—

BIE

Information Society

Technologies

DO05.2 Proof of Concept of the Security

Services
Project number IST-027635
Project acronym Open TC

Project title
Deliverable type

Open Trusted Computing
Report (see p 84/85 Annex 1 - Nature)

Deliverable reference number
Deliverable title

WP contributing to the deliverable
Due date

Actual submission date

IST-027635/D05.2/Final

Proof of Concept of the Security Services
WPO5

Oct 2007 - M24

November 23, 2007

Responsible Organisation

Authors
Abstract

Keywords

IBM

IBM (Matthias Schunter), KUL (Dries
Schellekens)

This report describes the design of core
components of the OpenTC 2007
demonstrator for “Corporate Computing at
Home”. It is based on the research
documented in Deliverable D05.1 "Basic
Security Services” and is accompanied by
source code documented in Deliverable
D05.3.

Security management, isolation policy, policy
enforcement, corporate computing at home,
2007 demonstrator

Dissemination level Public
Revision Final
Start date of the o
Instrument IP project 1t November 2005
Thematic Priority IST Duration 42 months




ABSTRACT

This report describes the design of core components of tleOp 2007 demonstra-
tor for “Corporate Computing at Home”. It is based on the aesle documented in
Deliverable D05.1 "Basic Security Services” and is accommgxhby source code doc-
umented in Deliverable D05.3.

The goal of this deliverable is to describe and explain theaaesign and im-
plementation of our demonstrator. A particular focus o ttieliverable is how we
addressed the security challenges of the the given scel@oiporate Computing at
Home”. Nevertheless, most chapters describe infrastre¢hat goes beyond the par-
ticular needs of this demonstrator.

ACKNOWLEDGEMENTS

The following people were the main contributors to this mgalphabetically by or-
ganisation): Soeren Bleikertz, Serdar Cabuk, Philipp &(eiP Labs, Bristol); Kon-
rad Eriksson, Augustin Fievet, Bernhard Jansen, HariGb®amasamy, Matthias
Schunter (IBM Research, Rischlikon); Rainer Landfermatans Lohr, Ahmad-
Reza Sadeghi, Michael Scheibel, Stefan Schulz, PatrickiSt€hristian Stible, Mar-
tin Unger, Marko Wolf (Ruhr University, Bochum).

We would like to thank our reviewer Dries Schellekens fronthtdieke Univer-
siteit Leuven for substantial feedback after a thorougkemevFurthermore, we would
like to thank the other members of the OpenTC project for fuklgiscussions and
valuable contributions to the research that is documentéus report.



Proof of Concept of the Security Services

OpenTC Workpackage's

OpenTCDeliverable D05.2
V01 — Final Revision. 4948 (OpenTC Public (PU))
2007/11/23



2 OpenTC D05.2 — Proof of Concept of the Security Services

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



Contents

[1  Corporate Computing at Home Scenario Analysis 5

[1.1 Basic Setting 5

m_altm_aum_egritv Model for Virtual Machies . . . . .. .. 30
[2.5.3 The PEV Integrity Architectdre . . . . . ... ........ 34
F — . Lid

UX . . o e e e 37
255 USECAES . .« o v oo e 39
256 _Conclusidn . . . . o oo 44
2.6 XenSecure GUISEIVIGES . . . . . . o v i 45
[2.6.1 AnExample Secure GUIUsedase . . . . .. ... ..... 45
262 CurrentState . . .. ... ... ... ... . ... .. ... 45
5 46
N o e 49



4 OpenTC D05.2 — Proof of Concept of the Security Services

............................... 50
@fs ......................... 50
3.1.2 Implementation . . . . .. ... .. ... .. .. ... .... 53

[3.1.3 _Secure Virtual Private Network 60

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



Chapter 1

Corporate Computing at Home
Scenario Analysis

M. Unger (RUB)

This chapter presents the security requirements of the dCat® Computing at
Home (CC@H) scenario from a security infrastructure pestipe The corresponding
prototype will be presented at the 2007 project review meeti

1.1 Basic Setting

The background of corporate computing at home is that enegloyften have more
powerful computers at home as compared to the office. Fumihier, computing is
ubiquitous and employees get increasingly mobile. As a egmsnce, it would be
desirable to perform potentially confidential corporateksaon arbitrary computers.
The envisioned main usage is to expand the corporate netwakhome computer
such that the home computer is guaranteed to enforce coepuokcies.

Within the CC@H demonstrator an employee has to be able th adrome using
his own computer and to access, e.g., the company’s int(aaetFiguré 1]1). For
that purpose a special, trusted corporate compartmentamngp of a virtualisation
layer on the employee’s computer. This compartment has sebere against certain
attacks (seE1.2) and fully independent of OSes or apmieatiunning in parallel on
the virtualisation layer. The virtualisation layer eitte@msists of the Xen hypervisor
and its security services or the L4 microkernel and secsstyices.

The corporate compartment has to be able to set up a secuneatmm between
itself and a server of the company, e.g., a VPN gateway. \\diténg up this secure
connection, attestation is done to ensure that the clieotporate compartment run-
ning on the employee’s computer is in a proper state and cagiviee allowance to
connect to the company’s intranet.

On the server-side no special virtualisation techniquesuaed in this prototype
scenario. But of course mechanisms to verify the clienditesand to mediate access
according to the results of this verification have to be ircela

In the following section we enlist the possible threats tieate to be countered by
the security services. How this is done is described withendecurity considerations
sections of the Xen (see chafiér 2) or L4 security servideslfaptefB), respectively.



6 OpenTC D05.2 — Proof of Concept of the Security Services

Resource Isolating

Corporate
Trusted Virtual Domain

saulyoeN
ajelodioD

Corporate network

Hypervisor

Figure 1.1: Basic Setting: Corporate and game computertedhas a single home
computer.

1.2 Threats

The following threats have to be addressed by the securityces or by the architec-
ture as a wholB.

Threats to the Corporation

There are threats that have to be addressed with regardgorete data:

e The PC of the employee gets lost, and the finder/thief is ahlead confidential
corporate data stored on the computer.

e An attacker gains illegitimate access to the network of thiparation using its
own or an employee’s computer. This includes replacingrigtéd computing
base (e.g., hypervisor) with a bogus version to obtain s@di@mation.

e An employee deletes corporate data accidentally or on [gefpo

Threats to the Employee

Threats that have to be considered from the perspectiveedtrtiployee:

e The employee’s system is altered by the installation of thiparate compart-
ment resulting in a situation that the computer is no longable for private
purposes because of, e.g., restrictive security guideline

e Access to private data stored on the employee’s system mpgdsible for other
company members, e.g., the administrator.

1Threats marked with * are not related to the security sesvicEhese have to be considered generally
and thus are not included within the security consideratimiithe security services.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 1. CORPORATE COMPUTING AT HOME SCENARIO ANALYSIS?

Threats to both

Threats and attacks that have to be considered for compahgraployee are listed
below:

Direct Memory Access by devices

o lllegitimately modified compartments

e Malware installed/executed within compartments or in theedypervisor
e Software vulnerabilities in the hypervisor or securityvsegs

o lllegitimate program execution or data usage

e Denial of Service attack*

e User connects to a fake corporate server (phishing)

e Loss of user credentials*

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



Chapter 2

Xen Security Services

S. Bleikertz, S. Cabuk, P. Grete (HPL), K. Eriksson, B. Jankk Ramasamy, M.
Schunter (IBM)

This chapter describes different aspects of the Xen SgcBetvices. Section 2.1
gives an overview and identifies the current status of théeémpntation. Section 2.2
provides an in-depth description of the design of the irttiiai virtual networking com-
ponents. Sectidn 2.3 describes the network managemeretsin detail. Sectidn 2.4
describes how to expand the core trusted computing baséprblsy the hypervisor
to cover the executables of the security services as welttic®®d2.5 shows how —
given correct executables — integrity of the used policas lee proven. Furthermore,
it describes how to bind secrets to correct enforcementlafips and other conditions.
Sectior 2.6 describes the design of the secure GUI.

2.1 Xen Security Services Overview and Implementa-
tion Status

K. Eriksson, H. Ramasamy, M. Schunter (IBM)

2.1.1 Overview

The security services manage the security configurationeohypervisor and provide
secure virtualization of resources to the virtual machines

The current implementation of the Security Services is deresion of the 2006
security services. The concept of TVDs (Trusted Virtual [2@ms) has been added to
the networking component. The core idea of TVDs is to definwai trust zones that
can span multiple machines. Each trust zone then deterrttinesecurity policies for
the physical and virtual machines joining this zone. It alebermines the transport
protection used in a given zone.

The updated networking component includes a first versicadafission control
for VMs. This ensures that only VMs that satisfy the TVD p@ican join.

To be able to provide these services a management entigdcdlVD proxy” was
implemented to manage and enforce the virtual domain galich each physical host



CHAPTER 2. XEN SECURITY SERVICES 9

thata TVD is residing on. This means that on a physical hosflarD proxy is running
for each TVD that can deploy VMs on that specific host.

Each TVD proxy gets its portion of the needed TVD policiesrirthe TVD Master
that manage all policies for a specific TVD. Policies sent ©v® proxy include al-
lowed VMs, their reference measurements, extra configaafivVD network settings,
and configuration for secure channels if TVD spans severaipal hosts.

2.1.2 TVD network infrastructure

The TVD networking functionality enables a network infrasture than can inter-
connect multiple virtual machines running on multiple phgshosts.

The implemented network infrastructure enables a privaiteal network for each
TVD and ensures network separation by inter-connecting \@Mthe Ethernet level.
This means that logically, we provide a separate virtualngifor each TVD. As a
consequence, different TVDs do not share any virtual caolggevent that packets
from different TVDs are traversing any shared routing talaled TCP/IP stacks. It also
gives the freedom to deploy a wide range of networking sohgion top of the TVD
network infrastructure. Network address allocationg)gpert protocols and other ser-
vices are then fully customizable by the TVD owner and wodasparently as if the
VMs were in an isolated physical network.

To maintain secrecy and confidentiality of network data wa@wD network spans
several physical hosts the data is transferred over eredty#®N tunnels. This enables
the use of untrusted networks between physical hosts thdtios VMs within the
same TVD to provide a seamless view of the TVD network.

| Host 1 %////
V // M2

VPN
L

27777

LAN/WAN

Figure 2.1: TVD Network Overview

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



10 OpenTC D05.2 — Proof of Concept of the Security Services

2.1.3 Bridge

For bridging VMs within a physical host there are two optiogisher using the Linux
Kernel Ethernet Bridge functionality or the OpenTC vSwitatm HP Labs.

Both work in a similar way when it comes to plugging in VMs, aitds done
by attaching a VM’s back-end virtual network interface \wié the bridge/vSwitch
at Ethernet level and therefore all ingoing and outgoingkpecfrom a VM will be
directly going to/from the attached bridge only and bypagsill higher level packet
routing/mangling/filtering outside the TVD network inftegcture.

Each bridge works in the same way as a physical Ethernetlsdiies by main-
taining MAC tables (with age counters) for each port (in tése connected vifs) to
keep track of where to route packets.

The Linux bridge can also handle the link management prét8T® (Spanning
Tree Protocol, IEEE 802.1D) to handle multiple hops andaegclic routes if a more
complex TVD network layout is deployed. This is useful whewesal local TVD
networks on different physical hosts are inter-connectadnultiple secure channels.

The vSwitch has capability to do VLAN tagging (IEEE 802.1Qhigh is useful
when inter-connecting physical hosts with several TVDs @veusted network such a
internal Data Center network. It works by adding tag infotiorain the Ethernet frame
header that identifies to which VLAN a frame belongs and threrdut the frame on
a shared network. Receiver and intermediate VLAN-enabigttises can then apply
rules and routing depending on which VLAN a frame belongsTtus enables better
network separation but not confidentiality.

2.1.4 Virtual Private Network

To add confidentiality to data between VMs, that belong togame TVD but are
located on different physical hosts, the data is transfieover a secure channel between
the local bridges on each physical host.

The relaying is done on Ethernet level to keep the TVD netwmaksparent no
matter if the VMs are residing on the same or on different pat$osts. The imple-
mented solution of secure channels uses point-to-point WPNels with OpenVPN
that are configured via the TVD proxy from the TVD policies.i§&nables reconfigu-
ration of topology and the involved VPNs within a TVD from agle administration
point, the TVD Master.

The TVD policies distributed from the TVD Master to the TVDopy also include
the secret key for the VPN along with other VPN specific sgiin On a physical
host the VPN's endpoint is represented as a local virtualowdt interface (vif) that is
plugged into the appropriate bridge controlled by the TVDxyr The bridge’s MAC
tables are then updated in the same fashion as physicahewitearn what port they
need to send on for a specific host.

2.1.5 VM admission control

When a VM is about to join a TVD its state will be verified by tleedl TVD proxy to
see if it complies to the policies of that TVD. If it is accegtihen it will be connected
to the TVD network.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 11

‘Domu " DomTt " DomT2
| Il (paravirt) I (fully virt.)

‘ Untrusted network ‘

Figure 2.2: TVD Network Modules within Physical Host

In the implementation this is done by having the CompartnMartager (Comp-
Mgr) do a two step interaction with the TVD proxy during stgrtof a VM, namely
compartment attest and compartment network attach . Thisrie over a socket con-
nection using the Compartment Admission Protocol (CAPrHsjally designed for
this purpose.

The CompMgr makes use of a module called Integrity Serviceddar to measure
the state of the VM to start. The measurements can inclutlest& M configuration,
kernel and disk(s) that are going to be attached to the VM.

Compartment attestation:

1. CompMgr loads the VM configuration and applies securitgdives such as
measuring compartmentimage (with help of Integrity SexWtanager), unseal-
ing key and setting up encrypted storage (with help of SVDM{J ahecks if
VM should be part of a TVD.

2. If security directives state that the VM should be part ¥Drnetwork then the
CompMgr sends prior to VM startup an attestation requeshéoTtVD proxy
containing the measurements of the VM.

3. The TVD proxy looks up the settings for the VM in the polkiend validates
the measurements and returns accept or deny depending walittegion result
along with optional extra settings (such a MAC address) Thdd proxy wants
CompMgr to apply on VM at startup.

Compartment network attach:

4. Once the CompMgr has started the VM it sends an attach setuéhe TVD
proxy containing the virtual network interface (vif) of thewly started VM that
should be part of the TVD network, and also the measureméiie &/M.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



12 OpenTC D05.2 — Proof of Concept of the Security Services

5. The TVD proxy once again verifies the VM measurements aaddfything is
according to TVD policies then connects the vif to the brid§the local part of
the TVD network and returns that attachment was successful.

The CompMgr will not start the VM if the TVD proxy returns denguring the
attestation procedure.

If the attestation step would be skipt and the CompMgr regutee TVD proxy
to attach a started VM with “bad” measurements to the TVD oelvthen the TVD
proxy will respond saying that it failed and leave the vif anoected, thus leaving the
TVD network unreachable by the VM by not attaching it the bad

The admission control protocol is depicted in Figliré 2.3e Thplementation de-
tails are depicted in Figufe2.4.

... TCPSocket TVD Prox
Compartment Manager }4 >{ (Listens on TCP ponyGlSO)

Query: Attest Compartment (Comp. ID, Comp. Meas.)

Step 1 Response: Attest Granted (Comp. ID, MAC addr.)
Attestation

A

Response: Attest Denied (Comp. ID) or

A

Query: Attach Compartment (Comp. ID, Comp. Meas., vif)

h J

Step 2 Response: Attach Ok (Comp. ID)
Attaching -

Response: Attach Fail (Comp. ID) or

Query: Detach Compartment (Comp. ID)

A J

Step 3 Response: Detach Ok (Comp. ID)
Detaching

or

Response: Detach Fail (Comp. ID)

Figure 2.3: Compartment Admission Protocol towards TVD

The extended implementation added a couple of modules torthmal Security
Services architecture. Most notable is the TVD proxy thatdhas the enforcing of
TVD policies on a physical host. The enforcing covers addepty of starting a VM
depending on measurements and also admission to TVD network

The TVD proxy further contains sub-modules that handlesouar networking
tasks needed to be able to provide the TVD networking infuastre to attached VMs.
It includes modules for controlling Kernel bridge, vSwitahd VPN.

Compartment Manager This module
e Manages starting and stopping of VMs.
e \erifies VM image and configuration towards TPM.

e Sets up needed resources for a VM, such as memory, encrytptede and so
on.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 13

TVD Master
.1 (Web-server containing
R licy XML-file)
q Compartment Manager } _________ % TVD Proxy k e

(Enforcing TVD policies, controlling
vNet)

(starting/stopping VM)

(Measuring cfg., kernel, disks) module via user-land lib)

. . Bridge ctrl.
Integrity Service Manager (interfacing kemel

Y
SVDM
Secure Virtual Device Manager VPN ctrl.
(Resource allocation & setup) _

oA

OpenVPN
(TCP interface to daemon)

vSwitch ctrl.
(userland lib interfacing

kernel module)

Linked function call

GUI user auth.

| Protocol over socket

Extended implementation

\j

O New implementation
=

*

Not implemented

Figure 2.4: Implementation module details

e Interacts with Xen (via command-line interaction) for loegla VM, starting it
and stopping it.

e Asks TVD-proxy for VM attestation and network access via@#e protocol.

TVD proxy The TVD proxy runs as a separate process controlling thearktre-
sources on a physical host.

It loads and parses the polices at startup and then waitedoiessts from the Cmp-
Mgr. The policies are specified in XML and can be read from fileemotely over any
protocol that the Linux Curl library can handle (http, hitfip and so on).

The TVD proxy sets up the Kernel bridge or vSwitch at startog then later starts
the VPN when the first VM is attached.

Controlling of the VPN is done via command-line interactad using the Open-
VPN management interface which runs over a TCP socket.

2.1.6 Summary
The current implementation of the Security Services canllesat least the following:

e Integrity enforcement of compartment configuration, kéerel system image.
The parts to be included in measurement are configurabldigcdwernel, sys.
Image ). Measurements can extend a PCR in the TPM for latdnusesealing
of keys.

e System image and additional disks to attach can be encrypi#ey(s) sealed
to TPM's base PCRs and optional an extra PCR to include eadlected mea-
surements.

e Compartment Manager handles running VMs paravirtualied fally virtu-
alised. VMs stated to be part of a TVD will be attested andchgd against
the TVD proxy.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



14 OpenTC D05.2 — Proof of Concept of the Security Services

e The TVD proxy reads policies in XML format from file or remote&aVHTTP,
which should be over an prior setup secure tunnel (like a Tlrfhel using a
remote attestation protocol).

e The TVD proxy handles using both the Kernel Bridge and the it$w(se-
lectable) is the local bridge for the TVD network.

e OpenVPN is used as VPN tunnel and is setup on demand and kedtoy the
TVD-proxy.

