be copied using an authorised compartmentriieg that only com-
partments with read access can transfer the data). Maybs tailittle too simple...

To prevent that compartment use containers with a certaiargge property, the
user simply gives that compartment no access to such a oentalf, on the other
hand, compartments should be able to create their own camfave need a much
more complex security policy defining what the compartmemn¢sallowed and what
not. Maybe it is better to define this explicitly by a policitah doing it implicitly
whenever a new container is created. Thinking...
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Use CASE UNIQUE ID

/uce0/

TITLE

Open Container

DESCRIPTION A compartment opens a container for reading or
writing.

RATIONALE A compartment locks access to the containet.

ACTORS Compartment, Container

PRECONDITIONS The compartment is allowed to use the caon-
tainer.

POSTCONDITIONS The compartment can read data from the con-
tainer (/ U380 /) and write data into the cop-
tainer (/ UQZ0 /).

NORMAL FLow

1. The compartment invokes the Securjty

Kernel, specifying the container to he

opened.

2. The Security Kernel returns a message
that the container has been opened suc-

cessfully.

ALTERNATIVE FLOW
(PERMISSION DENIED)

1. The compartment invokes the Secur

Kernel, specifying the container to he

opened.

ty

2. The Security Kernel returns an message
indicating that the compartment does rjot

have permission to use this container.

Use CASE UNIQUE ID

fuc70/

TITLE

Store Data to Container

DESCRIPTION

A compartment stores data persistently to a data

container.
RATIONALE The goal is to persistently store information.
ACTORS Compartment

PRECONDITIONS

The container has already been opened by
compartment using / UC$0 /.

that

NORMAL FLoOw

1. Compartment writes a data block intd
the container object of the Security Ke
nel.

2. The Security Kernel reports success
storage toCompartment.
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Use CASE UNIQUE ID /uc 8o/

TITLE Load Data from Container

DESCRIPTION A compartment loads data from a data cgn-
tainer.

ACTORS Compartment

PRECONDITIONS The container has already been opened by|the
compartment using / UC60 /..

POSTCONDITIONS The compartment has access to the loaded data.

NORMAL FLOwW

1. Compartment sends a load request to|a
data block of the container to the Security
Kernel.

2. Compartment receives the requestgd
data of the container object from the Se-
curity Kernel.

ALTERNATIVE FLOW

1. Compartment sends a load request to|a
data block to the container object of the
Security Kernel.

2. The Security Kernel returns an error stat-
ing that an integrity error was detected.

Use CASE UNIQUE ID /UC 90/

TITLE Close Container

DESCRIPTION A compartment closes a container.

RATIONALE A compartment unlocks access to that con-
tainer.

ACTORS Compartment

PRECONDITIONS The container has already been opened by|the
compartment using / UC$0 /.

POSTCONDITIONS The compartment cannot read from/write into

the container.

NORMAL FLOwW

1. The compartment invokes the Securjty
Kernel, specifying the container to he
closed.
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Use CASE UNIQUE ID

/UC 100/

TITLE

Query Container Security Policy

DESCRIPTION

A compartment queries the security policy of
container.

RATIONALE

Onthe one hand, a compartmentthat uses a

tainer to persistently store data has to be abl
verify the security policy attached to that co
tainer to ensure that its own security policy ¢
be enforced. On the other hand, some comp

ment may not be allowed to read the securi

policy attached to a container.

ACTORS

Compartment

NORMAL FLow

1. The compartment invokes the Secur
Kernel to get the security policy assigng
to that container.

2. The Security Kernel returns the secur
policy of that container to the compar
ment.

ALTERNATIVE FLOW
(NO PERMISSION)

1. The compartment invokes the Secur
Kernel to get the security policy assigns
to that container.

2. The Security Kernel returns an error st
ing that the compartmentis not allowed
read the policy attached to that contain

ty
od

ty
t

ty
pd

At-
to
er.
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Use CASE UNIQUE ID /UC 110/

TITLE Create Container

DESCRIPTION An authorised entity creates a new container
with a specific security policy.

RATIONALE A user uses a dialogue to create a new container.

ACTORS User

POSTCONDITIONS A new container with a unique id has been cre-
ated.