2.2 Xen Virtual Networking Devices
S. Bleikertz, S. Cabuk (editor) (HPL)

This section provides details on the virtual networkingtptype developed by
HPL. The prototype was fully incorporated into the demaatsir to help isolate the
corporate networking from a non-corporate one (with théedénce that in the demo
OpenVPN is used instead of IPSec).

2.2.1 Overview

Virtualisation technology can be applied to several défgrresources in an IT envi-
ronment and is nowadays popularly used for server consmiua Another area of
virtualisation in IT environments and datacenters is nekwartualisation, which is
used to create virtual networks on top of the physical intftecture independently of
the physical topology. Several virtual networks, each aittifferent topology, can be
deployed simultaneously on the same physical network,méliows consolidation of
networks and a flexible topology configuration.

A typical use case for virtual networking in datacenter emvinents is when sev-
eral customers share the physical resources such as sangengtwork infrastructure,
but each customer wants to configure and operate a netwohlefawn servers. With-
out virtualisation technology each customer would needdica¢éed physical network
infrastructure and servers to do so, which is cost-intereind inflexible. Virtualisation
of servers and network allows the sharing of physical resmiwith strong isolation,
which increases the overall datacenter utilisation andces the costs for the cus-
tomers.

Virtualisation allows customers to specify a flexible confifion of their network
topology and server arrangement. This is because, thansualisation, no physical
reconfiguration such as changing cabling or adding new eeteea rack is needed.
This is beneficial for customers in order to rapidly react tovgng demands of their
IT infrastructure.

Customers have a high demand for strong isolation to pratestconfidential busi-
ness information from other parties sharing the same palygsources. Virtualisation
does not provide the same isolation as dedicated physealirees do, but allows the
introduction of further security mechanisms due to the gaiftexibility of virtualisa-
tion. This section discusses how network virtualisatiom lba utilised to implement a
security mechanism for fine-grained isolation and policipezement.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 15

2.2.2 Background

Switch Functionality

A switch, compared to a hub, only sends incoming packets eopthrt, where the
destination host is connected, and not to all ports. In ot@e@nake this decision, the
switch has to know which host is connected to which port andages this mapping
in a table. A physical Ethernet switch manages a MAC tabléckvimaps a Layer 2
address (MAC) to a physical port.

Switch table management consists of two procedures fongdanew table entry
and removing an old one, which are called Learning and Agdimthe Learning pro-
cedure every incoming packet is analysed and the source Miteas is extracted.
The switch knows on which port the packet was received and adtew or updates
an existing table entry for the source MAC address with tbid pumber. The Ageing
procedure removes obsolete entries from the table by usiimgeastamp for each en-
try, which indicates when the entry was lastly updated. légain time difference is
reached, the entry will be removed from the table. In orddraee an efficient packet
transportation within the switch, these two proceduregpkbe table consistent and
accurate. A special case is when the destination MAC addifess incoming packet
is not in the table yet. In this case, the switch can not dewidehich port the packet
have to be forwarded, so it will broadcast it to all ports, nder to try to reach the
destination host. If the host is connected to the switch ghihgend a response, which
the switch can use to add the table entry for this host.

Link Modes

As depicted in Figure2]5, vSwitches are linked to each otisérg several different
protocols depending on the type of link between them. Thif@e gives an overview
of these protocols, describing their functionalities, @edt usage scenarios.

EtherlP is a protocol for tunnelling Ethernet and 802.3 packets Rjavhich allows
the expansion of a LAN over a Wide or Metropolitan Area NetkgoiEach tunnel end-
point uses a special network device provided by the operatistem, which encapsu-
lates the whole outgoing Ethernet/802.3 packet in a new 8Rgiaand then transmits
it to the other side of the tunnel. From incoming packets thbedded Ethernet/802.3
packet is extracted and transmitted to the LAN.

EtherlP does not provide confidentiality or integrity, whimakes it only suitable
for routed and trusted networks in a corporate or datacemgronment, for example
when two vSwitches are located in a datacenter, but are dhostalifferent servers,
which are not connected on the same VLAN switch.

VLAN tagging is a well-established standard for network isolation ongids/l net-

work equipment in datacenters. The standard is describ&8EE 802.1Q and uses
tagging of Ethernet packets for isolation between netwoblssan example, a host in
the VLAN 42 uses a special network device provided by the aijp@y system to apply

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



16 OpenTC D05.2 — Proof of Concept of the Security Services

Haar A Hest B Hadir &
W Wil 2 W 3 Whia Wil 5 W &
] i i
W W k
Wirlual Swiich Wil Salich ‘wirtual Swiich
| HIC | | HIZ | MIT KIC |
VLAN Tagming T4 '-,‘. [Fac i

WLAN Swilch

Efnerim

Figure 2.5: General vSwitch Architecture

a VLAN tag, which contains the VLAN ID 42, to outgoing packetsd to remove the
tag from incoming packets before they are processed by theruggtwork stack.

In order to handle VLAN tagged packets, the physical netvamipment has to
support IEEE 802.1Q and be configured appropriately. Thegighe VLAN switch,
which is used by the host of VLAN 42, has to be assigned to VLANag well as
the port of the destination host. The VLAN Switch will anaythe VLAN Tag, in
particular the VLAN ID, of incoming packets and only sendrth® ports, which are
assigned to this particular VLAN ID.

IPSec addresses the issues of packet confidentiality and ingegvftich are miss-
ing both in EtherlP and VLAN tagging. This section gives oalyrief explanation
of IPSec. For further details refer to RFC 4301 to 4309, wltohers the technical
specifications.

We focus on the Encapsulating Security Payload (ESP) ofdR8kich encapsu-
lates a IP packet and applies an encryption mechanism tadereenfidentiality and
integrity of this packet. The usage scenario for IPSec isvttve vSwitches are linked
to each other over an untrusted network such as the Inteéduggoing Ethernet/802.3
packets are first encapsulated using EtherlP, and then sulatgd and encrypted us-
ing IPSec. The double encapsulation is needed, because tP8eencapsulates IP
packets and not Ethernet/802.3 ones.

2.2.3 Virtual Switch
Overview

The Virtual Switch (vSwitch) is the core component of viltnatworking and oper-
ates similar to a physical switch. It is responsible for regtewirtualisation, isolation,
and spanning a virtual network across physical hosts. Thetes provides the primi-

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 17

tives for implementing higher-level security policies faatworking and it needs to be
configured by a higher-level management layer (e.g., Sy@eivices management) .

Architecture

Figure[2Z.5 illustrates the general architecture of virtuetworking and how several
vSwitches are linked together in a sample environment.imgtenario we have three
physical hosts, which are connected to each other usingrdift networks and hosting
VMs of different customers or TVDs. The green TVD consist3/df 2 and VM 3
hosted on A and B, which are connected to each other usin@bVa&N switch. The
isolation of the green TVD to other parties connected to $higch is realised using
the built-in VLAN tagging with the TVD ID as VLAN ID. VM 1 and VM4 of the blue
TVD, also located on the physical hosts A and B, are usingrBrencapsulation over
an IP-based Metropolitan Area Network (MAN), like a routedmorate network. The
members of the red TVD VM 5 and VM 6 are on physical hosts, whiehconnected
only through a Wide Area Network (WAN), like the Internetdaan IPSec channel is
needed, in order to ensure confidentiality and integrity.

The goal is that every VM thinks it is on the same LAN with theetVMs of its
TVD and all traffic is transmitted in an efficient and securenmer depending on the
link type and the chosen protocol. Security issues, suctoasranicating securely
over a WAN link, are addressed by the network infrastructune the VMs can rely on
this mechanism and do not have to address these issues thesnse

2.2.4 Linux DomO Prototype

The first version of the vSwitch prototype is realised as aikikernel module for the
vSwitch core component and a stack of user land configuratiols. This vSwitch

is intended to operate from a Linux-based domO, which actsrat-backend for the
VMs and has access to the physical network interface. Thertimplementation is
limited to VLAN Tagging and EtherlP encapsulation as vStviioking modes. An

additional VPN module is employed to provide IPSec encatiul functionality.

Implementation in Xen

FigureZ.6 depicts the Linux-based implementation of theit® on a Xen platform.
The Xen domO acts as a net-backend for the VMs on the same hadtas virtual
network interfaces called vif, where each vif has a corradpay net-frontend device
in the VM. A VM can be associated with a vSwitch using the appiate vif device
and all traffic for a VM is processed by the vSwitch, in paréeoutgoing traffic is
tagged or encapsulated.

There exists two versions of the vSwitch implementationiciiiffers in the im-
plementation of VLAN tagging. The first version uses the jplsedevice for VLAN
tagging provided by the Linux kernel. The second one haswvits functionality for
VLAN and EtherlP processing, making the architecture fackea processing more
consistent. The latter also prevents the extra overheddsfiosmitting packets through
another networking layer.

From an implementation point of view this vSwitch versiorhighly coupled to
domO and Linux. Communication with the connected VMs isiseal through the
Linux domO bridging and its hooks for packet interceptionrtRermore, the vSwitch
registers several handlers for VLAN and EtherlP handlinthinithe Linux kernel's

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



18 OpenTC D05.2 — Proof of Concept of the Security Services

/ 2 VAN
= tagging } I3 / = tagging
 module . A

back-end
devices

[ 1€ >
eth0.0.  eth0.p

— [ ViAn-capable | —
hysical h
— —_—

[c]a] ] [cB] ]
— —

eth0

[ c] ] [Badcl ]
e —

Figure 2.6: Prototype Implementation of the vSwitch.

networking subsystem. The vSwitch consists of the generiatis functionality, im-
plementing the learning and ageing procedure for a tablgpmgMAC addresses to
virtual ports.

Configuration

The configuration of the vSwitch is also done within domO. V8itch kernel module
provides two interfaces, one for issuing configuration c@nds and another one for
configuration examination. For configuration commands Bwitch provides a device
called/ dev/ hpl vnet 0, which can be used to issue the followiilogtl commands:

VNET_IOC_ADD_NET Create a new virtual network
VNET_IOC_DEL_NET Delete a virtual network
VNET_IOC_ADD_PORT_IF Assign a VM’s NIC to a VNet
VNET_IOC_DEL_PORT_IF Remove a VM’s NIC of a VNet

These commands allow a basic vSwitch management.

The configuration can be examined through teysfs directories located in
/ sys/ class/vswitch/ and /sys/class/vport/. The vSwitch class
is ordered by VNet IDs, like/ sys/cl ass/vswi tch/ 0x00000017/ where
0x00000017s the VNet ID 23 in hex, and each entry holds specific VNetiimfation
and links to the associated VM'’s NICs suchas/s/ cl ass/ vport/vi f10. 0/ .

These two interfaces are normally not used directly by tlee, osit through a bunch
of user land configuration tools. These tools provide an ¢éasise configuration in-
terface, abstract the issuing of ioctl commands and iné¢the hierarchy of the sysfs
entries.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 19

vnet_add id saddr daddr Create a new VNet with the given ID, source and destina-
tion IP address

vnet_control Interactive configuration shell

vnet_list List all configured VNets

vnet_remove id Remove VNet with given ID

vnet_show id Show information of a VNet with the given ID

vport_add id devhame Add the VM’s NIC given by devname to a VNet with the
given ID

vport_remove devhame Remove a VM’s NIC

vport_show devhame Show information of a VM’s NIC

Problems

The main problem with this solution is that it operates witttie privileged domain,
which should be kept minimal and only for VM management psgso For stronger
isolation between the VMs, a disaggregation of domO is ddslny splitting up the
functionality of dom0O into several VMs. The future versimfghe vSwitch prototype
will focus on building a vSwitch as a lightweight VM only foetworking purposes.

2.3 Management of Trusted Virtual Networking Do-
mains

S. Cabuk (HPL), K. Eriksson, H. Ramasamy, M. Schunter (IBM)

We now describe the infrastructure for managing our virhetvorks. The core con-
ceptis the notion of a Trusted Virtual Domain (TVD). The &e8 managing each TVD
are called TVD Master and TVD proxy.

The TVD master plays a central role in the management anddeptmyment of
TVDs. There is one TVD master per TVD. We refer to the TVD mastea single
logical entity, although its implementation may be a disited one. The TVD master
is trusted by the rest of the TVD infrastructure and the VRtas &re members of the
TVD. Known techniques based on Trusted Computing [36] candesl to determine
the trustworthiness of the TVD master by verifying its safte/ configuration. The
TVD master can be hosted on a physical machine or a virtuahmacin the case of a
VM implementation, the PEV (protection, enforcement, fieation) architecture pro-
posed by Jansen et. dl. [14] can be used to obtain policy erfeent and compliance
proofs for the purpose of assessing the TVD master’s trusiiness.

The TVD policy is defined at the TVD master by the system adshiaior (e.g.,
the administrator of a data center hosting multiple TVDshdaelonging to a different
customer). The TVD master has the following main respoliséds:

1. distributing the TVD policy and other TVD credentials¢bias VPN key) to the
TVD proxies and informing them of any updates,

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



20 OpenTC D05.2 — Proof of Concept of the Security Services

2. determining the suitability of a platform to host a TVD pydqdescribed below),
and thereafter, periodically assessing the platform’sinard suitability to host
VPEs belonging to the TVD,

3. maintaining an up-to-date view of the TVD membership,chtincludes a list
of TVD proxies and the VPEs hosted on their respective platfo

TVD proxy On every host that may potentially host a VM belonging to thDT
there is a local delegate of the TVD master, called TMD proxy Like the TVD
master, the TVD proxy is also trusted. The TVD proxy is thealoenforcer of the
TVD policies on a given physical platform. At the time of itsation, the TVD proxy
receives the TVD policy from the TVD master. Upon an updathéoTVD policy (by
a system administrator), renewal of TVD credentials, oresi of TVD VPN keys at
the TVD master, the master conveys the update to the TVD @soxi

The TVD proxies on a given platform are independent. AltHodyD proxies
are trusted, TVD proxies on the same platform should be serffly isolated from
each other. For example, a TVD proxy should not be able tosacpevate TVD
information (such as policies, certificates, and VPN keyddihging to another TVD
proxy. For improved isolation, each TVD proxy on the platiomay be hosted in
a separat@nfrastructureVM, which is different from a VM hosting regular services,
calledproductionVM. On a platform with the Trusted Platform Module or TPM[37]
isolation can further be improved by TPM virtualisatibh,[8}signing a separate virtual
TPM to each infrastructure VM, and using the virtual TPM as Hasis for storing
private TVD information.

A TVD proxy must only be able to interact with VMs hosted on tilatform be-
longing to the same TVD. As we describe below, that requirgriseenforced by the
Local Common TVD Coordinator (LCTC).

The main responsibilities of the TVD proxy are:

Configuration of the Local TVD vSwitch The TVD proxy configures the local TVD
vSwitch based on the TVD policy. For example, if the TVD pylgpecifies that
information confidentiality is an objective, then the TVIbgy enables all traffic
through the vSwitch to pass through the VPN module and pesJide VPN key
to the module.

Maintenance of Private TVD Information The TVD proxy maintains private TVD
information such as policies, certificates, and VPN keys.

Status Reports to the TVD Master Upon request or periodically, the TVD proxy
provides a platform status report to the TVD master. The ntejpaludes in-
formation such as the number of VMs belonging to the TVD ararthnique
addressable identifiers and the current vSwitch configumafThe status report
also serves as an “l am alive” message to the TVD master, dpd tiee TVD
master to keep an updated list of TVD proxies that are corddctit.

Enforcement of Admission Requirements for VMs into the TVD A VM’s virtual
NIC is attached to a vSwitch only after the TVD proxy checkattthe VM
satisfies TVD membership requirements.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 21

Enforcement of Co-Location Restrictions The Local Common TVD Coordinator
(LCTC) checks with each TVD proxy already existing on thetfolan for co-
location compatibility before instantiating a new TVD pyox

Enforcement of Multi-TVD Membership Restrictions A VM may belong to multi-
ple TVDs simultaneously. However, approval from TVD prex@érresponding
to the TVDs in which the VM holds membership is needed befbee\tM can
joina new TVD.

Continuous Enforcement of TVD Policy The TVD proxy is responsible for contin-
uous enforcement of the TVD policy despite updates to thepahd changing
configuration of the platform and member VMs. Upon receivémgupdate to
the TVD policy from the TVD master, the TVD proxy may re-config the
vSwitch, and re-assess member VMs' status to reflect theteggemlicy. Even
without any policy update, the TVD proxy may be required bg T"/D policy
to periodically do such re-configuration and re-assessment

Local Common TVD Coordinator (LCTC) The Local Common TVD Coordinator
or LCTC is present on every platform (hence, the wioighl in the name) on which a
TVD element has to be hosted. The LCTC itself does not belorany single TVD
(hence, the wor¢dommonin the name). The LCTC is part of the minimal TéBn
every TVD-enabled platform.

The LCTC is the entity that a TVD master or a system admirtstreontacts to
create a new TVD proxy on the platform. For this purpose, t8d C must be made
publicly addressable and knowledgeable about the idestdf the entities that may
potentially request the creation.

The LCTC has three main responsibilities, namely (1) comaif new TVD proxies
on the local platform, (2) determining whether a new TVD pr@an be co-hosted
along with TVD proxies already existing on the platform, gBjirestricting access of
TVD proxies only to VMs belonging to their respective TVDhélLCTC maintains a
list of VMs currently hosted on the platform, a list of TVD piies currently hosted on
the platform, and a mapping between the VMs and the TVDs teé&ynlg to.

The actual creation of the TVD proxy is preceded bgrapare phasewhich in-
volves

1. Mutual authentication and authorisation between the C@mnd the entity (e.g.,
the TVD master or system administrator) requesting thetioeaf the TVD

Proxy,

2. Determining the suitability of the platform for hostirtgetnew TVD proxy, from
the point of view of both the requesting TVD master and the E\dready
hosted on the platform.

The second step above involves determining whether a new pMRy can be
co-hosted along with TVD proxies already existing on thefptan. The LCTC is a
thin implementation; it simply asks each TVD proxy whethereav TVD proxy can
be co-hosted on the platform. Based on their internal sicpalicies, the individual
TVD proxies simply return a “yes” or “no” answer. The LCTC lieg positively to the

10n a Xen-based platform, the minimal TCB consists of the LCX&h Domo0, the Xen hypervisor, and
the underlying hardware.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



22 OpenTC D05.2 — Proof of Concept of the Security Services

DomO DomuU
| TVD Master
EtherlP | VLAN
TVD-specific
Modules
Policy
Engine | - @
NIC
SOl ©

@ TVD object «— create TVD (TVD requirements, policy model)
(1) create TVD Proxy (Master URL)
@ connect VM to TVD (TVD object)

Figure 2.7: Steps in Populating a TVD

requesting TVD master only if all TVD proxies said “yes”; etlwise, it returns a neg-
ative reply to the requesting TVD master. The LCTC includéisteof existing TVD
proxies with a positive response. Additionally, if requir¢he LCTC may include the
attestation of the platform characteristics along with aifpe response. The prepare
phase concludes with the response from the LCTC. Based aaghense, the request-
ing TVD master can determine whether its own policies all@ahosting with the list
of existing TVD proxies on the platform and whether the ati configuration is in
accordance with the TVD requirements. If that is the case) the TVD master sends
arequest to the LCTC to start the TVD proxy along with its owRLU In this way, the
conflict manager helps ensure that a new TVD proxy is hosteti@platform only if

it is compatible with the policies of TVDs already hosted be platform as well as
with those of the new TVD.

The LCTC does the actual creation of the TVD proxy, and ihg#gs the proxy
with the TVD master's URL. Thereafter, the TVD proxy congatlhe TVD master
and establishes a direct secure, authenticated commianicdtannel (using standard
techniques like IPSec or TLS) with the TVD master bypassirgltCTC. The TVD
proxy obtains the TVD policy and other credentials from théDImaster through the
channel, and configures the networking components acaptdifVD policy.

2.3.1 Auto-deployment of TVDs

Figure[2.8 shows the steps involved in automatic deployroksécure virtual infras-
tructures as TVD configurations. Figurel2.7 shows the stegsved in the establish-
ment and management of a single TVD.

First, the virtual infrastructure topology must be decosgmbinto constituent
TVDs, along with associated security requirements anctpatiodel. Second, eapa-
bility modelof the physical infrastructure must be developed. Capgbiiodelling is
essentially the step of taking stock of existing mechanigrascan be directly used to
satisfy the TVD security requirements. In this paper, wester the case where both
steps are done manually in an offline manner; future extessidl focus on automat-
ing them and on dynamically changing the capability modakebl on actual changes

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 23

TVD
Requirements

TVD Policy Security
Model Policy

Mechanisms
Required

Capability Per-host

Model Extensions

Deployment Planning
& Management

Global
Configuration
Revised Requirements,

Policies, or Capabilities

Figure 2.8: Steps in Auto-Deployment of TVDs.

to the capabilities.

Capability Modelling of the Physical Infra-structure

Capability modelling of the physical infrastructure catesis both functional and secu-
rity capabilities. The functional capabilities of a hostyniiee modelled using a function
C : H — {VLAN, Ethernet, I P}, to describe whether a host has VLAN, Ethernet,
or IP support. Modelling of security capabilities include® orthogonal aspects: the
set of security properties and the assurance that thesentiespare actually provided.
Table[Z.1 lists some examples of security properties anteTAR gives examples of
the types of evidence that can be used to support securipepsoclaims.

TVD Establishment and Population

When the set of TVDs have been identified, the next step isttaHly establish them.
The initial step for establishing a TVD is to create the TVDste# (step 0 in Figufe 2.7)
and initialise the master with the TVD requirements (as faised above) and the
policy model. The step involves the derivation of a comprsie set of TVD policies,
which are maintained at the TVD master. The output of the ist@pT VD object that
contains the TVD’s unique identifier, i.e., the TVD mastéiRL.

Once the TVD master has been initialised, the TVD is readypo&ing populated
with member entities, such as VMs. A VM becomes admitted tov® &fter the
successful completion of a multi-step protocol (steps 1aimdFigurd 2.7).

1. Alocal representative of the TVD, call@d/D proxy is created and initialised
with the URL of the TVD master.

2. The TVD proxy sets up a secure, authenticated channelthé&iTVVD master
using standard techniques.

3. The TVD proxy indicates the security and functional calit#s of the physical
machine. Using the capability model, the TVD master deteesiwhich addi-
tional mechanisms must be provided at the level of the Jimfeastructure. For
example, if a TVD requirements specification includes isofaand the physi-
cal infrastructure does not have that capability, thenigph€ZLAN tagging or

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



24

OpenTC D05.2 — Proof of Concept of the Security Services
Property Description
TVD lIsola- | Flow control policies in place fora TVD,
tion
Network The actual topology of a virtual network

in a physical machine.

Network Security policies for the network, such as
Policy firewall rules and isolation rules stating

which subnets can be connected.
Storage Pol-| Policies for storage security, such as

icy whether the disks are encrypted and what
VMs have permission to mount a particu-
lar disk.

Virtual Ma- | The life-cycle protection mechanisms of

chines the individual VMs, e.g., pre-conditions
for execution of a VM.

Hypervisor | Binary integrity of the hypervisor.

Users The roles and associated users of a ma-

chine, e.g., who can assume the role |of
administrator of the TVD master.

Table 2.1: Examples of Security Properties used in Capablodelling

EtherIP) modules must be instantiated within the DomO ofsidat machines
hosting VMs that are part of the TVD.

4. The TVD master then replies to the TVD proxy with the TVD wély policy

(such as flow control policies between VMs belonging to défe TVDs hosted
on the same physical machine) and additional mechanisrstist be provided
at the virtualization level.

5. The TVD proxy then instantiates and configures the reduikéD-specific mod-

ules (e.g., vSwitch, VLAN tagging module, encapsulatiordoie, VPN module,
policy engine, etc.) according to the TVD policy. After thtep, the physical
machine is ready to host a VM belonging to the TVD.

6. As shown by step 2 in Figute 2.7, a command is issued at thed/jdin the

TVD (active membership model. This results in the VM coritagthe TVD
proxy. Based on the TVD security policies, the TVD proxy mayrg out an
assurance assessment of the VM (e.g., whether the VM hasalired software
properly configured). Once the required verification of thé i¢ successful, the
TVD proxy may connect the vNICs of the VM to the appropriateD VSwitch.
At this point, the VM is part of the TVD.

Instantiation of the Right Networking Modules

The TVD proxy uses the instructions given to it by the TVD neaso determine the
right protection mechanisms to instantiate on the locafqla for the TVD network
traffic, and accordingly configures the local TVD vSwitch.

Suppose that isolation of TVD traffic is a requirement. TRAPAN tagging alone

would suffice provided the TVD spans only the LAN and the pbgkswitches on the

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 25

Past State Description

Trust A user believes that an entity has certain
security properties.

Mutable Log The entity provides log-file evidence (e.g.,

audits) that indicates that the platfor
provides certain properties.

Immutable Logs | The entity has immutable logging systems
(e.g., a TPM-quoté [36]) for providing evi
idence. Since the log cannot modified by
the entity itself, the resulting assurance|is
stronger than when mutable logs are used.

Present State | Description

3

Evaluations Evaluation of a given state, e.g., Common
Criteria evaluations [21].
Introspection Introspection of a system by executing se-

curity tests, e.g., virus scanner.

Future State Description
Policies By providing policies and evidence qf
their enforcement, a system can justify
claims about its future behaviour. e.g.
DRM policies and VM life-cycle protec-
tion policy.
Audit By guaranteeing regular audits, organiga-
tions can claim that certain policies will
be enforced in the future.

Table 2.2: Assurance for Past, Present, and Future Stadsru€apability Modelling

LAN are VLAN-enabled (i.e., it must support IEEE 802.1Q andstrbe appropriately
configured); in that case, a VLAN tagging module would be we&and connected
to the vSwitch. If the TVD spans beyond a LAN, then VLAN taggimust be used
in conjunction with EtherlP encapsulation. In this case, WLAN tagged packet is
encapsulated in a new IP packet and tunnelled to the other widere the original
VLAN tagged packet is extracted and transmitted on the VLAN/LAN-enabled
switches are not available, then EtherlP alone would sufificesolation.

By itself, EtherlP does not provide integrity or confidelitjaof the packets.
Hence, when those properties are required, EtherlP isbéaitanly on routed and
trusted networks, e.g., EtherlP would be suitable for wdfttween two vSwitches
hosted on different physical platforms that are not coretétd the same VLAN switch
in a datacenter or corporate environment.

If integrity or confidentiality are required properties ahé underlying network is
not trusted, then IPsec is used in conjunction with Etherl® ¥LAN. In that case,
the TVD proxy will create the VPN module, initialise it witihe VPN key obtained
from the master, and connect it to the vSwitch. Since IPsicaperates on IP packets
and not Ethernet or VLAN ones, double encapsulation is rteBéherlP is used to
first encapsulate the Ethernet or VLAN packets, followedBgec encapsulation and
encryption (using the VPN key).

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



26

OpenTC D05.2 — Proof of Concept of the Security Services

2.4 Xen Hierarchical Integrity Management

S. Cabuk (HPL)

This section provides answers to two problems around VMjititiemanagement: How
can we extend the integrity measurement capabilitiesedfby the BMSI to help sup-
port hierarchical and dynamic integrity management? Haweause these extensions
to facilitate a centralised credential management sePvice

2.4.1 Our Solution

We devise a framework called the hierarchical integrity agement framework

(hIMF). As illustrated in Figurg2]9, hIMF sits on top of th&i51 and is comprised of

two components: the integrity management interface (IM{ the credential manage-
ment service (CMS).

Integrity Management Interface (IMI)

BMSI LibU  The IM interface provides functionality similar to the lidlbrary pro-
vided by the BMSI. The current BMSI libU library stores inttlual measurements of
protection domains and provides four functions regardiegntegrity management of
these domains: extend, quote, seal, and unseal.

1. extend Protection domains use the extend operation to report @satogtheir

integrity. These changes are static and cannot be revemtedreported.

. quote Protection domains use the quote operation to provide a&digaote of

the TCB and domain integrity measurements. TCB measurenagatobtained
from and signed by the underlying hardware TPM. Domain megsants are
signed by the BMSI signing key.

. seal Protection domains use the seal operation to store a secget 4 crypto-

graphic key) bound to a particular TCB and domain configarati

. unseal Protection domains use the unseal operation to reveal atsgcg., a

cryptographic key) that is sealed to a particular TCB and @amonfiguration.
libU returns the secret to the requesting domain if and drtlyd unsealing op-
eration is successful (i.e,. the TCB and domain configunaiiothe same as
the expected values). The actual unseal is performed usengardware TPM
with respect to the TCB configuration only. The additionai@in configuration
checks are performed by the libU in software.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 27

; v H b H b
SSM L IvTPM+ | CMS |
[ i i H

Hardware & Virtualisation Layer

Figure 2.9: hIMF Architecture

IMI Enhancements IMI provides the same functions as libU with extensions #mat
able tree-of-trust and dynamic measurements. In partiddestablishes an ancestry
relation between protection domains by recording the gatemain during the child
domain creation (TBD). In addition to the static registeesmeined by the BMSI, IMI
introduces a dynamic register per protection domain to ke @ dynamic measure-
ments. Integrity functions offered by the IMI is altered akdws:

1. extend Protection domains use the extend operation to report @satogtheir
integrity. These changes can be static or dynamic depemdirthe accompa-
nying measurement policy. Static changes are reportecetst#iic registers in
the same manner as BMSI (i.e., the underlying libU extendtion is used).
Dynamic changes are reported to the dynamic registers autévious value is
overwritten instead of being extended.

2. quote This operation is the same as the libU quote except that theegaturns
a signed quote of the TCB and the measurements of the contypéaieh the re-
questing domain belongs to (i.e., domain plus its predecsssTCB measure-
ments are obtained from and signed by the underlying haslWBM. Branch
measurements are signed by the IMI signing key.

3. seal / unseal These operations are the same as the libU equivalents except

that instead of a single domain configuration, the aggregati a complete tree
branch is used. This includes all protection domains thettee predecessors of
the requesting domain.

Security services are given the option of accessing thetdduSomputing exten-
sions either through the BMSI or IMI. The former is used fog tases it suffices to
use a static and flat integrity model. The latter is used hyises (e.g., CMS) that can
benefit from a dynamic integrity hierarchy.

Credential Management Service (CMS)

CMS is a security service that provides protected storagedourity credentials tied
to specified policies and platform plus domain/branch ceméons. The main differ-
ence with the underlying BMSI/IMI sealing/unsealing funas is that CMS creden-
tials are never revealed to the requesting services buthaeys stored by the CMS
securely. The CMS provides the necessary interface to @llmh services access their
credentials if and only if the corresponding policy and cgufation is met. In this

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



28 OpenTC D05.2 — Proof of Concept of the Security Services

o Y
lMi + BMS
L. !

Figure 2.10: CMS as a Reference Monitor

context, the CMS acts as the reference monitor that contihelsaccess to security
credentials (see Figuke 2]10).

The CMS utilises the IMI or BMSI directly depending on whettiee IMI integrity
enhancements are needed. In either case, the main benefiptdyeng the CMS is
the ability to perform policy and configuration checks in amgpning manner (instead
of only once which is the case with non-CMS solutions). Altdively, credential
sessions can be established that allows access to the séti@it re-authentication
/ re-validation. These sessions can expire either afteratidn or if a change is re-
ported to the static/dynamic register. The choice of whelalidation scheme to use
is implementation dependent and will be explored further.

The CMS interface is likely to involve two phases: registnatand usage. In the
registration phase, a credential for a protection domaiegstered with the CMS using
the registerCredential operation. In the usage phase otinesponding credential can
be accessed using the accessCredential operation. Thiéicspetthese operations
will be investigated further.

VTPM+

This service enhances the integrity measurement capebitvTPMs using the hIMF.
We will come back to this after the successful implementatibhIMF.

2.4.2 Use Cases for Dynamic Registers

As it has created much speculation regarding usability, seethis section to describe
use cases around dynamic integrity measurements. Reatdlthamic measurements
are used whenever one can guarantee that, for example, guation change can be
reversible and may not have any side or unpredictable sftecthe future state of the
domain. The main critique is that it would be hard to find suatsa case in which a
protection domain would recover from a possibly untrusteafiguration. We provide
the following use cases in which such arguments do not hael free to comment on
and / or extend the list.

Digital Rights Management

It may well be the case that a particular media provider wiit want to push any
video content on your computing accessory if it is plugged tecording device. In
this case, software that detects and installs the plugpdangdedrivers for the recording
device must be part of the static measurements. Howevestdtesin which a recording
device is detected in the system can be reported dynamichilyfact, this can be
reflected in the dynamic register for the secure DRM playerise. As long as the
recording device is connected, no content is downloaded.e@me user unplugs the

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 29

device, the dynamic register is reset and content can besdushthe player without
requiring a system restart.

Data-center Trust Issues

Note that “trustworthy” is not a synonym for “secure”. A sgst is trusted if and
only if it behaves as expected. In a data center, trustingrdividual node may also
correspond to trusting its performance, or its compliandaé¢ requested Qo0S. In SoA,
a particular service may be required to meet a certain ldvpédormance. Services
or nodes that cannot guarantee meeting the performandeneayebe taken out of the
service pool temporarily.

Consider an SoA setting that is comprisedwd$ervices distributed on m physical
nodes. At any timek of these services provides the required level of perforrmanc
That is, k of these services can be “trusted”. The remaining & services will have
their dynamic registers altered to reflect their temporanyusted state. Once any of
these services can grab more resources on their physical el can report this
change dynamically and rejoin the service pool.

2.4.3 Conclusion

This section introduced our design of an enhanced VM intggnanagement frame-
work that is able to handle inter-VM integrity relations atighamic integrity mea-
surements. These aspects will be valuable to virtulizetfgstas that require more
flexibility than current Trusted Computing solutions prai
The current CC@Home scenario did not involve a use case tiliaes these in-

tegrity management enhancements, hence the resultingvrark was not incorpo-
rated into this year’s demonstrator. We expect to finalize implementation and
employ this framework as our VM integrity management solutin the next year’s
demonstrator.

2.5 Xen Cross-resource Policy Validation

B. Jansen, H. Ramasamy, M. Schunter (IBM)

2.5.1 Introduction

Hardware virtualization is enjoying a resurgence of ingefeelled, in part, by its cost-
saving potential in utility computing, where it can help irape server utilisation, re-
duce management and power costs, and control the probleemnarsprawl.

Even in traditional non-virtualized environments, setyuprotection, enforcement,
and verification of physical servers are non-trivial. Vati@ation makes these tasks
even harder. Security management of virtual servers is toatgd because (1) dif-
ferent virtual servers sharing the same hardware resouragde subject to different
and conflicting security requirements, (2) they may not lodated from each other
in a verifiable manner, and (3) privacy requirements mayatkcthat data needed for
verifying the integrity of one virtual server should not ¢ain information about other
virtual servers.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



30 OpenTC D05.2 — Proof of Concept of the Security Services

We make two main contributions. We show how to protect giverusty policies
against modification throughout the life cycle of a virtuachine (VM). We also show
how to prove compliance with given security requirementst. fast compliance, we
prove that the system state as reflected by log files satisfigairt conditions. For
future compliance, we prove that the security policies sxgd imply the given security
requirements and that they cannot be modified.

In making these contributions, we also generalise TPM-thagegrity protection,
enforcement, and verification mechanisms to cover virtuatimmes and pluggable
devices that can be governed by arbitrary security poli@es, isolation policies for
secure device virtualization and migration constraintsMds. Our mechanisms are
both extensible and flexible. Bgxtensibility we mean that it is possible to guarantee
compliance even if arbitrary virtual devices are attacloethé VMs. Flexibility means
that the verifier is able to specify security requirementbeoevaluated against the
enforced policies of the VM, virtual devices, and undenyiplatform that it cares
about, and obtain only the information corresponding tes¢haspects for validation of
system compliance.

We describe a formal model for the generalised integrityhmatssms; based on the
model, we describe an integrity architecture called PEVig¢tvistands for protection,
enforcement, and verification) and associated protocdis.afchitecture incorporates
integrity verification and protection as part of the viriation software while simul-
taneously enhancing its policy enforcement capabilit@ile the PEV architecture
itself is not tied to one specific virtualization softwareg describe a prototype realisa-
tion of our architecture using the Xen hypervisor.

We build on previous work by others|[8,110./29) 32, 3] who hased.ithe Trusted
Platform Module (TPM)[[3B] to protect the integrity of thereovirtual machine mon-
itor (VMM) and to reliably isolate VMs. The foundation of oarchitecture is a small
trusted computing base (TCB) that provides (1) reliabléesoinly logging of executa-
bles and data, and (2) conditional release of secretsailey and a condition can be
stored such that the key is released only if the log file saigfie condition specified.