NORMAL FLow
1. User invokes the container management
dialogue of the Security Kernel.

2. User invokes the “Add Container” funcy
tion, e.g., by pressing a button.

3. User defines a new container by select-
ing a unique identifier.

4. User defines the security policy of that
container using / UCT20/.

5. User acknowledges and closes the dja-
logue.

Please note that in general, containers can be created ®r aising a dialogue,
or by a compartment itself using an appropriate interfadee [atter requires a more
complicated access control policy defining who is allowedreate what.

Use CASE UNIQUE ID /uUcC 120/

TITLE Define Container Security Policy

DESCRIPTION An authorised entity sets the access permissijons
of a container.

ACTORS User

NORMAL FLOW

1. User invokes the secure container man-
agement dialogue of the Security Kernel
and defines the new security policy of the
virtual container.

Currently, we do not security policies of containers to barged to ensure that
security policies enforced by compartments cannot be teguhdf this is too inflexible,
we may replace this design by a more complicated accessotpiticy that enforces
an identical system behaviour.

Network: Note that two subtypes of networks exist. The first subtymethose
that are available in hardware, i.e., network devices. Tenter a new one, the
Authorised Entity has to create an appropriate driver offering the contaiterfiace.
The second subtype is a Virtual Private Network, i.e., adalgpartitions of a phys-
ical network that additionally provide certain securitpperties. To create a new one,
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the Authorised Entity has to define a physical network and a security policy inclgdi
a security domain.

From the perspective of a compartment, it does not make aerdifte whether a
physical network or a Virtual Private Network is used. Tachlty, physical networks
are provided by a driver, logical containers by an additi@iestraction layer of the
Security Kernel.

Use CASE UNIQUE ID /UC 130/

TITLE

Connect to Network

DESCRIPTION

A compartment opens a persistent connectioh to

a network connection.

RATIONALE

A compartment gets access to a network object.

ACTORS

Compartment

PRECONDITIONS

Compartment has permission to use the speci-

fied network. A connection to that network dogs

not exist yet.

POSTCONDITIONS

The compartment can send data to/receive data

from open the network.

NORMAL FLow

1. Compartment invokes the Security Ker

nel, specifying the network to be con-

nected to.

2. The Security Kernel connects the spec-

ified network to the invoking compart
ment.

UskeE CASE UNIQUE ID

/ucC 140/

TITLE

Query Network Security Policy

DESCRIPTION

A compartment queries the security policy of
network.

ACTORS

Compartment

PRECONDITIONS

The compartment has already established a ¢
nection to the network using / UC 1130 /.

NORMAL FLoOw

1. The compartment invokes the Secur

Kernel to get the security policy assigned

to that network.

2. The Security Kernel returns a subset
the policy to the compartment.
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Use CASE UNIQUE ID

/UC 150/

TITLE

Send Network Packet

DESCRIPTION

A compartment sends a data packet to a net-

work.

ACTORS

Compartment

PRECONDITIONS

The compartment has permission to access
network.

the

NORMAL FLoOw

1. The compartment invokes the Securjty
Kernel to send/receive a data packet

to/from the network.

2. The Security Kernel forwards resp. r
turns the appropriate data packet.

Use CASE UNIQUE ID

/UC 160/

TITLE

Receive Network Packet

DESCRIPTION

A compartment receives a data packet from a

network.

ACTORS

Compartment

PRECONDITIONS

The compartment has permission to access
network.

the

NORMAL FLOwW

1. The compartment invokes the Securjty

Kernel to receive a data packet from t
network.

2. The Security Kernel forwards returns t
appropriate data packet.

ne

ne

Open_TC Deliverable 05.1



APPENDIX A. APPENDICES 189

Use CASE UNIQUE ID /UC 170/

TITLE Create Network

DESCRIPTION An authorised entity creates a new network ob-
ject

INCLUDES / UC[180 / (Define Network Policy)

RATIONALE Before a physical network device can be used

by clients, it has to be logically created at the
Security Kernel.

ACTORS User
PRECONDITIONS The Security Kernel system is running.
POSTCONDITIONS A new network object is available.