2.5.2 Formal Integrity Model for Virtual Machines

Figure[Z.T1 shows our system model for integrity managem&na high level, the
system consists of hardware, the VMM, and VMs, and is conéiduvith a policyp.
At a given timet, the system has an integrity stateand produces log datag that is
computed by a functiolog(s; ). External to the system are andit systenand policies.
The audit system stores log filésg*. The contents of log files include policy updates
and indicate the integrity history of the system, i.e., haed)the policy enforcement
has been so far. The policies are needed for configuring tstersyand are useful in
estimating the future integrity of the system, i.e., how djdloe policy enforcement
is likely to be in the future. Thus, both the audit system aalicpes can be used to
evaluate the integrity state of the platform.

Typically, a computing system consists of a large numbeubggstems and com-
ponents that may depend on each other, e.g., hardware cemigpeuch as CPU and
devices, and software components, such as kernel, lisradiévers, and user appli-
cations. To provide extensibility, new types of subsystenay need to be added at
run-time. To provide flexibility, it is desirable that eaalibsystem be able to offer as-
surance only about specific aspects of its behaviour (idsiéas full behaviour). For
example, a disk should be able to log some of its contentssbitpiaccess control list.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 31

Verifier/User

input | requirements |

System i) : i predicate IT E

oufpit "~ [ Nmmmmmmmeer
) Aud

; “siate ) log = log(s:)
policy | request i} response E sgatte | —————— S)EE?T
_ A N (S ! {History|
VMM Lot
Hardware

Figure 2.11: System Model for Integrity Management

(id, type, log)
P o
(id, types, logy) (ida, typea, logz)
e

(id11, typenn, lf‘Jg/n) (ida1, typear, loga1) -+« (idan, typezn, logan)

(id111, typern, login)

Figure 2.12: Tred of log entries

To support the extensibility and flexibility goals, it is massary for our integrity
model to support more fine-grained notions of system intygtate and logging func-
tion. For this purpose, we use a trée(as shown in Figure_Z2.12) for representing the
log data, where each node is a triple and there is one triplegfoh component in the
system. To keep the tree size manageable, the tree sholuldertcples only for those
components that have an impact on the system’s integritpairdre of interest from
an integrity verification point of view. A triple for a compentk contains an identifier
idy, @ component typéypey, and a vector of log valuei®g,. Sub-components are
modelled as children of a node. The overall effect is thateid of a monolithic log
datalog(s:) (shown in Figuré 2.11), the log data is contained in a treeeatars of
log values (shown in Figuie Z.112). It can be extended by agdimemoving children
nodes. For example, the addition of a new virtual device td/ecdn be easily reflected
in the log tree by adding a new node as a child of the sub-tiaectirresponds to the
VM.

The particular aspects of the system’s integrity stateithaf interest to a user (or
verifier) of the system is modelled usingeojection functionp(). For a log treeT,
p(7) is simply a collection of a subset of the log entries in a stib$¢he nodes of
7. Formally,p(7) = {log’,.}, wherelog’,. € log,, and (idy., typex,log, € T). The
integrity requirements of the user are modelled by a preelidawhich is defined on
the result of the projection function.

Figure[2.1B shows the concepts of generalised sealingtatits, and privacy pro-
tection in our formal model. We describe these conceptsbelo

Generalised Sealing to Protect Integrity

A system endowed with a TPM caeala data item to the TPM, i.e., the system can en-
crypt the data item and tie it to the system configurationtergsat the time of sealing.
The system configuration is reflected by a specified subseiatfbRn Configuration
Register (PCR) values. The data item may be a key generatdiebyPM itself or
something generated outside the TPM. Decryption of the itkata, calledunsealing

is possible only when the system configuration (reflectechbysame subset of PCR
values) is the same as that at the time of sealing.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



32 OpenTC D05.2 — Proof of Concept of the Security Services

challenge ¢
projection p sub-view

|
: Privacy | _privacy, [Evaluation |Proof
Atestaton 209, [P |fesnrs Euncion' |

away
key, data

projection p
predicate N

p(log)

Figure 2.13: Generalised Attestation, Sealing, and Uirsal

p(log*)

System

true

reveal
TPM_Unseal [sealed key

We generalise the concept of sealing for protecting theyiitieof a sensitive data
item d, by makingd inaccessible to the underlying system if the assurancetdbeu
system’s trustworthiness is deemed unsatisfactory by niigyehat invoked sealing.
We model the concept by two functiorseal andunseal. Theseal operation takes as
input the data itemal, a projection functiorp(), a sealing predicatd, and the public
part K, of an encryption key<. At the timet; of executing the operation, the system
state is reflected by the log trég, which includes knowledge af() andII. The
operation produces an encrypted output {0, 1}*, which is encrypted with respect
to K. Theunseal operation invoked at timg (wheret; > t;) takes as input and the
log state7; at that time. The operation outputsf and only if the sealing predicaié
applied onp(7;) holds. A simple predicate may just compare the resufi(d@j) with
a reference value (e.g(7;)). A more complex predicate may extract the high-level
properties of the system frop{7) and compare them with desired properties (similar
to property-based attestation [24] 27]).

One can easily see that our generalised sealing conceptsdbespecial case of
TPM sealing. For TPM sealindl; simply consists of the values in the PCRs; the
projection functionp() specifies the subset of PCRs whose values are of interest for
assessing the system trustworthiness; the sealing ptedicsimply checks whether
their values at the time of unsealing are the same as at tleedfiisealing.

Generalised Attestation to Verify Integrity

A TPM-equipped system can use the TPM to engage in a chaliegpense style
cryptographic protocol, calledttestation with a remote verifier. The protocol allows
the remote verifier to query and reliably obtain the measergmalues for the system
stored in the PCRs of the TPM. Reliable reporting of the memament values is due to
the signing of the values by the TPM, which is trusted by timeate verifier. Based on
these values, the remote verifier assesses the trustwesthaf the platform.

We generalise the concept of attestation for verifying tttegrity of those aspects
of the system that are of interest to the verifier. For exantple verifier may be a
Trusted Virtual Domain (TVD) mastelr[4] who is interestedfie number and type of
VMs running on the system prior to allowing one of the VMs tmjthe TVD.

In our model, the attestation functiaitest() obtains as input a challengg an
evaluation functiorf(), a log file projectionp(), and a secret keX;. The function
outputs a signed messagign_(f(p(7)), c).

The attestation function is a generalisation of both bireargl property-based at-
testation[[24, 27, 11]. For binary attestation, the evadafunctionf() is simply the

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 33

identity function, i.e.f(z) = z, and the result of attestation is simply the signature on
the result of the projection function applied on the log 1fEBM attestation is a special
case of binary attestation in whi@ simply consists of the values in the PCRs and the
projection functiorp() specifies a subset of PCRs. For property-based attestti@n,
evaluation functiorf() extracts high-level properties from the result of the progn
function applied on the log tree.

Whereas previous works such as that of Sadleal. [32] provide a good way of
checking the hash of software binaries, our generalisegtation enables better as-
sessment of the run-time behaviour of the system. In thjsaesour model has goals
similar to those of Haldaet al. [11]. However, unlike Haldaet al. who focus on
attesting the behaviour of a software application, our rhbdse a focus on VMs and
virtual devices. Because of their reliance on the Javaalimuachine which runs on
top of an operating system, their TCB includes the operatysiem. In contrast, our
TCB includes only the VMM and underlying system layers, achuch smaller than
theirs.

Privacy Protection by Visibility Rules

The integrity of certain aspects of the system may be impbttamultiple users. Con-
versely, certain aspects of the system may be confident@héoor more users. For
example, the integrity of the VMM would be of interest to trsets of all VMs. On the
other hand, the state of a particular VM may need to be verifidyg by the user of that
VM. To satisfy such privacy requirements, it is importardtthttestation and sealing
be applicable on projections of the state. Furthermore,sifase that is relevant for
integrity verification contains information about mulgplisers, it should be possible to
prove integrity without revealing the actual state.

To satisfy the above privacy requirements, we introducddhewing notions into
our formal model:

Privacy Requirement Specification The specification definesgisibility constraints
on the projection functions. Given a set of usérsaand a log tree, a privacy
requirement specification is a functief) that assigns a subset bf to each
vector element in each node of the tree. The subset assigreediven vector
element in a given node is called the access control list (AGLthat element.
Although the number of ACLs may potentially be very largeytican be imple-
mented efficiently by attaching ACLs only to some nodes ardoreslements
and then using inheritance along the nodes and scoping aldag the vector
elements for a given node to derive the actual fine-graineesscpermissions.

Projection Assessment FunctionsThe functions can determine whether projections
are privacy-invasive or privacy-preserving. A projectigf) applied by a user
u € U is privacy-preserving with respect to the privacy requieatspecifica-
tion r() if the output only contains vector elements in whickvas contained in
the ACL. If the projection is privacy-preserving with resp# a privacy require-
ment specification() and a uset, then the sealing or attestation using this pro-
jection automatically preserves privacy. In other wordg, @valuation function
for attestation or any predicate for sealing can be appligdowt infringing on
the privacy of the users of the system. If the projection isanivacy-preserving,
then it is necessary to ensure that at least the evaluatimtifun or predicate
applied after a privacy-invasive projection can hide thegte data.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



34 OpenTC D05.2 — Proof of Concept of the Security Services

Attestation

Central
Integrity
Manager

Sealing
Unsealing

Devices
Integrity Manager

Figure 2.14: Architecture for Integrity Protection and ieation

2.5.3 The PEV Integrity Architecture

Based on the formal model described above, we now presenthitezture and associ-
ated protocols for protecting, enforcing, and verifying thtegrity of VMs and virtual
devices. We call our architecture the PEV integrity ardtitee, which is shown in Fig-
ure[2.14. It consists of eentral integrity manageandcomponent integrity managers
which are associated with individual system componenth sigcstorage, VMM, net-
working, and other devices. Each component integrity manegresponsible for the
part of the log tree corresponding to the component. For plarthe storage integrity
manager is responsible for maintaining the storage subefrthe system log tre€.

Each log projection function is realised byraster plug-in modulewhich is ac-
cessible by the central integrity manager. For each compotiee aspects of the com-
ponent’s integrity that are relevant for the projectiondtion are revealed by eom-
ponent plug-in modulewhich can be directly invoked by the master plug-in module.
The output from the master plug-in module is the aggregatkenbutput from multi-
ple component plug-in modules. In this way, each master-plugodule obtains state
information about various aspects of the system that mayf rderest to a potential
verifier or user.

In Figure[Z.I#, the master plug-in modules are shown usimgngérical shapes
(ovals, hexagons, triangles, and rectangles) attacheketdntegrity Manager. For
example, the triangular plug-in module measures certgiads of system storage and
the VMM, as indicated by the presence of triangular compbpérg-in modules in
the Storage Integrity Manager and VMM Integrity Manager. tBa other hand, the
hexagonal plug-in module measures only certain aspecistd#a devices. Each plug-
in module has a unique identifier. The mapping between eahiplidentifier and the
functionality provided by the corresponding plug-in maglid made publicly available
(e.g., through a naming service or a published table).

Sealing/Unsealing Protocol
At the time of sealing, the user provides at least the foltmnputs:

Data The data to be encrypted during sealing and to be reveakeddaty if certain
conditions are met.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 35

Key The key whose public part is used for encrypting the data etithe of seal-
ing, and whose private part is revealed only if the unseataijmn completes
successfully.

Identifier(s) of Plug-in Module(s) By listing the identifiers of plug-in modules, a user
can choose what aspects of the platform integrity statgaitcularly interested
in.

Predicate The predicate specifies user-defined conditions for ravg e private part
of the sealing key.

Our sealing protocol requires the log projection functiqdescribed in Sec-
tion[2.5.2) to be implemented as plug-in modules as parteoTBB. The key used for
encrypting the sensitive data item is sealed away agaiasttdte of the TCB (stored
in PCRs that cannot be reset) and a hash of the user-spegiiedon functions and
sealing predicates. The latter is stored in a resettable B&R’C R;) by the Integrity
Manager component of the TCB. That ensures that the TCB iseavfavhat condi-
tions must be satisfied before the key can be revealed to #reTssperform the unseal
operation, the TCB has to make sure tRdt R, contains the hash of the user-specified
projection function and sealing predicates. Then, the alrsgeration reveals the key
to the Integrity Manager, which checks whether the sealirglipates (evaluated on
the output of the log projection function) are indeed sattsfiefore revealing the key
to the user.

The flexibility of our sealing protocol is due to the fact tlabitrarily complex
conditions to reveal the sealed key can be coded as plug-ilules. The extensibility
arises from the fact that new plug-in modules specifying neser-specified sealing
predicates can be added to the TCB.

Attestation Protocol

The flexibility of our attestation protocol relies on the ifier being able to attest the
TCB and requires the log projection functions (describe8éctio2.52) to be im-
plemented as plug-in modules as part of the TCB. The extdéihsitf our attestation
protocols relies on the ability to add new plug-in modulasfew aspects of the plat-
form state that the verifier may be interested in knowing talwate the platform’s
trustworthiness.

The verifier which initiates the attestation protocol pa®s at least the following
two inputs:

Challenge The challenge ensures freshness.

Identifier(s) of Plug-in Module(s) By listing the identifiers of plug-in modules, a ver-
ifier can choose what aspects of the platform integrity staseparticularly in-
terested in.

Blinding For Enforcing Visibility Constraints

Figure[Z.Ib shows a simpl@inding technique that uses a commitment scheme to en-
force visibility constraints on the log tree. Commitmertismes([9] are a fundamental

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



36 OpenTC D05.2 — Proof of Concept of the Security Services

Figure 2.15: Enforcing Visibility Constraints on Systenat&t

cryptographic primitive and generally consist of two segecommit stagexind are-
veal stage The first phase, called commit phase, is used to make a pantynitto

a particular value while hiding that value from another pamtil the second stage,
called reveal stage, in which the valuerévealedto the second party. Any commit-
ment scheme guarantees that (a) the committed value camobtained by the second
party before the reveal stage and (b) the second party cactdehether the value
revealed to her is indeed the same value that was commitiadhe first stage.

For simplicity, we consider blinding at the granularity ofltree nodes instead of
at the granularity of log vector elements in the tree nodes,r{) assigns a subset of
U to each each node of the tree.réndomtreeR is bound to the original log tre@
through amulti-bit commitment schente give the blinded log tre@. R is a tree that
has the same structure as thatZofand whose nodes are random numbers. EXxisting
commitment schemes such as the one by Damgard Et al. [5] s thased on one-way
hash functions can be used for this purpose.

In a TPM-equipped platform, logging is done by extendingRIBRs with the mea-
surement values. For blinding, it is the nodegahat are actually logged. This means
that instead of doing the normal TPM_exten@ TPM_extend(® n) is done, where
n is a node of7, r is a node ofR, and® denotes the commitment operation used for
hiding» until the reveal stage.

The privacy-preserving projection functig) invoked at the request of user
revealsT ; in addition, the function reveals the nodeginhatuw is authorised to access.
In other wordsp() implements the reveal stage of the multi-bit commitmenesoé.
Due to the guarantees of the commitment scheme, the platfanmot invent arbitrary
values for the nodes it without being detected by the user.

As a result of the blinding technique described above, aey wknows that all
components that have any effect on system integrity have tagen into consideration
in the system log tree; in addition, for those componentsitigauthorised to access,
u can check whether they indeed have the acceptable confyueatid state value,
by comparing with its own reference values that may be pexvidnd certified by a
trusted third party. In particular, if the ACL for the roota® contains all users, then
any user can verify overall system integrity without knogvthe exact configuration of
any individual component in the system. That is becauseattiestation result that
obtains from the platform will contairrgot(R) ® root(7")) androot(R), from which

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 37

DomO
Compartment
Manager
y
Integrity Secure Virtual
User Manager Device Manager
Space Storage &-ID VNW | ...
Integrity .
Plugin
A
Library Tss
Space
y
{/devitpm |- {idevisda }{-------- { ot} etho |
A
gg;’l‘z TPM DM Crypt Bridge
Driver HDD VBDB Ethernet| VNDB
K Driver |I— Driver I—
3

| Xen Hypervisor |
TPM Network

Figure 2.16: Realisation using Xen and Linux

root(7) can be deduced and compared with the reference value at hand

Using commitment schemes for blinding suffers from the diisatage that two
colluding verifiers can learn the values revealed to therothiéernate schemes based
on zero-knowledge proofs or deniable signatures need tovestigated to overcome
this disadvantage.

2.5.4 Realisation using Xen and Linux

Figure[2.16 shows an example implementation of our PEV techire with the Xen
hypervisor using Linux for Dom0. The main components of eanplementation are
the Compartment Manager, Integrity Manager, and the Sagriteal Device Manager.
All components are implemented in Dom0. The Compartmentddanis the entity
controlling the complete VM management and therefore conicaties directly with
the hypervisor. As the sole entry point for user commandalsid orchestrates the
Integrity Manager and the Secure Virtual Device Manager.

The Compartment Manager has an interfgegCurrentState() for obtaining the
current state of the entire environment, which includedigief active VMs, the list
of users to whom the VMs belong, the amount of free memorylaiviai, etc. This
interface is useful for obtaining an attestation of theestdtthe physical machine. The
result of thegetCurrentState() function may not be sufficient to convince a verifier that
the VMs are in good state, but would provide information aldeaw many and what
types of VMs are currently present on the physical machime¢kv\V/Ms are running,

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



38 OpenTC D05.2 — Proof of Concept of the Security Services

which ones are hibernating, etc. Using such informatioa vérifier would be able to
deduce whether the physical machine is in an “acceptald¢s st

Table[Z.B shows the mapping between concepts in our formdéhamd how they
are realised in our implementation. XSLT is a language fangforming one XML
document into another XML document. We assume that the X&tdrpreter is part
of the TCB.

Model Xen-based Prototype

Log s; | Internalto Component

Projection p() | Measurement Plug-in
Sealing Predicate IT | XSLT style sheet
Evaluation Function f() | XSLT style sheet
Privacy Filter XSLT style sheet

Table 2.3: From Model to Implementation

Both the Integrity Manager and the Secure Virtual Device dpar have a plug-in
design. Each plug-in module is a concrete implementatich@fog projection func-
tion p() which outputs an XML file. The Integrity Manager in our implentation has
a Storage Integrity plug-in for measuring various disk ie&gnd files. The Integrity
Manager also has an Attestation & Sealing plug-in that fates with the TPM for per-
forming our sealing and attestation protocols as well afalinvoking normal TPM
operations that are needed in the plug-in context, such ks QRote. The Attestation
& Sealing plug-in invokes normal TPM operations through M Software Stack
(TSS) [40], which is the standard API for accessing the fionstof the TPM.