NORMAL FLoOw

1. User invokes the network management
interface of the Security Kernel.

2. User invokes the “Add Network Device’
function, e.g., by pressing a button.

3. The Security Kernel shows a list of avall
able (physical) containers.

4. User defined a new network object by
defining a unique identifier, and selecting
a physical network.

5. User defines the security policy of tha

—

network using / UCI80/.
6. User acknowledges and closes the dja-
logue.
Use CASE UNIQUE ID /uC 180/
TITLE Define Network Policy
DESCRIPTION An authorised entity defines the policy assigred
to a network object.
RATIONALE Network Address Translation, bridge, and Vir-

tual Private Network rules have to be assigried
to networks

ACTORS User

PRECONDITIONS The Security Kernel system is running.
NORMAL FLow

1. Administrator defines Network Addres
Translation rules, the Virtual Private Net
work protocol, the authentication secret
of that virtual network, and a security do
main.

1°2

2. Administrator acknowledges and closes
the dialogue.
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UskeE CASE UNIQUE ID

/uUC 190/

TITLE

Opens new User Interface

DESCRIPTION A compartments requests a connection to a yser
interface.
ACTORS Compartment
PRECONDITIONS The Security Kernel system is running.
POSTCONDITIONS The compartment can has a trusted path to|the
local user of the Security Kernel.
NORMAL FLoOw
1. Compartment invokes the Security Kert
nel to open a new user interface.
2. Security Kernel returns a user interface
object.
Use CASE UNIQUE ID /UC 200/
TITLE Render User Information
DESCRIPTION A compartments sends data to the user inter-
face.
RATIONALE The compartment renders information for the
user.
ACTORS Compartment
PRECONDITIONS The compartment already opened the user inter-
face using / UCIJ0/.
NORMAL FLoOw
1. Compartment invokes the Security Kert
nel to send the data.
Use CASE UNIQUE ID /UC 210/
TITLE Receive User Event
DESCRIPTION A compartments receives data from the user|in-
terface.
RATIONALE A compartment receives user events.
ACTORS Compartment
PRECONDITIONS The compartment already opened the user inter-
face using / UCIJ0 /.
NORMAL FLOwW
1. The compartment receives an event from

the user interface.
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Use CASE UNIQUE ID

/uc 220/

TITLE

User Interface Notify

DESCRIPTION

The Security Kernel sends a notification mes-
sage of a compartment to the user interface.

RATIONALE

Depending on the realisation of the user inter-
face, a user may not directly see messages of
all compartments. Since a compartment must
also not access the frame-buffer of another com-
partment, the notification of the user has to |be
realised by the Security Kernel using a trusted
path. Therefore the user interface provides
a generic interface allowing compartments|to
send messages to users even if its own frame
buffer is not visible.

ACTORS

Compartment

PRECONDITIONS

The compartment already opened the user inter-
face using / UCI90/.

NORMAL FLow

1. Compartment invokes the Security Ker
nel to send a notification message.

UskeE CASE UNIQUE ID

/ucC 230/

TITLE

Closed User Interface

DESCRIPTION

A compartments disconnects a connected user
interface object.

ACTORS Compartment
PRECONDITIONS The Compartment already opened the user in-
terface using / UCI90/.

NORMAL FLow

1. Compartment invokes the Security Ker
nel to close the user interface.

2. Security Kernel returns an appropriate ac-
knowledge message.

Integrity Measurement;
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Use CASE UNIQUE ID

/ucC 240/

TITLE

Remote Trusted Channel

DESCRIPTION

Establish a Trusted Channel between a remote

client and a local compartment.

INCLUDES / UC[280 / (Property Credential Request)
ACTORS RemoteClient, Compartment

POSTCONDITIONS

A secure channel fromRemoteClient to
Compartment has been established that
bound to certain properties éfompartment.

is

NORMAL FLOwW

1. RemoteClient invokesCompartment to
open a trusted channel bound to cert
properties.

2. Compartment creates a property crede
tial using / U 28D /.

3. Compartment returns the credential in

Li

n

=)
]

cluding properties attested by the Secu-

rity Kernel of Compartment.