The Secure Virtual Device Manager (SVDM) is responsiblenfi@naging virtual
devices such as virtual hard disks, virtual block devic@syal network devices, and
virtual TPMs. The service offered by the SVDM is realisedotigh multiple spe-
cialised low-level plugins, one for each virtual devicegiie2.16 shows two plug-ins
in our Xen prototype. One is for configuring a virtual (enasg) hard disk and the
other one is for configuring the virtual network.

In DomO, secure device virtualization is implemented in kbenel space. Tasks
such as configuring virtual devices are done through the S\iDikle user (or applica-
tion) space. The SVDM manages devices and their securifyepties. For example, a
secure hard disk is implemented by means ofdhecr ypt loop back device. Sim-
ilarly, network virtualization is done by providing virtuaetwork cards for the guest
partitions andridgingthese virtual cards to the actual network card. Securitnétr
works has two aspects. Topology constraints define whiclstqueatition is allowed
to connect to which subnets. In addition, encryption rezmints define which con-
nections need to be encrypted. Another device, which ismmws in Figurd 2,16 but
is virtualized in a similar way, is the TPM. Each guest pamtitis provided with one
virtual TPM instance[[3]. The Integrity Manager and Compeent Manager are im-
plemented in DomO, and interface to the hypervisor and atbrfices implemented in
DomoO.

Secure management of virtual devices is a complex task.eTdrermultiple steps
involved in starting a virtual hard-disk drive. First, a jpgtbased check of the platform
state is done. Depending on the logic implemented by theespanding plug-in, that
check may include verifying the measurements of the hyperybinary disk, and the
Dom0 image. Then, the virtual hard-disk is attached wittdergials and connected

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 39

to a loop device (/dev/loop). The virtual hard-disk may bergpted, for example,

with a sealing key that is made available only if the platfasrin a certain state. The
decryption of the virtual hard-disk image is done using tirak hard-disk encryptor.

After decryption, the device file that gives access to theyg#ed image is connected
to the front-end. Similar policy-based checks may be donenndtarting other virtual

devices. For example, before starting a virtual networkag\policies may stipulate
that the VM must be in some acceptable state and outside fisawast be configured

correctly.

2.5.5 Use Cases

In this section, we describe a few examples of how the computsrietroduced in Sec-
tion[2.5.4 interact for integrity protection, enforcemeand verification purposes. We
assume that the core trusted computing base (including XdnDemO Linux) has
been measured at start-up time. Additional services may toelge measured based on
policy. The measurement can either be done by a trusted badét such as Trusted-
GRUB [34] measuring the entire boot image or by a more finéaghapproach such
as that proposed by Sailet al. [32].

TPM-based Attestation on a VM Disk

(Ve ["OE B [7SB [ [
1: atiesmtinnﬂeduest

1.1: a:tasl.—cltinnﬂ'.equest |

1.111¢ measuerHD

1.1.27 measunement

1.1.3: '.{JI’TDTPM

1.1.5.1: TPM_EFtenI:I

1.1i3

1.1)3

&

-

1.2: aftestationResponse

~
Bl

PR
1

, [
| |

| | |
2: attE‘SGtinnResp nse | | |
| | | |

Figure 2.17: TPM-based Attestation on a VM Disk

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



40 OpenTC D05.2 — Proof of Concept of the Security Services

<attestation-desc>
<attestation type="t pm based" chal | enge="0xaded..."
ai k="0xaada3..">
<measur ement - desc type="tpni' >
<measur eTar get nane="di sk:/dev/sdbl"
dest =" PCR16"/ >
</ measur enment - desc>
<attest Target name="ALLPCRS"/>
</attestation>
</ attestation-desc>

Figure 2.18: Attestation Descriptor in XML

Figure[ 2.1V shows the component interactions for attestiagurrent state of the
TCB and the status of a VM’s disk image.

The user/verifier interacts with the Compartment Managéevl)(@hrough the
attestationRequest call with anattestation descriptoanduser credentiabs param-
eters (step 1).

The attestation descriptor is basically an XML structurat thescribes what the
verifier needs to have attested. The attestation desciiptdains one or mormea-
surement descriptorsBased on the measurement descriptors, the Integrity Manag
(IM) knows the exact set of measurement plug-in modulesyokie. As noted be-
fore, log projection functions are realised by a set of glugiodules. The attestation
descriptor is how the verifier chooses the projection fuarcsiuitable for its purpose.

Figurd2.18 shows an example attestation descriptor as astMtture. It contains
an<at t est at i on> section, which defines the type of attestatibpifr based) and
the parameters needed for attestation (the TPM Attestédiemtity Key orAl Kand a
chal | enge). Nested in the attestation descriptor is a measuremeatiges, which
specifies a measurement targeeésur eTar get ) and a destinationdest ). The
target indicates what is to be measured (in this case, a VKlidiage), whereas the
destination indicates where the result should be storethigncase, the TPM’s PCR
number 16). Theat t est Tar get > defines the scope of the requested attestation
(in this case, all PCRs).

Based on the user credential supplied, the CM checks whttaeferifier has the
right to request attestation of the system sub-statesatetidy the attestation descrip-
tor. The check is essentially a way of determining whetheréguested projection is a
privacy-preserving projection; hence, it is useful in enfiog privacy protection. If the
check reveals that the verifier wants to have more attestuthvithat he/she is allowed
to, then the entire attestation request is denied. Othenthie CM forwards the request
to the IM (step 1.1).

The IM extracts the measurement descriptor(s) from thetatien descriptor and
delegates the measurement(s) to the appropriate plug-ih(our example, the IM
invokes themeasurevHD function at the Storage Integrity Plug-in (SIP) passing the
measurement descriptor as a parameter (step 1.1.1). Thdarpkompletes the re-
guested measurement and returns the measurement regutolibe IM (step 1.1.2).
Although step 1.1.2 might look like an unnecessary extrg, ¢tee indirection via the
IM allows the measurement plug-ins to be written indepehdéthe TPM or similar
future devices that are indicateddesst .

The IM invokes thewrToTPM function at the Attestation & Sealing Plugin
(ASP) with the challenge, thél K, the measurement result, and the destination
PCR (step 1.1.3). The actual writing of the result into theRPi@appens by the

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 41

P PG [ [ [ [ [ [

r |
1: startvm] | | | | |

11 unsealldeyr |
1111 measur*avHD

1.1.27 measurement

1.1.3: LJHSEE"(EY | |
| 1.1501: TPM_Ektend

1.1.4: key

1L1.3.4: key
T
|

1.3: onﬁgandqnluckDisk | o
1.4: retCTde | '[ |

1.Sl startVM |

|
1.5L retCode | | T ‘
| | I
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
t

CM_Res ir
r __________

|
|
|
|
1
1.2: ke | |
£
|
|
|
|
|
|

|
|
|
|
I I [
| | |
| | |
Figure 2.19: Creation of a VM with TPM-based Sealing

TPM_extend operation (step 1.1.3.1). Thereafter,T&M_Quote gets created and
returned to the ASP (steps 1.1.3.2 and 1.1.3.3). The ASPsamtagTPM_Quote
into an attestationResponse and returns it to the IM. ThattestationResponse in-
cludes not only theTPM_Quote but also the relevant log files. The IM returns the
attestationResponse to the CM (step 1.2), which forwards it to the verifier (step 2)

A verifier can check the attestation result by recomputingshlover the attestation
targets (i.e., the relevant log files) specified in sliestationResponse and comparing
the resulting hash with the hash in the PCR fromTHM_Quote.

The PCR in which the measurement result is stored will be ety the attestation
process has finished. Therefore, our prototype requiresaI.€ compliant TPM, and
thedest PCR has to bé6 or higher.

(Re-)Starting a VM with TPM-based Sealing

Figure[2.19 shows the component interactions for (ret)staa VM with a sealed disk
image. In this use case, we show how to enforce a policy tleiféps that the key for
decrypting the disk image be revealed only after measuhiaglisk image and only if
the measurement value written into a specified PCR matcleegailne against which
the key was sealed.

The user interacts with the CM through teeartVM call to (re-)start the VM
(step 1). After determining that the disk image has to bediestypted through unseal-
ing, the CM obtains theealing descriptothat was given to it at the time of sealing.
Like the attestation descriptor, the sealing descripteo abntains one or more mea-
surement descriptors, which are used to let the IM know tlaeteset of measurement

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



42 OpenTC D05.2 — Proof of Concept of the Security Services

<seal i ng- desc>
<seal i ng type="t pm based" keyi d="0x01">
<measur enment - desc type="t pni >
<nmeasur eTar get
nanme="fil e:/ xeni nages/ vmlLi mage"
desc="PCR16"/ >
</ measur enent - desc>
</ seal i ng>
</ seal i ng- desc>

Figure 2.20: Sealing Descriptor in XML

plug-in modules to invoke.

Figure[2.2D shows an example sealing descriptor as an XMictstre. It contains
an<seal i ng> section, which defines the type of sealingp(m based) and the pa-
rameters needed for unsealing (the identifier of the keyegtet! by the TPM). Nested
in the sealing descriptor there is a measurement descnpltach specifies a measure-
ment targetifeasur eTar get ) and a destinationdest ). The target indicates what
is to be measured (in this case, a VM disk image), whereasdhbtndtion indicates
where the result should be stored (in this case, the TPM’s R@Rber 16).

The CM calls the IM interfacansealKey (step 1.1), passing the sealing descriptor
as a parameter. The IM extracts the measurement descriptotlie sealing descriptor
and calls themeasurevHD interface of the Storage Integrity Plug-in with the measure
ment descriptor (step 1.1.1). The plug-in reads the listedisur eTar get s, and
accordingly measures the disk image. It returns a measuterasult list to the IM
(step 1.1.2). The IM calls the Attestation & Sealing Plugivhich handles TPM-
related functions (step 1.1.3). The Attestation & SealihgyRn writes the measure-
ments to the TPM by invoking the TPM_Extend operation (stdp311). Furthermore,
the Attestation & Sealing Plug-in performs the unsealinghef key requested by in-
voking the TPM_Unseal operation (step 1.1.3.3). Ifdest PCR value matches the
value at the time of sealing, then the disk is in the desiratesind the unseal oper-
ation is successful (step 1.1.3.4); in that case, the ASRneia key back to the IM
(step 1.1.4), which in turn returns the key to the CM (step.1l® case the unseal
operation fails, the ASP would return a failure. The CM cditls SVDM function
configAndUnlock() to attach and unlock the disk (steps 1.3 and 1.4). Upon ssitdes
completion of that function, the CM instructs the Xen hypsov to actually start the
VM (steps 1.5 and 1.6).

For the sake of simplicity, Figufe 219 does not show detdileey handling such
as loading a sealing wrapper key into the TPM.

Enforcement and Compliance Proofs for Information Flow Cortrol

Consider, for example, the virtual network topology showrFigure[2.2]1 with four
virtual network zones. The topology shows the network of mgany (which we
shall call thecustomercompany) connected to the Internet via a demilitarised zone
(DMZ). The customer network is also connected tnanagement netwotkat allows
an outsourcing provider to manage the customer systeman@hagement network is
not connected to the Internet.

An information flow control matrix is a simple way of formahg the system-wide

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 43

Customer | | Management
Network || Network

DMZ Internet

Figure 2.21: Virtual Network Topology

from/to Cust. DMZ Mgmt. Internet

Cust. 1 1 1 0
DMZ 1 1 0 1
Mgmt. 1 0 1 0
Internet O 1 0 0

Figure 2.22: Flow Control Matrix

flow control objectives[[4]. Figure2.22 shows a sample mdwi the four virtual

network zones. Each matrix element represents a policyifgperthe information

flows permitted between a pair of network zones. The 1 elesn@lonhg the matrix
diagonal convey the fact that there is free information floithim each network zone.
The 0 elements in the matrix are used to specify that thereldhme no information
flow between two zones, e.g., between the management zorikexhdernet.

In [4], we described a Xen-based prototype of a secure n&twicualization ar-
chitecture that is based on the concept of Trusted VirtuahBias. The architecture
allows arbitrary network topologies connecting VMs. Foamwple, different VMs on
the same physical infrastructure may belong to differemtial network zones. Despite
this, the architecture ensures the enforcement of polaset) information flow control.
We can use the architecture for enforcing the policies shiaviAigure[2.2P.

<fl ow pol i cy>
<zone id="custoner1">
<permt id="ngnt-net" />
<permt id="custl-dnme" />
</ zone> ...
</fl owpolicy>

Figure 2.23: Flow Control Policy in XML

By combining the Xen prototypes of our PEV architecture andsecure network
virtualization architecture, it is possible to validate ttonfiguration of the virtual net-
working subsystem on each host. The subsystem exports anvéion of its flow
control matrix, as shown in Figute 2]123. The network measerg plug-in outputs
the XML structure of the flow-control policy, when invoked bye IM. By request-
ing attestation of the TCB and this policy, a verifier can @b compliance proof
for the correct configuration of the virtual networking syftem on a given host. At
the verifier, a XSLT stylesheet is used to perform furthemgfarmations on the XML
file returned by the platform. The XSLT stylesheet is a cotecieplementation of
the evaluation functiofi() (described in Section 2.8.2), which assesses whether the

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



44 OpenTC D05.2 — Proof of Concept of the Security Services

platform is trustworthy from the verifier’s point of view. €hresult of the evaluation
function will serve to convince the verifier that the policyFigure[2.2P is the actual
flow-control policy as enforced by the network subsystenprifacy is an important
concern, the XML output from the plug-in modules may be firsioessed by an XSLT
stylesheet that implements a privacy filter before passiog to the verifier. In such a
case, the stylesheet would be embedded in the platform TCB.

<xsl:tenplate
mat ch="/fl ow pol i cy/ zone[ @ d=" custoner1’]">
<xsl : choose> <xsl:if
test="count (*[@d="custl-dnz'])=1
and count(*[@d="ngnt-net’])=1">
<true />
</xsl:if>
</ xsl : choose>
</ xsl:tenpl at e>

Figure 2.24: XSLT Condition

A user can also protect sensitive information (say, an guimy key) against access
by an untrusted network configuration using a two-stagequoe. The first stage is
sealing, in which the user has to specify the binary configumaf the TCB and condi-
tions for checking whether a given network configuration fsuated one. Figule Z.24
shows an XSLT script that encodes the condition that theooust network should be
directly connected only to the DMZ and the management né&twbthe outsourcing
provider, but not to any other network. The input to the XStfit is the XML pol-
icy that is output by the network measurement plug-in. Th&TXScript is a concrete
realisation of the user-specified predichtén our formal model (Section 2.5.2). The
user seals the key to both the state of the TCB and the valueasfedtable PCR; the
latter reflects the integrity of the XSLT script and the intggof the plug-in identifier.
The second stage is unsealing, in which the IM (i) obtainsréseilt of the plug-in,
(i) applies the result as input to the XSLT script, (iii) exds the resettable PCR with
the hash of the XSLT script and the network measurement ipligentifier, and (iv)
tries to unseal the actual key. For steps (iii) and (iv), theinvokes the Attestation
& Sealing Plug-in. The TPM should only reveal the key if theB{S correct and the
XSLT evaluated te<t r ue/ > when executed on their output.

2.5.6 Conclusion

We introduced a formal model for managing the integrity dfitaary aspects of a virtu-
alized system and evaluating system compliance with régpgo/en security policies.
Based on the model, we described an architecture, called lBEptotecting security
policies against modification, and allowing stakeholderedrify the policies actually
implemented. We generalised the integrity managementifursof the Trusted Plat-
form Module, so that they are applicable not just for sofevhmaries but also for
checking past security compliance and enforcing secunticigs in the future. We
described a prototype implementation of the architectasetl on the Xen hypervi-
sor. We also presented multiple use-cases to demonsteapmlity-enforcement and
compliance-checking capabilities of our implementation.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 45

2.6 Xen Secure GUI Services

S. Cabuk, P. Grete (HPL)

This section introduces a preliminary secure GUI design wintaalized Xen environ-
ment. Part of this work is incorporated into the OpenTC demo.

2.6.1 An Example Secure GUI Use Case

Desktop virtualisation is an emerging topic particulabgnks to increasing hardware
virtualisation support by Intel and AMD. If different donmai are running on the same
physical platform, e.g., a work environment with corpordaga and a private one with
games or other potentially untrusted software, it is esakethiat no environment has
access to or has an affect on the other. This leads to the needskecure graphical
user interface (sGUI), which is capable of ensuring seguanitd separation between
standard tasks in window-based systems, such as

1. keyboard/mouse input,
2. copy and paste actions,
3. screenshots, and

4. sound.

As an example requirement, it should not be possible to takeesshots of any
compartment with a different trust level than the activeiemment.

2.6.2 Current State

The current setup of the OpenTC demonstrator uses an SDgetvlthsed ParaGUI
interface running on top of a dom0 X-server (see Figure]2.Z6)s interface is only
used for the graphical control of low-level guest domain egement, e.g. booting,
stopping the domain or displaying the type of operatingesysuwith the help of a small
icon. The ParaGUI runs on top of each virtual domain that sabsers to switch
between the domains. Other domains, including the dom@ treir own workspace
within the domO X-server. Their desktop environment is igpd using the VNC
protocol and the Xen TCP/IP network stack. The input hagdiindone completely
by the X-server and switching between desktops of diffedemhains is realized by
simple X-server shortcuts. Furthermore the X-server tadkthe graphics card with its
own drivers.

This solution provides minimal security for several reasohirst, X-server has a
large code-space that needs to be trusted. Second, Domrsfgil control over all
workspaces through the X-server. This latter property diamva malicious entity to
capture screenshots of other desktops with reasonabht e$iog X libraries.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



46 OpenTC D05.2 — Proof of Concept of the Security Services

T
Desktop
enyiranment

H-server

X granhics driver

dami)

graohics
and memary

Figure 2.25: sGUI Current State

2.6.3 Prototype Design

Our first design for a prototype addresses the shortcomiregepted in the previous
section. In particular, we have enhanced the current ddsigifl) reducing the size
of the sGUI codebase, (2) disaggregating the sGUI into aragpdomain, and (3)
employing additional hardware acceleration techniques.