4. RemoteClient uses the credential to ve
ify the properties and the trustworthine
of Compartment.

5. RemoteClient uses the successfully ve
ified credential to open a secure chan
to Compartment.

§

-
1

hel
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Use CASE UNIQUE ID

/UC 250/

TITLE

Remote Property Attestation

DESCRIPTION

A remote client queries properties of a lodal

compartment.
INCLUDES / UC[280 / (Property Credential Request)
ACTORS RemoteClient, Compartment

PRECONDITIONS

Compartment IS running on a Security Kerne

that has successfully initialised itself.

POSTCONDITIONS

RemoteClient knows certain properties gf

Compartment.

NORMAL FLow

1. RemoteClient invokesCompartment to
retrieve an attestation certificate.

2. Compartment creates a new property

certificate using / UC270 /.

3. RemoteClient receives the attestation

certificate fromCompartment.

4. RemoteClient verifies the trustworthiA

ness of the attested properties.

Use CASE UNIQUE ID

/uUC 260/

TITLE

Property Request

DESCRIPTION

A local compartment A queries informatign

about the properties of another local compart-

ment B.

ACTORS

Compartment A, Compartment B

PRECONDITIONS

Both A and B are running on top of the Secur
Kernel.

ty

POSTCONDITIONS

Compartment B knows certain properties
compartment B.

NORMAL FLoOw

1. Compartment A requests certain proper-

ties regarding compartment B from the

Security Kernel.

2. The Security Kernel returns a subset
the properties of Compartment B.

of

Open_TC Deliverable 05.1



194

OpenTC D05.1 — Basic Security Services

Use CASE UNIQUE ID

/uc 270/

TITLE

Property Certificate Request

DESCRIPTION

A local compartment creates a PropertyCertjfi-

ts

cate.

RATIONALE The property certificate is required to prove
configuration.

ACTORS Compartment

POSTCONDITIONS

Compartment can prove its properties to rem
compartments.

ote

NORMAL FLOwW

1. Compartment requests the property g
tificate from the Security Kernel by defin
ing a list of properties to be attested.

2. Compartment receives the property c
tificate from the Security Kernel includ
ing a subset of the requested propertie

Use CASE UNIQUE ID

/ucC 280/

TITLE

Property Credential Request

DESCRIPTION

A local compartment creates a PropertyCred
tial.

RATIONALE

The property credential is required to oper
trusted channel.

POSTCONDITIONS

Another client can open a trusted channel to
compartment.

NORMAL FLOwW

1. Compartment requests the property ¢
dential from the Security Kernel by defi
ing a list of properties to be attested.

2. Compartment receives the property c
dential from the Security Kernel inclug
ing a subset of the requested propertie

v

the

re-

re-

v
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Use CASE UNIQUE ID

/UC 290/

TITLE

Remote Trusted Channel via Proxy

DESCRIPTION

A remote client establishes a trusted channe
a compartment via an attestation proxy runn
as a trusted service.

ACTORS RemoteClient, TrustedCompartment, and
Compartment
INCLUDES Remote Trusted Channel /UC240/, Lod

Trusted Channel / UC 240/

POSTCONDITIONS

A trusted channel betweeRemoteClient and
Compartment is established.

| to

NORMAL FLow

1. RemoteClient establishes a truste
channel to TrustedCompartment (see
/' UC[240 /).

2. TrustedCompartment establishes g
trusted channel toCompartment (see
/ UC[240 /).

3. RemoteClient receives the configuratio
of Compartment.

4. RemoteClient derives the trustworthi
ness ofCompartment.

A

ALTERNATIVE FLOW

1. The trusted channel froemoteClient
to TrustedCompartment or
from TrustedCompartment to
Compartment cannot be established.

2. RemoteClient receives a correspondin
message from Security Kernel.

«Q

ALTERNATIVE FLOW

1. RemoteClient establishes a truste
channel to TrustedCompartment (see
/ UC[240 /).

2. TrustedCompartment establishes 3
trusted channel toCompartment (see
/' UC[240 /).

3. RemoteClient receives the configuratio
of Compartment.

4. Compartment is not deemed trustworth
by RemoteClient.

A

=)
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Use CASE UNIQUE ID

/UC 300/

TITLE

Usage of TPM Interface

DESCRIPTION

A client uses the interface defined by the TRM
specification of the TCG.