Codebase Reduction

Layout One problem with the current sGUI design is the size of the=bade that
needs to be trusted. To address this, we remove the largevirsnd implement a
secure GUI (sGUI) with a trusted code base instead. ThisregglWI has multiple
virtual framebuffers (VFB) (the virtual equivalent of a feg in memory to store the
screen image) that are used directly by the desktop envieahin domO and via a
memory mapping within the domUs. These VFBs can be treatadrasal framebuffer
devices and therefore all domains are able to run unmodifisdriXers themselves or
any other framebuffer-based application.

The final step to display the actual screen on the monitor is1ple mapping be-
tween the active VFB and the kernel framebufféev/fb0. This mapping is possible,
since the Xen-based environment offers the possiblity eoslsred memory and no
further modification to the actual screen output likewisenmagy content is needed to
display the correct output. As illustrated in Figlire 2. 2@ $GUI takes care of all input
handling by receiving all events and forwarding them to tbiva domain.

Security analysis The introduction of an input management system ensureslhat
input actions are strictly separated between the domaifés Management system
receives all input events and forwards them to the activeailoranly. Further, the
exchange of the X-server by an sGUI solution with a trustetedmase results in con-
siderably fewer lines of code. This improvement is the fitstreent of shrinking the
trusted code base. The graphical management is still kejbteirprivileged domain
together with other potentially untrusted services.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 47

Deskiop Desktop
enyironmant environment
P 2
— "5* |
. | wrRen
ol
st uitfars
: 1
virtuad
kernel framebuffer
ity s frarmebuffar

| e Tho

darni domll

graphics
vard menany

Figure 2.26: sGUI Codebase Reduction

Disaggregation

Layout Figure[2.2V illustrates the disaggregated layout in whithdomplete sGUI
and (kernel) graphics have moved from domO to a separatdigsgagomain (domG).
This new domain has direct hardware access to the graphitsnd removes the con-
trol from dom0. Xen is able to hide PCI devices from domO’sixirkernel and there-
fore is able to hide the graphics card. Hiding a PCI deviceadized by preventing the
Linux kernel loading drivers and leaving the device unboimritie PCI backend. With
this unbound graphics card, domG is able to bind the devidsetd and run a kernel
framebuffer with access to the graphics card memory. Mappétween the different
virtual framebuffer and the kernel framebuffer is done thias way as described in the
previous section.

Similarly, keyboard and mouse are no longer under the cbotdomO. An input
manager forwards input actions to all domains, includirgdbmO. To this day there
is no solution to binding PS/2 devices to any other domaim tine domO. Simple
forwarding is not sufficient with regard to security becatirgedomO should not control
or access any input device directly.

The implementation of a separate input frontend/backetidbezcompleted in near
future. Virtual input devices are already available for @ms and only a proper redi-
rection to another domain is lacking. For security reastiresshypervisor console and
a root console in domO0 should still be available via a sevahection.

Security analysis This enhancemenent presents another level of reductioheof t
trusted code base. By disaggregating the privileged ses\from domO0, a new secure
layer has been established. Further, the domG can be imptethwithout network
support — one of the weakest points for intrusion. The madablem for both reduc-
tion and disaggregation elements is the actual speed afthedace. Framebuffers and
memory mapping are limited in speed and are done by the CPLAdfdications that
require 3D graphics or a fast interface in general, this robd design does not pro-
vide the amount of graphics power needed. One solutionigusrdware accelerated
graphics which is described in detail in the next section.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



48 OpenTC D05.2 — Proof of Concept of the Security Services

1 =
Desktop el 11 7 Desktop
fvirriment | anyimnment
input
I Fappng
SEnEn LirRes
autput Cutpt
| winkesl ¥ opeartasiiars
L=
= T
| . S |
forwarded input
virtunl ! fpple winlual
fraeneni®er 4 | = LI
fadhrikist beumlllg-:Jl:I‘f:u‘rer rr.::mg:.ﬂ
|
e
domd it directiy nto A domG  domid

Figure 2.27: sGUI Disaggregation

Hardware Acceleration

Layout The modification of the previous design as illustrated iruFeZ.28 yields a
hardware accelerated sGUI. The new OpenGL-based desigrases the speed of the
desktop and enables the user to perform graphic-intensatopes securely.

Every domain that requires graphical output will be extehidg an OpenGLAPI
as part the the X-server. This API is able to display the widelektop using OpenGL
commands. It sends the commands directly to the domainfshgrs driver, which is
merely a listening client forwarding the commands to the si@domG. The sGUI has
a new screen multiplexing server, similar to the virtuahiebuffers. It forwards the
OpenGL commands from the active domain directly to the geptard driver, which
eventually makes use of hardware acceleration. The inpnagement is handled in
the same way as in the former setting.

Security analysis The OpenGL-based design offers the same level of security an
trust as the previous design. The slight increase of the lbage can be accepted given
the additional value of hardware acceleration.

VMGL There is already a working basic implementation called VN2GWhich in-
creases the speed by using native graphics card capabiittés a domU. This solu-
tion yields “87% of the native speed” [15]. Unfortunately\\GL needs an X-server
at the moment to load its own OpenGL server driver. This casdbeed by porting
VMGL to a minimal OpenGL server such as minigIx3 and enhagpoimiglx with Xen
support.

The VMGL solution is not able to display unmodified domaing;tsas Windows,
which had been possible with the implementation of our sGésigh. Hardware accel-
eration in Windows domains is a general problem, since tiseme OpenGL graphics
card driver and Windows natively uses Direct3D.

In addition to this, further security features are needetiiwithe current VMGL
solution because there is no strict separation betweetesitognains. Every window
is displayed in the X-server of domO.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 2. XEN SECURITY SERVICES 49

wam
S =11 F i =
i }ﬂ’“ ,*ﬁm‘- g e
BETGEY el
Duips outpar |
! t formarded @ commands e !
ADF!I- J(Jserwerl X-seryer .D.u:l
iopun 07 mukiplewer
T Frar sGLH I
I
L’ Tnrward e np I o
—— DTUTRE
_ qlcomiman | |
opergl chent Legtura dJ || operglclient
e i i ind
I

uzea hardware domG  doml

scteberation

domi

grapfics
card

Figure 2.28: sGUI Hardware Acceleration

2.6.4 Conclusion

In our preliminary sGUI investigation, we have come up wi@H designs that en-
hance the security properties of the current solutions. ®e lncluded a simple ver-
sion of the sGUI in the 2007 OpenTC demonstrator. In furtuoekywe will continue
our work around the sGUI design (e.g., hardware accelergdiod enhance the proto-
type implementation on Xen.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



Chapter 3

L4 Security Services

A.-R. Sadeghi, M. Wolf, C. Stuble, M. Scheibel, R. LandfermaH. Lhr,
S. Schulz, P. Stewin, M. Unger (RUB)

3.1 Introduction

A.-R. Sadeghi, M. Wolf, C. Stuble, M. Scheibel, M. Unger (RUB

In this section give a short outline of the basic conceptsa@mdponents of our secu-
rity services, followed by a description of the implemeitiatof these concepts and
components.

The general idea behind our architecture is to establisiowsicompartments on
one computing platform where each compartment can havenitssgcurity policy.
The policy defines

e the protection level for the data accessed and processembmjartment as well
as for the applications that run in this compartment, and

e the information flow between individual compartments asl\aslbetween the
compartments and external parties.

The goal is that each compartment behaves as if it is a singtlopn separated
from other compartments. Furthermore, the underlyingitecture should provide
channels to the corresponding compartments where the ehamoperties are specified
by the overall security policy.

3.1.1 Basic Concepts

The concepts of security services briefly sketched in thioviahg section provide
mechanisms to realise abstract concepts like, e.g., tresi@nnels and trusted storage
that have been defined to provide secure platforms for fappdications.

50



CHAPTER 3. L4 SECURITY SERVICES 51

Terms and Definitions

We define &ompartmenéas a software component that is logically isolated from othe
software components. Thmnfigurationof a compartment unambiguously describes
the compartment’s 1/0 behaviour based on its initial stat@nd its set of state trans-
actions that convey a compartment from stét¢o stateS;.;. Moreover, we distin-
guish secure, trusted, and plain communication channelslea compartment®lain
channeldransfer data without providing any security prope8gcure channeknsure
confidentiality and integrity of the communicated data a#l a® the authenticity of
the endpoint compartmentrusted channelare secure channels that additionally val
idate the configuration of the endpoint compartment. Fynaitegrity of information
obtained from a channel or compartment is provided, if anyliffaation is at least
detectable. Th&rusted Computing Bag& CB) consists of all security relevant com-
ponents of the platform, e.g., microkernel and securityises.

Security Services

These services allow applications to use enhanced setumitiionalities strengthened
by Trusted Computing. They also mediate and monitor aceesssburces. Thus,

they enforce isolation of compartments and control comation between processes
running in different compartments. The following serviees defined in our approach:

e Storage Manager: The Storage ManageBW) provides persistent storage for
the other compartments while preservingegrity, confidentiality availability
andfreshnes®f the stored data. Moreover it enforcggong isolationby bind-
ing the stored data to the compartment configuration andfer secrets The
Storage Manager gains access to the configuration of itstsligy asking the
Compartment Manager to provide the necessary information.

¢ Compartment Manager: The Compartment ManageCl/1) manages creation,
update, and deletion of compartments. It controls whichgantments are al-
lowed to be started or stopped and by whom, thus enforcesqfatte mandatory
security policy. During startup of compartments, it desitleeir configurations
to be able to offer a mapping between temporary compartndemtii‘ier and
compartment configurations.

e Trust Manager: The Trust ManagefT(M) offers access to functions (e.g., TPM
functionalities) that can be used by application-level pantments to establish
trusted channels between remote and local compartmentgating keys and
certifying them.

e Secure I/O: The Secure 1/0&I0) renders (e.g., displays, plays, prints, etc.)
content while preventing unauthorised information flowu$BIOincorporates
all compartments that are responsible for secure outpubrateat (e.g., drivers,
trusted GUI, etc.).

In the following sections we explain how these services agduo provide the
necessary security properties and concepts, i.e., pripeagction, trusted channels,
trusted storage, and strong isolation.

1SinceSM does not provide sharing of data between compartments atdheent, it does not realise a
regular file system.
2A compartment identifier unambiguously identifies a compartt during runtime.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



52 OpenTC D05.2 — Proof of Concept of the Security Services

Trusted Channels

According to the definition above, trusted channels allogvitivolved communication
end-points to determine their configuration and thus toveettieir trustworthiness.
Other integrity measurement architectures| [30, 32] heneeport the integrity of the
whole platform configuration includingll currently running compartments to remote
parties, and thus violating user privacy. In contrast, aehigecture supports to es-
tablish trusted channels between single compartmentsutithhe involvement of the
whole platform. This has the following advantages:

e Privacy: A remote party only needs to know the configuration of the appate
compartmentincluding its TCB, and not the configuratiorhefivhole platform.

e Scalability: Remote parties do not have to derive the trustworthinest ofm-
partments executed on top of the platform, to determinertisvorthiness of
the appropriate compartment.

e Usability: Since a compartment’s trustworthiness can be determircihan-
dently of other compartments running in parallel, the dstivrustworthiness
stays valid even if the user installs or modifies other cornmpants.

Trusted channels can be established using the functioesedfby the Trust Man-
ager and the Compartment Manager, while the Compartmentalyganwhich is re-
sponsible for installation and manipulation of compartteeprovides the mapping
from compartment identifiers into configurations. Thussted channels can be es-
tablished assuming that the TCB including the Compartmeamager and the Trust
Manager is trustworthy. In Sectign 3.1..2, we will explaimhemote parties can de-
termine the trustworthiness of the TCB.

We distinguish between trusted channels between compatsnnenning on the
same platform (local trusted channels) and trusted charetiveen a remote and a
local compartment (remote trusted channels).

Local Trusted Channels: Since both the sender and the receiver are executed on
top of the same TCB, an explicit verification of the TCB’s tmgrthiness does not
make sense in this case. Therefore, trusted channels ciéin l@agstablished using
secure channels offered by the underlying TCB, and the fmetprovided by the
Compartment Manager: The sending compartment first regjtiestconfiguration of
the destination compartment from the Compartment Man&esuccessful validation
that the destination configuration conforms to its secuyrdijicy, the source compart-
ment establishes a secure channel to the destination ctmeyar

Remote Trusted Channels:The required steps to establish a remote trusted chan-
nel from a remote compartment to the local compartment afellsvs: If a local
compartment receives a request from a remote compartnentp¢al compartment
requests the Trust Manager to provide a credential incudsrown configuration.
Then the Trust Manager generates the credential based briHgotompartment con-
figuration provided by the Compartment Manager and the cordigpn of the plat-
form’s TCB. The resulting credential is returned to the king local compartment
that forwards it to the remote compartment. That can nowfyw#re trustworthiness of
the local compartment and, on success, using the credemtigen a trusted channel.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 53

rETETT——
Application Layer |

Application Application

Untrusted Storage Secure Secure /0
Application Compartment

Legacy Operating System

Trusted Service Layer

Virtualisation Layer

TC-enabled Hardware Layer i
Conventional Hardware -

[ components belonging to the TCB [ Untrusted Components

Figure 3.1: System Architecture

This trusted channel may be set up using the VPN solution weiged (see section

B13).

Trusted Storage

Compartments running in parallel on one physical platfoeada possibility to store
data securely, i.e., data of one compartment has to be kapted from data of an-
other compartment. In our approa8M guarantees this isolation by providing trusted
storage to the compartments. TBigong isolation's needed to ensure certain security
properties likeconfidentialityandintegrity. Additionally theSMis capable to guaran-
teeauthenticityandfreshness

3.1.2 Implementation

Our system architecture is based on security frameworks@soped, e.g., in [28],
[31] and shown in FigurH.We briefly explain each layer of our implementation,
the initialisation process as well as the implementaticqthefcore components, namely
the Trust Manager and the Storage Manager.

Our implementation primarily relies on a small securityrialr virtualisation tech-
nology, and Trusted Computing technology. The securitpékilocated as a control
instance between the hardware and the application laygteiments elementary se-
curity properties like trusted channels and isolation leefmvprocesses. Virtualisation
technology enables re-utilisation of legacy operatingesys and present applications
whereas Trusted Computing technology serves as root df trus

3This architecture has already been described/®6 D05.1 - Basic Security Services

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



54 OpenTC D05.2 — Proof of Concept of the Security Services

On top of the security kernel, a para-virtualised legacyrafeg system (currently
Linux) including legacy applications, and the Secure 1/ executed in strongly iso-
lated compartments runninig parallel as user processes. In the following, we briefly
describe each layer in more detail.

TC-enabled Hardware Platform: The hardware platform has to provide additional
components as defined by the TCG in various specificatiogs (€]). The central
component forms a low-cost tamper-resistant cryptogagtip, calledTrusted Plat-
form Module(TPM). Currently, the TPM is implemented as a dedicated\vard chip.

It offers amongst others eyptographic hash functio(SHA-1), acryptographic en-
gine (RSA) for encryption/decryption as well as signing, a haadwwbasedRandom
Number Generato(RNG), hardware protectetionotonic counteras well as some
amount ofprotected storagelt provides a set of registers in protected storage called
Platform Configuration Registe(PCR) that can be used to store hash values. Protec-
tion mechanisms ensure that the value of a PCR can only befietbai a predefined
way. The TPM is primarily used as a root of trust for platfosnritegrity measure-
ment and reporting. During system startup, a chain of tusgtstablished by cryp-
tographically hashing each boot stage before executiop.niégasurement results are
stored protected in the PCRs. Based on this PCR configuradti@nbasic functions
can be providedRemote Attestatioallows a TC-enabled platform to attest the current
measurement arflealingBindingof data to a certain platform configuration. Our im-
plementation uses a TPM in the present version[1.2 [38] ginegous TPM versions
cannot be used to provide fresh storage by monotonic cainter

Virtualisation Layer:  The main task of the virtualisation layer is to provide an ab-
straction of the underlying hardware, e.g., CPU, intesugevices, and to offer an
appropriate management interface. Moreover, this layésrees an access control
policy based on this resources. Device drivers and othenéas operating system
services, such as process management and memory managemeémisolated user-
mode processes. In our implementation, we kept the intesfadetween the layers
generic to support also other virtualisation technologi€sus, the interface offered
by the virtualisation layer is similar to those offered bytwal machine monitors or
hypervisors like sHype and Xen 23,131, 7]. However, we dbtukecided to employ a
L4-microkernel that easily allows isolation between singtocesses without creating
a new full OS instance in each case such as when using Xen.

Trusted Service Layer: The trusted service layer, based on the PERSEUS security
architecture[[22, 26, 28]. It provides elementary secysityperties like trusted chan-
nels and strong compartmentisolation as well as severalgltary management com-
partments (e.g., I/O access control policy) that realiseisty critical services inde-
pendent and protected from compartments of the applicéigar. The main services
are the Trust Manager, the User Manager, the Compartmenadéanand particularly

the Storage Manager. Our implementation of the Trust Maniaggased on the open-
source TCG Software StadkouSerg35].

Application Layer: On top of the security kernel, several instances of the kegac
operating system (L4Linux) as well as security-criticaplgations (e.g., Secure 1/0O)
are executed in strongly isolated compartments such ttatthorised communication

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 55

between applications or unauthorised 1/0O access is predﬂn't'he legacy operating
system provides all operating system services that areeuoirity-critical and offers

users a common environment and a large set of existing apiplis. If a mandatory
security policy requires isolation between applicatiohthe legacy OS, they can be
executed by parallel instances of the legacy operatingsyst

Secure Initialisation: The security of the whole architecture relies on a securé-boo
strapping of the TCB. A TPM-enabled BIOS, t@ere Root of Trust for Measurement
measures the integrity of thdaster Boot RecordMBR), before passing control to it.
A secure chain of measurements is then established: Befogegm code is executed
it is measured by a previously measured and executed compoRer this purpose,
we have modified th&RUB boot loadét to measure the integrity of the core com-
partments, i.e., the virtualisation layer, all compartisénteracting directly with the
TPM — Compartment Manager, Trust Manager and Storage Marage well as the
TPM device driver. The measurement results are securelgdsia the PCRs of the
TPM. All other compartments (including the legacy OS) aressaquently loaded, ver-
ified, and executed by the Compartment Manager accordingeteffectual platform
security policy.

Upon completion of the secure Initialisation, an authatisempartment (such as
the Trust Manager) can instruct the TPM to generate a crezdémtthe Trusted Com-
puting Base. This credential consists of all PCR valuesatifig the configuration of
the TCB and a key pair which is bound to these PCR values. fegetith an 1/0
access policy management service that is of course alsmptreé TCB, the private
key can only be used by compartments that are both part of@f8eahd are authorised
to access the TPM.