ACTORS Compartment
POSTCONDITIONS Compartment can use a TPM interface.
COMMENT Note that ‘usage of a TPM interface’ does not

necessarily mean that the underlying platform
includes a real TPM. The platform could, for
instance, provide a software TPM only, or an-
other hardware module (e.g., IBM 4758) that]is
used to provide the same functionality.

NORMAL FLoOw

1. Compartment invokes the Security Kert
nel to gain access to a TPM interface.

2. Compartment receives the Compari
mentID of a compartmentTPM provid-
ing a TPM-like interface.

3. Compartment receives the configuration
of vTPM

4. Compartment derives the trustworthi
ness ofvTPM

A.4 Additional Use Cases for SVPN

C. Stuble, R. Landfermann, H. Lohr, M. Scheibel, S. ScliRldB)
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Use CASE UNIQUE ID

/UC 310/

TITLE

Receive Data

DESCRIPTION

A client of the user system requests data fr
the server.

RATIONALE

The client (e.g. browser) obtains data to
displayed from the server. The server requi
an authentication from the client, because
server possesses sensitive data which are t
requested by specific clients only. The authe
cation is carried out by means of a secret bou
/sealed to the TPM of the respective client sy
tem.

ACTORS

Server, client

INCLUDES

PRECONDITIONS

A connection to the server has been establisk
The client possesses a TPM, to which a valid
cret, which is accepted by the server, is bou
/sealed to.

POSTCONDITIONS

The data is transmitted completely. The cd
nection remains established.

NORMAL FLoOw

1. The client requests data from the servg
2. The server requires an authentication.

3. The client’s authentication at the server
successful.

4. The data exchange between client 3
server begins.

DM

be
res
the
0 be
nti-
nd-
S-

ed.
se-
nd-

S

ind

ALTERNATIVE FLOW

1. The client requests data from the serve
2. The server requires an authentication.

3. The client’s authentication at the sery
fails.

4. The procedure “receive data” is aborte
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Use CASE UNIQUE ID

/uUC 320/

TITLE

Delete Connection

DESCRIPTION

The data exchange between client and server
is finished. The connection between client and
server can be terminated.

RATIONALE After transmission, the connection has to be ter-
minated.

ACTORS Client, server

INCLUDES

PRECONDITIONS

There exists an active connection between client
and server. All data have been transferred pe-
tween client and server.

POSTCONDITIONS

The connection has been terminated and theg se-
cret is reset where appropriate.

NORMAL FLOwW

1. All data have been transmitted from the
client to the server.

2. The client sends an acknowledgement
that all data have been received and that
the connection can be terminated.

3. The server approves the connection ter-
mination and terminates the connection.

4. The connection is terminated.

ALTERNATIVE FLOW

1. All data have been transmitted from the
client to the server.

2. The client sends an acknowledgement
that all data have been received and that
the connection can be terminated.

3. The server updates the secret stored|in-
side the client by using the still existing
secure connection.

4. The server approves the connection ter-
mination and terminates the connection.

5. The connection is terminated.

Management Interface
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Use CASE UNIQUE ID

/UC 330/

TITLE

Query Network Security Policy

DESCRIPTION

A compartment queries the security policy of
network.

ACTORS

Compartment

PRECONDITIONS

The compartment has already established a ¢
nection to the network

NORMAL FLow

1. The compartment invokes the Secur

Kernel to get the security policy assigned

to that network.

2. The Security Kernel returns a subset
the policy to the compartment.

Use CASE UNIQUE ID

/UC 340/

TITLE

Create Network

DESCRIPTION

9

on-

ty

of

An authorised entity creates a new network ¢b-

PRECONDITIONS

The Security Kernel system is running.

POSTCONDITIONS

A new network object is available.

NORMAL FLoOw

1. AuthorizedEntity invokes the network
management interface of the Secur
Kernel.

2. Authorized Entity invokes the “Add Net-
work Device” function, e.g., by pressin
a button.

3. The Security Kernel shows a list of ava
able (physical) containers.

4. AuthorizedEntity defined a new net;

work object by defining a unique ident|
fier, and selecting a physical network.

5. AuthorizedEntity defines the security
policy of that network using / UC 350 /.

6. AuthorizedEntity acknowledges an
closes the dialogue.

ed

ject

INCLUDES / UC[350 / (Define Network Policy)

RATIONALE Before a physical network device can be ug
by clients, it has to be logically created at the
Security Kernel.

ACTORS Authorized Entity

ty

i
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Use CASE UNIQUE ID /UC 350/

TITLE Define Network Policy

DESCRIPTION An authorised entity defines the policy assigried
to a network object.

RATIONALE Network Address Translation, bridge, and V|r-

tual Private Network rules have to be assigred
to networks

ACTORS Authorized Entity

PRECONDITIONS The Security Kernel system is running.
NORMAL FLoOw

1. Administrator defines Network Address
Translation rules, the Virtual Private Net-
work protocol, the authentication secret
of that virtual network, and a security do-
main.

2. Administrator acknowledges and closes
the dialogue.

A.5 Basic PKI Prototype

P. Lipp, M. Pirker (IAIK), G. Ramunno, D. Vernizzi (POL)

The work of WP05d within OpenTC focuses on implementatiocahponents
and services for a TC enhanced PKI. This chapter offers arvieve of the prototype
components developed within the first one and a half year ®fQpenTC project,
leading up to a basic integrated implementation of a TruSehputing enabled PKI
framework. As OpenTC progresses, this basic setup will benebed and/or adapted
as needed.

A.5.1 Components

While developing the software the “open” project idea of @p€ was a guide for
establishing a “release early, release often” policy. Tidividual components were
released on TrustedJava [39] page, hosted at the well knowrc&forge service, as
soon as they were useful, to stimulate community parti@pat Received feedback
proved valuable for improving future releases.

The following sections deliberately give only a short ovewper package, as this
report can only be a snapshot at a certain point in time of éveldpment. For current
status and detailed descriptions of each component pleasait[39] directly.

At the time of writing these sections, the Trusted PlatforgeAt, a relevant client-
side componentis being developed. This component intevétt the Privacy CA and
enables client applications to control local and remotefRKttionalities of the trusted
platform. An outlook is given in sectidn A.5.3.
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PrivacyCA

<

XKMS lib

JTssWrapper

JTssTSP

XKMS autogen

Y

JTssTCS \
Jl‘ll calls

raw /dev/tpm

JAXB IAIK XSECT IAIK JCE IAIK CMS

Figure A.38: Dependencies of the basic PKI prototype coreptm

(Java) Framework Overview For a first overview of the involved components,
please consult Figufe A.B8
The software packages can be divided into 3 major categories

1. Support software packages: These are packages of thitydipaaries and tech-
nologies. Reuse of this readily available technologiesides a good foundation
to build a PKI upon.

2. OpenTC packages: These are software packages devel@hedthe OpenTC
project, but has not been a primary goal of workpackage WP05d

3. PKI packages: These packages comprise components nevdloged specifi-
cally for the WP05d PKI work.

The following sections describe each category and the ifumalities of the pack-
ages in more detalil.

Support software packages In[A.38 all packages below the dotted line are
third party support software packages. These packageglproasic functionalities
upon which a PKI can be build.
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Java runtime libraries  TheJava Architecture for XML Bindin@JAXB) technol-
ogy provides a convenient way to process XML content by sttpppan easily usable
set of functions for converting XML plain text format to Javbjects/classes and vice
versa. XML is utilised in the XKMS protocol (see sectfon Alf which was chosen as
a first target for implementation, as was suggested by the ifGi& [95] document.

Sun Java 5 does not provide JAXB by default. JAXB was part @aernal add-on
package called “Java Web Service Development Pack” (JWSD) the availability
of Sun Java 6 JAXB is included in the default Java runtime.

IAIK crypto libraries  The IAIK library collection, provided by Stiftung SIC, of-
fers cryptography and certificate support functionalitiegond the functions available
in the Java default runtime libraries:

1. Library “IAIK JCE” provides the enhanced crypto functadity for RSA keys in
TC certificates (OAEP padding, etc.) and ASN.1 en/decodiugmes to build
custom certificates, certificate extensions and binary Pétiogols.