Trust Manager

Our implementation of the Trust Manager is based on the gpence TCG Software
StackTrouSerg35]. In order to provide remote trusted channels, the TMebager
creates on request of a local compartment a private bindiggwose usage is bound
to the requesting compartment’s configuration and the cordign of the platform’s
TCB (including the Trust Manager itself). The appropriaggtificate of the public
binding key has to be extended such that remote parties ¢ty veth configurations.
To access content that is remotely decrypted with the puiliding key, the Trust
Manager checks whether the configuration of the compartthabtwvants to use the
corresponding private binding keyatcheshe configuration of the compartment that
has initiated the creation of that binding key. Note that,eyending this 'match’
function, one can easily provide property-based attestaealing[[2/7, 2%, 12] on top
of the Trust Manager.

In this section, we give a detailed description of the protdar establishing a re-
mote trusted channel. The protocol can be decomposed irge thajor steps, namely
certificate generatiorencryption of a session kegnddecryption of the session I@y

Certificate Generation: The request of the remote compartmé&dt for a trusted
channel to the local compartmeht' reachesl’M via LC. After the mapping of
LC’s compartment identifier to his actual compartment conéigian comp-con fr.c

4However, covert channels are still feasible.

Swww.prosec.rub.de/trusted_grub.html

6We also developed another approach setting up a trustechehtmat provides additional security by
preserving mutual security and state-change detectian[Z3e

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)


www.prosec.rub.de/trusted_grub.html

56 OpenTC D05.2 — Proof of Concept of the Security Services

usingC'M, T'M invokes the TPM to create a asymmetric binding key bound ¢o th
actual TCB configuratioE.The TPM then returns the public binding k&K 5y p
and the encrypted secret p&K;; v, Using TPM’s storage root key (SRK). Then
T M invokes the TPM to sign over the actual TCB configuration idimeling key, and
the configuration of.C using an attestation identity key (AIIE)FinaIIy, T M embeds
the received TPM credential within an X.509 certificate fee in the TLS handshake,
which will be sent together witlP K g;np to RC. First, a key pair bound to the
TCB configuration and an appropriate certificate about theipley are created. The
certificate is an X.509 certificate which includes inforroatabout the PCR values of
configurations that are allowed to use the key (enforced byTi#M) [33], and the
configuration of the compartment (enforced by the Trust Njan

TCB configuratiorll’C B-con f
Public binding keyPK51n D
Local compartment configuratiawmp-con fr.c

TPM Signature =
signarx (TCB-conf, PKprnp, comp-confrc)

Table 3.1: Structure of the TPM credentiabdprnp.

Encryption of Session Key: RC verifies the X.509 certificate signature as well
as the TPM credential signature and validates the two engsecuhfiguration§'C B-
conf andcomp-con frc by comparing them with reference values known to be trust-
worthy. On successikC' encrypts a symmetric session keydek using PKg;np
and acknowledges the TLS handshake with, that can be unbound byC only if it
provides the stated compartment and TCB configuration.

Decryption of Session Key:Upon receipt of the encrypted session kay, LC
requests’ M to unbind the session key. Therefofé)/ again mapd.C’s compart-
ment identifier to his actual compartment configuraiomp-con f.c usingCM, to
validate the compartment configuration stated in the ceaitdi with the one requesting
the unbind process. On succeggy/ invokes the TPM to unbind the session key using
the encrypted private part of the binding k&%, ,. The TPM first compares the
actual PCR values with oné8X g7 p IS bound to, before returning the decrypted ses-
sion key toT'M. T'M finally, passes the decrypted session key badkd@owhich uses
it for the completion of the TLS handshake to establish a{wag) TLS-based trusted
channel from compartmeiC to LC.

Performance Measurements:We have implemented the described protocol and
run it on TPMs of different vendors. The measurement resuitts maximum asym-
metric key lengths (2048 bits) are shown below. Note thaffhi calculations domi-
nate the overall computation and network transfer times.

Storage Manager

The following section describes the implementation of thew&e Managef M, that
enables other compartments to persistently bind theit kiages to their actual config-
uration while preserving integrity, confidentiality an@$hness. We first give an short

"The actual TCB configuratiofC' B-con f was measured during secure Initialisation (cf. Se¢fio3.1

8The attestation identity key (AIK) is a non-migrateable kgt has been attested by a privacy-CA to
come from a TCG conform platform. An AIK (in contrast to thengeal signature key) can be used only to
sign other TPM keys or PCR values.

%n [2] we altered the credential creation process for penfoice reasons.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 57

| Atmel 1.1b | NSC 1.1b

Certificate generation 30-80s | 52-55s
Session key encryption (w/o TPM) <1s <ls
Session key decryption 2-3s 23-24s

Table 3.2: Trust Manager performance measurement results.

overview and then describe the realisation of secure statzat will be extended by
an additional freshness layer to provide also trusted géorAt the end of this section,
we briefly describe the protocols to irtitV/ as well as for storing to and loading from
trusted storage using/ .

Overview:The Storage Manager is invoked by a compartment to storeasothgct
persistently preserving confidentiality and integrity -tiopal with additional restric-
tionsrest (e.g., freshness, certain user id)M invokes the Compartment Manager to
retrieve the actual configuration of the respective conmpant to bind the data object
to that compartment configuratiemp-con f. SM creates/updates a metadata entry
for the corresponding data objettta with the data object identifietata; p, its fresh-
ness detection informatiofy i.e., the actual cryptographic hash value, and all relevan
access restrictions:sf1J within its indexindexgas. SM extends the data object with
integrity verification information, synchronises its maéoic counteents s, encrypts
the data object and the updated index and writes it on uetlysgrsistent storage using
keysa- Sinceindex sy 1S the base of security fa8 M, index sy, is sealed t&5 M's
configuration via the sealdetys),. Thus only the same, trusted Storage Manager con-
figuration is able to unseal and use the key again. On a loatbst@$ M again uses
the Compartment Manager to compare the invoking compaittewrfiguration with
the one that afore stored the respective data object. Oncassfal verificationS M
reads and decrypts the data object from the untrusted pErs&orage and verifies its
integrity. Before the data object is committed to the retjngsompartmentS M also
verifies possibly existing additional restrictions suctirashness or a certain user id.

Trusted StorageS M offers trusted storage to bind compartment’s data to the the
origin compartment while preserving integrity and confidlgity. ThereforeSM uses
a cryptographic hash functi&hto calculate the data object’s hash value and a symmet-
ric ciphelq with its internal cryptographic secrétysy, bound to its configuration to
encrypt data objects together with their actual hash vébeésre become written on
untrusted persistent storage providing at least avaitgbithis key in turn is sealed to
the configuration o6 M using functionality of the TPM so that only the same, trusted
Storage Manager configuration is able to unseal and use thadan. On load, the
data object becomes decrypted and verified for integritygiie appended hash value.
Figure[3.2 depicts our trusted storage implementationsTaur trusted storage com-
partment basically offers two trusted channels nanhedd[] andstore[] while itself
uses twauntrustedchannels namelyead|] andwrite[] from an untrusted storage com-
partment to persistently write respectively read dataevpibviding at least availabil-
ity. If SM receives a data objeduta via store[data, rest], SM internally creates

10Further access restrictions can be a certain user id, gebapdate of expiry.

110ur implementation uses SHA{I[20].

120ur implementation uses AES19].

13For the realisation of availability we suggest solutionsdshon high redundancy, i.e., by the utilisation
of multiple distributed storage locations (e.g., USB stick online sites) assisted by an appropriate RAID
system. In case of failure of a particular storage devics, still possible to retrieve data from alternative
storage mirrors.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



58 OpenTC D05.2 — Proof of Concept of the Security Services

or updates object’s metad&l@nd calculates its hash valigo verify integrity. Then
data together with: is encrypted with the internal cryptographic sedrejsys using
the functione := encrypt[datal||:] (to provide confidentiality). The encrypted data
will afterwards be written on untrusted storage usifagia;p := write[e] that returns
the object identifierdata;p. Conversely, ife is read from the untrusted storage via
e := read|[data;p] it will be decrypted todata andi via decrypt[e] using the internal
cryptographic secrétey sy, . Before returninglata to load[], SM verifies the integrity
of data and further access restrictions (e.g., a certain user sjdan the correspond-
ing metadata irb' M’s index using the functiorerify[data, i].

Compartment I

dpp 1= store[d, rest ] d:=load[d) ]

f:= memorize[d]
Freshness cmp_conf dp f rest
I cPo | ID325 | oxe9 fresh |
i 1= hash[d] = = A/R := verify[d, i]
Aay | cP_1 ID_563 | Ox10.. | UID=2

A/R := vIerify[d,f]

Csm

|
e := encrypt[d||i] d||i := decrypt[e]

Confidentiality ksm

Storage Manager

A

dip :=write[ ] o= re:ad[d ]
V = i

v

Plain Channel
Untrusted Storage I

Trusted Channel

Figure 3.2: The Storage Manager Implementation

In order to provide fresh trusted storage, we enhahte by an additional layer
for managing freshness of data objects. This extensionigtensf a (currently ab-
stract) functionf := memorise[data] that updates the internal data structdiR@ESH
with the freshness valug Afterwards,data will be stored persistently ensuring confi-
dentiality and integrity using secure storage. On load fsecure storage, the function
verify[data, f] additional verifies that the received data objéefs is the last one being
stored.

To provide such freshness detectiéhiy/ uses an additional metadata field to store
the cryptographic hash valdéash(data) that defines the last stored versiondata.

On load,SM calculatesH ash(data) again and checks if it matches the hash value on
last store. In order to ensure freshness of these metabatadex ofS M itself has to
be stored fresh.

We therefore analysed to what extend TPMs of version 1.1d&hdan be used to

realise a fresh index fas M .

e DI-Register:TPMs version 1.1b provide a Data Integrity Register (DIR}itan
persistently store a 160 bit vallie [17] 18]. Unfortunatatgess to this register is
only authorised by the TPM-Owner secret implying that th&ff®wner can al-
ways perform replay attacks. The only solution would be siritiute platforms
with an activated TPM and an owner authorisation secretishatknown to the
user. This solution does not conform to the TCG specificatiahdemands that
TCG-enabled platforms have to be shipped with no owner liestgsee [[39],
page 139).

1More details on storage metadata at the end of this section.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 59

e SRK RecreationAn alternative way to prevent replay attacks based on TPMs
version 1.1b would be to create a new Storage Root Key (SRiSydehe sys-
tem is shut down. Recreation of the SRK would prevent thatipusly created
TPM encryption keys can be used any more. Unfortunately, & &&h only
be renewed by th&akeOwnership function which itself requires a previously
OwnerClear that itself disables the TPM. Therefore, an online-redoeatf the
SRK seems to be impossible.

e NV-RAM: TPMs version 1.2 provide a limited amount of non-volatilevV{N
RAM to which access is restricted to authorised entitiesc&8ted NV-Attributes
define which entities are authorised to write to and/or reachfthe NV-RAM.
Thus, data integrity can be preserved by storing a hash adlile data into the
NV-RAM and ensuring that only the Storage Manager can adbessuthorisa-
tion secret.

e Secure CounterA TPM version 1.2 supports at least four monotonic counters.
Based on this functionality, the freshness of data can bectst by securely
concatenating it with the actual counter value.

A result of our previous analysis we showed that TPMs verdidi cannot be
used to provide fresh storage as required to enforce stdimfnses and/or to trans-
fer licenses. Therefore we decided to realise trusted geobased on the monotonic
counter functionality of TPMs version 1.2.

A monotonic hardware counter allows us to securely maintairsioning of an
arbitrary data component, by keeping a software countechsypmised with one (of
four guaranteed) hardware counters of the TBM/ manages an internal software
counter that, every tim§ M updates its index, is incremented synchronously with the
monotonic hardware counter. If both mismatch at any timeytdated data is detected,
that will be handled according to the actual security policy

However, in order to employ TPM’s monotonic counte¥d/ has to be initialised
correctly. On the initial setup' M uses the TPM to create its internal cryptographic
key keysas that then will be sealed to the actual platform configuratidn enable
freshness detection and thus trusted stor&gé, creates a monotonic countettid
with a authenticatiomuth, e.g., a secret password. The initial setup finishes with the
creation ofSM’s internal metadata indeddex sy, and the saving of the sealed key
blob and the encrypted index on untrusted storage.

After a platform rebootS M reads the key blob from the untrusted storage and asks
the TPM to unseal its internal key. The TPM is able to ungegk, if the platform
has the same configuration as it was at the sealing processpthventing a modified
SM to acces&eygsys. ThenSM useskeyg), to decrypt its metadata index read from
the untrusted storage. Finally,M/ verifies freshness afudex sy, by comparing the
decrypted counter afvdex s, With the actual counter value of the corresponding TPM
counterentid.

To bind a compartment’s data object persistently to its @ctonfiguration the
following has to be done: After the mapping of compartmeeniifier to the actual
compartment configuration usingM, SM updatesindexgas With the correspond-
ing metadata as well as the incremented software countaatiolefreshness detection
for indexgy. Afterwards,SM writes both, the data objects and the updated index,
encrypted on the untrusted storage usigs,;. Finally, SM synchronises its soft-
ware counter with the TPM’s monotonic hardware counter atarns the data object
identifier.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



60 OpenTC D05.2 — Proof of Concept of the Security Services

Note that we assume that (i) the operations above are atordithais attacks can
only be mounted between those operations and (ii) our ataskable to accomplish
two kinds of attacks: replay of persistently stored index@$ Denial-of-Service (DoS)
attacks. These assumptions result in six attack scenatiosnarised in Tab[e3.3.

Attack after | Replay | DoS
Increment SW-Counter no persistence no persistence
Save new index no effect can be detected
Increment HW-Counter not possible possible

Table 3.3: Attacks on the store protocol.

If the software counter was incremented, but the new indéyeicsaved, interrupt-
ing the update cancels it, but has no further effect (no piensi state is changed). After
saving the new index, the saved software counter mismatbleelsardware counter,
preventing the saved index from being loaded. Thus, deh&dwice can be achieved
(but can be detected as an attack), but replays fail. Afteneimenting the hardware
counter, the new index is in place. Interrupting after thdaip, yet before making the
new index accessible merely can be used to “waste” a singlefusnited-use licences
but has no further implications.

We complete the scenario with loading a compartment’s dajcbagain: After
the mapping of requesting compartment identifier to theaaompartment configu-
ration usingC'’ M, SM reads the requested data object from untrusted storageeand d
crypts it usingkeysas. Before returninglata to the corresponding compartmeSt)/
verifies all access restrictions (e.g., freshness, or aiceuser id) given on store via
rest based on the corresponding metadataitex s, and verifies that the requesting
compartment has the same configuration as it was on store.

Secure I/O

The Secure I/0O compartment receives protected contentin fir rendering. Thus
the SIO is a security critical compartment that has to be trusteder&foreS10

is executed in parallel, isolated from, e.g., a legacy OS la&lto be verified for
trustworthiness. In order to provide a flexible efficient Iempentation, we used a
para-virtualised Linux operating system reduced to therggd functionality to render
decrypted contefd. Moreover, our whole system architecture enforces fad is
allowed to communicate only with devices essential for #redering process and in
turn receives communication only from the TCB so that del@ggontent cannot leak
into untrusted compartments.

3.1.3 Secure Virtual Private Network

A prototype of a secure VPN solution, called Turaya-VPN, \waglemented within
the EMSCB project and is provided to the OpenTC project.

Overview

Our solution establishes a VPN by using the security ses\acel therefore facilitates
protected communication with remote compartments antien8s, e.g., servers (web

150ur exemplarySTO implementation provides rendering of several audio fosmat

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 61

Corporate
Compartment
‘ Untrusted Storage ‘

Legacy Operating System Ethernet Stub

Application

Application Layer T

D

Network Driver

Virtualisation Layer

‘ TC-enabled Hardware Layer i

‘ Conventional Hardware -

. Components belonging to the TCB 7 untrusted Components M

&

Internet
VPN Gateway

Figure 3.3: Architecture Overview

servers, email servers, news servers, etc.) in a protectiethet. The solution must

ensure that a user within an insecure network gets secuessta a protected area.
The communication between the user and the secure areaésta by the OpenTC

security platform. The secret required for establishiregabnnection is also managed
by the platform. The user operating system has no access toftrmation.

The bridge server is an isolated network driver. The mairi gbtne bridgeserver
is to outsource the DMA-enabled network dridris an isolated component that may
additionally contain virtual private network (VPN) and firall functionality. Clients
open (and close) a network device, and read from (and wrjta fireviously opened
network device. Additionally the bridgeserver allows tdane access control on
which clients may open a network device and provides a simaeagement inter-
face.

Requirements: In the context of the OpenTC environmentrtificate-based VPN
shall be implemented. The following requirements to the mamication channel are
made:

e Integrity of the transmitted data
e Confidentiality of the transmitted data

In the following, we will distinguish between the user systge.g., Linux) and the
Platform-VPN system. Both work on a host system and are nezhhg the OpenTC
security platform. The user system is the user operatingsythe user interacts with.
Every input (keyboard, mouse, etc.) is processed by thesystem. The Platform-
VPN system is executed in parallel through the securityf@lat on the same host

18DMA (Direct Memory Access) allows a device to access main wrndirectly. A malicious device
driver can misuse DMA to read out confidential data from maémmary.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



62 OpenTC D05.2 — Proof of Concept of the Security Services

sT T T T T T T T T T T T _, [ Routing \I
| | Bridgeserver-ethO
I Clientl : | :
I ) I
Huno «2NVTAP g0 1pco |« Sting IPC IPCO  fdo | «—NTAP Lfying |
! |

I I
! |

I I
I
| I : I

| | ethO |
! |
I Client2 : | :
! |

i I

Hunl «2NTAP o |pop|et2ing IPC PC1  fd1 |e—NTAP fying |
! |

I I
I
| ! : |
o L4Linux1_' | !
e === = = = — | Bridgeserver-wlan0 !
I Client3 ‘I | :
I ) I
Huno «ZNTAP o 1poo| < 2ing IPC ipco 1o [«TTAP L iin2 «—> | yiano |
! |

I I
! |

I I
I
X . I ! ) I
N L4Linux2 , ! L4Linux3 ,

Figure 3.4: Bridgeserver Architecture

system. Every network request of the user system is forvdataé¢he Platform-VPN
system by the core security platform. There, the requestslassified and processed
according to their security property. This can mean thatRteform-VPN system
establishes a secure connection to a protected intraretggand the data transmitted
are encrypted.