2. The “IAIK XSECT” package provides XML digital signatur@Q8] and XML
encryption supporf[109] as required by the XKMS protocek(sectioh A.5]1).

3. Finally, “IAIK CMS” provides the certificate extensionrgttures required to
implement the Subject Key Attestation Evidence (SKAE) itiedte extension
for an advanced PKI.

The usage of these libraries saves reimplementation of @an®Kl related func-
tionalities and helps to keep the focus of the workpackagesesncomponents specific
to Trusted Computing.

OpenTC packages In[A38 packages situated on the right hand side are dewtlope
within OpenTC, but are not primary development goal of thiligekey infrastructure
workpackage.

Java TSS interface The jTss family of packages are components for bridging
high level Java code to the lower levels of the Trusted Comgunfrastructure con-
cept. To be more specific, the jTss top level interfaces tgntalate in Java the trusted
service provider (TSP) interface layer as specified by th& 7@ the C programming
language.

The interface layer is available in two variants: In the fiugtiant the trusted core
services (TCS) are also implemented in pure Java (and Wjitatk to the TPM), while
in the second variant the bridge to the TPM is achieved by eyapg Java native
interface (INI) calls, wrapping an external TSS (e.g., Bens).

The work to integrate Trusted Computing into Java is mostsk tof workpack-
age WP03d, which IAIK is responsible for. The basic buildbigcks required for
PKI work build on basic functionality — like cryptographilgarithms — that is already
available in Java. The PKI operations require certificatkraan-volatile storage func-
tions from a Trusted Software Stack provided by WP03d. Tes83s still incomplete
in this area and the TSS from OpenTC partner Infineon onlyrbeavailable very late
in the development of the basic PKI prototype, so was not diommfo choose.

PKI packages This section describes the components which were deve fopéae
public-key infrastructure work in WP05d.
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TCcert The TCcert utility implements new certificate types andifiesate exten-
sions as specified by the TCG for a Trusted Computing enhanfradtructure.
The following credentials are currently supported:

1. TPM Endorsement Key (EK) credential
2. Platform Endorsement (PE) credential

3. Attestation Identity Key (AIK) credential

TCcert already contains preliminary support structuregife Subject Key Attesta-
tion Evidence (SKAE) certificate extension, which will beioferest for an advanced
PKI.

TCcert can be used as a command-line tool to create cemiidedm text files
(config files) describing the desired properties. In addjtall structures can be built
on-the-fly in memory too, thus TCcert can be used as the coengdor TC certificate
creation in a PrivacyCA type of setup.

XKMS The XML Key Management Specificatiori ([107]) protocol is aywta ex-
press certificate management functions in XML.

The XML messages of XKMS are relatively easy to work with,ytlaee easy to
read and thus also easy to debug. The mapping of Trusted Gomppecific func-
tions of a PrivacyCA to the protocol functions turned out éormt always completely
satisfying. A modification or extension of the XKMS protognbhy be necessary in
future developments.

The currentimplementation is advanced enough to be almihgtbmpatible with
XKMS. It consists of two parts: One part is mostly automdlycgenerated from the
XML schema with help of JAXB (see sectibn A.b.1) to be XKMSustural compliant.
The second part is the APl on top, which is responsible foresgim validation of data
and support functions.

Privacy CA server package As a proof of concept of an actual AIK cycle done
over the network a standalone service offering PrivacyG#fions was implemented.
This component offers basic operations of a Trusted Comgethhanced PKI, able to
handle EK and AIK certificates. One can issue certificatesgtespecific ones, get a
validation result or revoke previously issued certificates

An improved advanced TC PKI is expected to benefit from thesegpce with
issues discovered in this first attempt.

jiTpmTools The jTpmTools package offers a command-line tool set foickiaterac-
tion with the TPM, the TSS and a PrivacyCA service. Thus,lalzéé commands cover
WPO03d (jTss) specific functions as well as WP05d specific JBKes.

The commands offered for PKI are:
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Endorsement key functions:

readpubek Read the public part of the Endorsement Key.

readcertek Read the EK certificate from Infineon 1.1 and 1.2 TPMs.

PKI Functions:

aik_create Create AIK certificate by simulating a local PrivacC
cycle.

xkms.aik_create Create AIK certificate, using XKMS protocol.

xkms.aik_locate Locate AIK certificate, using XKMS protocol.

xkms.aik_revoke Revoke AIK certificate, using XKMS protocol.

xkms aik validate Validate AIK certificate, using XKMS protocol.

xkms ekcertcreate Read public EK and create EK certificate, using XKMS
protocol.

xkms ekcertvalidate Validate EK certificate, using XKMS protocol.

Calling a specific function without options produces a lisalb possible parame-

ters.

The parameters should be self-explanatory.

jTpmTools integrates almost all available components amdahstrates their us-

age.

Further, full source code is included for interestatigmto study and then take

advantage of provided Trusted Computing support packages.

A.5.2 Applications

Moving Trusting Computing technology components from tiyeo practical appli-
cation, this section summarises the efforts to use the dpedl packages in actual
applications or installations.

Test server

IAIK has set up a public PrivacyCA test serverhdip://opentc.iaik.tugraz.at/. This
site runs the server package described in se€tion]A.5.1.offeeed services can be
used with the JTpmTools package described in seEfion JAThik service is free and
open to the public.

The web pages document the setup of the public PrivacyCAstoli currently
supported commands and their mapping to the XKMS XML messagéescribed in
sectior 6. All certificates used for the setup are offeredlfavnload. Links to related
resources complete the documentation. This sites web @ageaspdated whenever
new features are implemented.

Judging from the server access logs, the site receives sexjfrem all over the
world, thus the goal of dissemination and stimulating comityinterest can be con-
sidered a success.

PET demonstrator

Early builds of the PKI components were already used in then@@ PET demonstra-
tor 2006 effort. Limited functionality at that time forcedrae parts to contain place-
holder (“fantasy”) values (certificate OIDs etc.), howegarly use provided valuable
insight into practical deployment problems.

A tighter integration of PKI functionalities is an optionrfthe next demonstrator
effort.
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WP10 course practicals

In the summer term of 2007 IAIK held a university course “S&de topics of IT-
security: Trusted Computing”. The course included assigmsito practice the ac-
quired knowledge. The assignments challenged studentsatecheir own EK certifi-
cates, AlK certificates and use them in a basic mutual attestzontext. The programs
were run against the demo site described at the beginnifgso$éction and provided
valuable feedback on stability, scalability issues, etc.

A.5.3 Implementation of the Trusted Platform Agent (TPA)

A PKI requires both server side components, such as cetéfaathorities, as well as
client side applications that provide access to PKI sesvide the context of Trusted
Computing such a client application is referred to as thefBdiPlatform Agent (TPA).

The architecture of TPA is structured in different layerigfh core and low levels).
The high level layer exposes simplified functions for all gi®ns implemented in
the other layers. Built on top of the high level layer, the sme utilities provide
single console commands for each functionality providedHgyAPI. The core and
lower layers includes support packages (TSS and OpenS$LPaenTC packages
(credential manager, PKI operations, context managerauad $torage).

TSS this is the TPM Software Stack (TSS) as defined by TCG (erguders or
Infineon TSS) used by the system. It provides functions toagarand use the TPM.

OpenSSLis an open source toolkit implementing the Secure Socketer(&SL)
and Transport Layer Security (TLS) protocols as well aslasiiength general purpose
cryptography library. All functions are implemented by tawore libraries (libssl and
libcrypto) and are also available through console commands

The credential manageris responsible to request, parse, locally generate and lo-
cally verify the certificates. It is designed and implemerdas extension of OpenSSL
and support the following certificates: Endorsement key)(EHfatform endorsement
(PE), Attestation Identity Key (AIK), X.509 certificatestivistandard profiles.

PKI operations: this component manages the exchange of operational nesssag
over the network with the (P)CAs in order to request, revakejotely verify or re-
motely locate a certificate. The protocol implemented is XKM

Thecontext managermanages the multiplexing of the TPA among multiple appli-
cations.

Thelocal storageallows the user and the system to securely store and rethieve
credentials.
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