Design of Virtual Networking for L4

In this section the design of the bridgeserver implementirtgal networking, which
is required for the secure VPN, is described.

Architecture Description of the Bridge Server

The architecture of the bridge server is illustrated in Féfi4. Clients and server use a
Linux TUN device driver which provides a virtual network@éntace. Communication
between client-side and server-side TUN interfaces isemginted with the L4 Inter-
Process-Communication (IPC) facility.

Implementation

Figure[3.5 illustrates the client-server protocol. Cliant server first initialise a virtual
network device (tun device). The server task registerff ist¢ghe naming service so
that the client task can do an open()-call. Upon successiulptetion of the open()-
call, client and server maintain a mapping from each othrsad id to their virtual

local network device. Ethernet frames written to a virtuatwork device are then
transferred via IPC to the peer task.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 63

- create tun-devices
- register main thread
as "bridgeserver"

- create tun-device |
1
1
- server_loop() 1
|
1
1

- ask naming service
for "bridgeserver"

\
| I
| I
| I
| ]
I i
- map tun-device to server | write(frame;
| I
| I
]

open:

thread id . - on open() call:
write(frame) . )
- call open() map tun-device to client
\- server_loop() thread id
,,,,,,,,,,, N 7

Figure 3.5: Protocol

3.2 Security Considerations for the CC@H Scenario

In sectior 1.P we identified threats that have to be consitferethe CC@H scenario.
Following we will show why and how our implementation of thecarity services
solves or mitigates threats to the systems and the assdisipbtvners. But first we
give a short description of the basic security conceptsatetised to fulfil the security
requirements of the CC@H scenario.

3.2.1 Basic Security Concepts
Trusted Channels

The inter-process communication (IPC) provided by theusiitation layer enables
secure channels between local compartments that enfondielentiality and integrity
protection. To provide secure channels also between lochiemote compartments,
we suggest the application of common established mechari@mommunication se-
curity such as SSH[41] and TLSI[6[./[2]. In order to extendwseahannels to trusted
channels that enable a party to verify a compartment’s cordigpn, we have imple-
mented the Trust Managér' (/) and the Compartment Managéri{/). Both together
allow local and remote compartments to determine the cortgun of their commu-
nication contacts and thus to derive their trustworthinédsreover, our architecture
enforces thatinformation bound to a determined configomatannot be accessed by an
unauthorised (and potentially untrusted) configuratioselleon the TCG mechanisms
sealing and binding. The secure Initialisation process$efctio 3.1]2) however en-
forces the trustworthiness @f\/, C M and the underlying TCB.

Strong Isolation

In order to strongly isolate compartments from each otlsetation at runtime as well
as isolation in persistent storage is required. Runtimaiism is provided by the small
virtualisation layer that implements only logical addrspaces, inter-process commu-
nication (IPC) and an appropriate interface to enforce aescontrol management
for the underlying hardware. Device drivers and other asaesperating system ser-
vices, such as process management and memory managenmein,isolated user-
mode processes. Thus, the amount of code running in pradi€ging 0”) processor
mode, is clearly minimised and can, in contrast to monalitiperating system ker-
nels such as Linux or MS Windows, properly be verified for dsrectness. Moreover,
a failure in one of these services cannot directly affectatier services, especially
the code running in privileged mode. Thus, malicious dedigeers cannot compro-
mise core operating system services as they are all exeicutisgr-mode. Isolation in

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/0OpenTC Public (PU)



64 OpenTC D05.2 — Proof of Concept of the Security Services

persistent storage is provided by our Storage Managj&f Y implementation and the
usage of trusted channels. Since conventional computkitectures cannot provide
a trusted channel to the persistent storage device, ansatyaran always arbitrarily
change the state of the storage or access the communicatenmdtfrom the corre-
sponding controller. We prevent such offline manipulatiand replay attacks while
establishing a trusted channel$a/ during the secure Initialisation (cf. Section3]1.2)
process that enables the platform to verify the trustwoess ofS M .

Trusted Storage

Our architecture provides secure storage, i.e., storaggéding integrity and confiden-
tiality, using established cryptographic mechanisms. &k, we improved common
approaches while taking advantage of the strong isolatgalgility of our architec-
ture that prevents the exposure of cryptographic secraisaothorised or malicious
processes. We also extended the secure storage by a haioheaick freshness detec-
tion mechanism that detects outdated persistently stofedmation, i.e., information
that indeed could be decrypted and verified for integritythat was not the informa-
tion written at last. Having a freshness detection mechari@ persistent storage,
our architecture is able to manage for instance statefehfies while preventing the
corresponding replay attacks. In order to provide Trusteda§e, i.e., storage that
enables other compartments to persistently bind theit kiages to their actual config-
uration while preserving integrity, confidentiality anés$hness, we employ the Storage
Manager § M) together with the Compartment Managér/). As SM innately en-
forces integrity, confidentiality and freshne€8)/ provides trustworthy measurement
of compartments configuration used By to return information requested on load
only to compartments with the same configuration as provatethe preceding stor-
age request. The secure Initialisation (cf. Sedfion B.Ad®ever, again enforces the
trustworthiness ob M, C'M and the underlying TCB. Manipulation of protected stor-
age is not feasible with regard to the TCG attacker model vagsumes that a TPM
is only vulnerable to hardware attadids.

3.2.2 Facing Threats

Now we describe how the security concepts mentioned abevesad to encounter the
threats enlisted in sectign1.2.

Threats to the Corporation

The PC of the employee gets lost, and the finder/thief is abl@tread confidential
corporate data stored on the computer. This can be prevented by sealing data using
the storage manager. The data is stored bound to an autimrisacret, so the find-
er/thief is not able to access the data booting up the sydtemdrmal way. This can
be done by recommending authentication when the corpooatpartment is started.
To access the data using another computer system by, engyvirgy the hard disk from
the employee’s system is impossible because the data éxistealed to a specific state
(also hardware) and thus stays encrypted when mountednotber system.

17TPM technology stems from smartcard technology. Some TR¥Esertified according to Common
Criteria EAL 4+.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



CHAPTER 3. L4 SECURITY SERVICES 65

An attacker gains illegitimate access to the network of the @rporation using its
own or a employee’s computer. To access the companies network a certificate and a
certain platform configuration are necessary. Accessiagétwork just having a plat-
form in the right configuration thus is not sufficient. Thethermore needed certifi-
cates handed out to the employees by the IT department obthpany to authenticate
themselves are stored sealed on a employee’s storage ¢nvsceould also be a USB
stick). Their usage is only possible if a system is in a spestfite and a password has
been entered. Therefore an attacker is only able to acoessthpany’s network if she
gains access to an employee’s storage device as well asdpergrassword and fur-
thermore operates a system that is in a state consideregtablzby the company’s
VPN gateway. Although this may happen, the risk is small. rAfram that a rigid
access control system (e.g. like in SE Linux) that reguldéga access directly on the
company’s servers can be used to prevent further damage.

Threats to the Employee

The employee’s system is altered by the installation of theozporate compartment
resulting in a situation that the computer is no longer usabé for private purposes
because of, e.g., restrictive security guidelines.The hypervisor and the security
services are able to guarantee isolation between compatdrieea very high degree.
Therefore the user should be able to run in parallel whatwelikes. Trusted channels
and the strong isolation concepts described above takeotdine proper separation.
But in certain circumstances like, e.g., if the employeetbasork on very sensitive
data the security policy may require no untrusted compartmenning in parallel to
the corporate compartment. This would be enforced by theriggservices namely
the compartment manager. However it is still possible towrgeusted compartments
when the corporate compartment is not running.

Access to private data stored on the employee’s system may pessible for other
company members, e.g., the administrator. This can also be avoided by strong
isolation. Data used in specific compartments can be sealbd bnly usable within
them. If another compartment tries to access the sealedadatss will be denied.
However there exists a problem concerning remote admétiistr by the company’s
IT department. In theory it would be possible for the remalenmistrator to alter
the security policies/properties of other compartmentsapplications installed on the
system but this can be detected by the user by letting thersyattest to its state before
using it for private purposes.

Threats to both

Direct Memory Access (DMA) DMA attacks can only be prevented by the underly-
ing hardware platform using Intel's or AMD'’s new securitytemsions (cf. [13],[[1]).
Without these extensions our concept of security servigetens the drivers to manip-
ulate memory or kernel files directly because they do notmkeirnel-mode but DMA
attacks are still feasible.

lllegitimately modified compartments, e.g., Malware is ingalled/executed An of-
fline manipulation of a compartment is detected at the momenaitsstip, because
its data is sealed against a certain state. Thus, if it isegltevhile it wasn’t running
access to its data will be impossible at the next startupo#lime manipulation, e.g.,

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



66 OpenTC D05.2 — Proof of Concept of the Security Services

by the employee herself in turn is detected when the compattinies to connect to
the company’s network and access can be denied. But matiijguthe compartment
when it is running should be rendered impossible or at least difficult by a rigid
security policy that is enforced by the security services.

Software vulnerabilities in the hypervisor or security sewvices The risk of soft-
ware vulnerabilities can be mitigated by strict evaluatéom certification processes
with regard to those components. Because of their minimsibdea thorough evalua-
tion of the security services and the microkernel is possiblcontrast to the evaluation
of monolithic kernels of legacy OS’s.

lllegitimate program execution or data usage The hypervisor layer of our imple-
mentation of security services only offers support for eattparse grained access con-
trol. Fine grained access control mechanisms have to badew\by the corporate
compartment itself. This could be achieved by using a stahdanfiguration of, e.g.,

a minimised SE Linux (cf. [[16]) provided by the IT departmeuninning on top of
the virtualisation layer. The configuration and state of 1S and its access control
mechanisms in turn can be monitored using the securitysesvi

User connects to a fake corporate server (phishing) Averting this threat can be
achieved by using appropriate authentication methods dikge, provision of a server
certificate. Additionally an attestation of the VPN gateveay be required. Thus, the
client is able to verify the authenticity and configuratidite counterpart (as proposed
in [2])). For the CC@H scenario only the usage of a serverfaate is intended.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)



Bibliography

[1] AMD. Amd i/o virtualization technology (iommu) speciétion. AMD

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

- IOMMU Architectural Specification, Feb. 2007. http://wvwasmnd.com/us-
en/assets/content_type/white_papers_and_tech_dd&ldf.

N. Asokan, Y. Gasmi, A. R. Sadeghi, P. Stewin, and M. Undg&eyond secure
channels. ACM-STC 2007, June 2007.

S. Berger, R. Céceres, K. Goldman, R. Perez, R. SaildrLaman Doorn. vTPM:
Virtualizing the Trusted Platform Module. IRroc. 15th USENIX Security Sym-
posium pages 21-21, 2006.

S. Cabuk, C. Dalton, H. V. Ramasamy, and M. Schunter. Tde/&utomated
Provisioning of Secure Virtualized Networks. Rioc. 14th ACM Conference on
Computer and Communications Security (CCS-200¢}. 2007. To appeatr.

|. Damgard, T. Pedersen, and B. Pfitzmann. Statisticat&dy and Multi-Bit
Commitments. IEEE Transactions on Information Theorg#4(3):1143-1151,
1998.

T. Dierks and C. Allen. RFC2246 - the TLS protocol versibf. www.ietf.org/
rfc/rfc2246.txt, January 1999.

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, |. Prdtt Warfield, P. Barham,
and R. Neugebauer. Xen and the art of virtualizatiorPioceedings of the ACM
Symposium on Operating Systems Princip@stober 2003.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. BoneFerra: a Vir-
tual Machine-based Platform for Trusted ComputingPtac. 19th ACM Sympo-
sium on Operating Systems Principles (SOSP-2(i8)es 193—-206. ACM Press,
2003.

O. Goldreich, S. Micali, and A. Wigderson. Proofs thaeh Nothing but their
Validity, or All Languages in NP have Zero-Knowledge Progk&ms.Journal
of the ACM 38(3):690-728, 1991.

J. Griffin, T. Jaeger, R. Perez, R. Sailer, L. V. Doorngd & Caceres. Trusted
Virtual Domains: Toward Secure Distributed Services. Phoc. 1st Workshop

on Hot Topics in System Dependability (Hotdep-200@5kohama, Japan, June
2005. IEEE Press.

V. Haldar, D. Chandra, and M. Franz. Semantic Remotegidtion - Virtual
Machine Directed Approach to Trusted Computing USENIX Virtual Machine
Research and Technology Symposipages 29-41, 2004.

67


www.ietf.org/rfc/rfc2246.txt
www.ietf.org/rfc/rfc2246.txt

68 OpenTC D05.2 — Proof of Concept of the Security Services

[12] V. Haldar, D. Chandra, and M. Franz. Semantic remotestdtion: A virtual
machine directed approach to trusted computing UBENIX Virtual Machine
Research and Technology Symposiiay 2004. also Technical Report No.
03-20, School of Information and Computer Science, Unitiei California,
Irvine; October 2003.

[13] Intel. Intel trusted execution technology. Intel - f@ology Overview, Jan. 2007.
http://www.intel.com/technology/security/downloatis/stedExec_Overview.pdf.

[14] B. Jansen, H. Ramasamy, and M. Schunter. Complianagfend policy en-
forcement for xen virtual machines. Submitted for Publicatior2007.

[15] H. A. Lagar-Cavilla. Vmgl: Vmm-independent graphioscaleration. InXen
Summit 20072007.

[16] P. Loscocco and S. Smalley. Integrating flexible supfmrsecurity policies into
the Linux operating system. Technical report, U.S. Nati®ecurity Agency
(NSA), Feb. 2001.

[17] R. MacDonald, S. Smith, J. Marchesini, and O. Wild. BeAn open-source
virtual secure coprocessor based on TCPA. Technical RgR26003-471, De-
partment of Computer Science, Dartmouth College, 2003.

[18] J. Marchesini, S. W. Smith, O. Wild, and R. MacDonaldpEximenting with TC-
PA/TCG hardware, or: How | learned to stop worrying and Idweltiear. Techni-
cal Report TR2003-476, Department of Computer Sciencetnizarth College,
2003.

[19] National Institute of Standards and Technology. FIRS: Advanced Encryp-
tion Standard (AES).http://csrc.nist.gov/publications/fips/fips197/fips-197.
pdf, November 2001.

[20] National Institute of Standards and Technology. FIBB-2: Secure
Hash Standard (SHS). http://csrc.nist.gov/publications/fips/fips180-2/
fips180-2withchangenotice.pdf, August 2002.

[21] C. C. P. S. Organisations. Common Criteria for Inforimaflechnology Security
Evaluation (version 2.0). May 1998, adopted by ISO/IEC aaffinternational
Standard DIS 15408 1-3.

[22] B. Pfitzmann, J. Riordan, C. Stiible, M. Waidner, and Abéfe The PERSEUS
system architecture. Technical Report RZ 3335 (#93381)1 Research Divi-
sion, Zurich Laboratory, Apr. 2001.

[23] G. J. Popek and R. P. Goldberg. Formal requirementsifaralizable third gen-
eration architecture€€ommunications of the ACM7(7):412-421,1974.

[24] J. Poritz, M. Schunter, E. V. Herreweghen, and M. WaidReoperty Attestation —
Scalable and Privacy-friendly Security Assessment of Beenputers. Technical
Report RZ 3548 (# 99559), IBM Research Division, May 2004.

[25] J. Poritz, M. Schunter, E. Van Herreweghen, and M. Waidn Property
attestation—scalable and privacy-friendly security assent of peer computers.
Technical Report RZ 3548, IBM Research, May 2004.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)


http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf

BIBLIOGRAPHY 69

[26] A.-R. Sadeghi and C. Stible. Bridging the gap betweefA/Ralladium and
personal security. Technical report, Saarland Univer&grmany, 2003.

[27] A.-R. Sadeghi and C. Stuble. Property-based Attestaftor Computing Plat-
forms: Caring about Properties, not Mechanisms.Ptac. 2004 Workshop on
New Security Paradigms (NSPW-20043ges 67—77. ACM Press, 2005.

[28] A.-R. Sadeghi, C. Stible, and N. Pohlmann. Europeartilegral secure com-
puting base — open trusted computing for you and Datenschutz und Daten-
sicherheit DuD 28(9):548-554, 2004. Verlag Friedrich Vierweg & Sohn, ®Vie
baden.

[29] R. Sailer, T. Jaeger, E. Valdez, R. Perez, S. Berget,Griffin, and L. van Doorn.
Building a MAC-based security architecture for the Xen ogenrce hypervisor.
Research Report RC23629, IBM Research Division, June 2005.

[30] R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attistabased policy
enforcement for remote access. Pnoceedings of the 11th ACM Conference
on Computer and Communications Secyrityashington, DC, USA, Oct. 2004.
ACM Press.

[31] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Dooin, Griffin, and S. Berger.
sHype: Secure hypervisor approach to trusted virtualigstesns. Techn. Rep.
RC23511, Feb. 2005. IBM Research Division.

[32] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desighlenplementation of a
TCG-based Integrity Measurement ArchitecturePhoc. 13th USENIX Security
Symposiunpages 16-16. USENIX Association, Aug. 2004.

[33] TCG Infrastructure Workgroup. TCG infrastructure wgroup subject key attes-
tation evidence extension specification version 1.0 rexigi, June 2005.

[34] TrustedGRUBhttp://sourceforge.net/projects/trustedgrub.

[35] TrouSerS. The open-source TCG software stdukp://trousers.sourceforge.
net.

[36] Trusted Computing Group. TPM Main Specification v1.2pvidmber 2003.
https://www.trustedcomputinggroup.org.

[37] Trusted Computing Group. TPM v1.2 Specification Changerusted Comput-
ing Group:https://www.trustedcomputinggroup.org/groups/tpm/TPM_1_2_
Changes_final.pdf, Oct. 2003.

[38] Trusted Computing Group. TPM Main Specification. https://www.
trustedcomputinggroup.org, Feb. 2005. Version 1.2 rev. 85.

[39] Trusted Computing Platform Alliance (TCPA). Main sg@ation, Feb. 2002.
Version 1.1b.

[40] TCG Software Stack Specificatiorttps://trustedcomputinggroup.org, Aug.
2006. Version 1.2.

[41] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Liabh. IETF draft - SSH
transport layer protocolvww.openssh.org/txt/draft-ietf-secsh-transport-14.
txt, March 2002.

OpenTC Document D05.2/V01 — Final R4948/2007/11/23/OpenTC Public (PU)


http://sourceforge.net/projects/trustedgrub
http://trousers.sourceforge.net
http://trousers.sourceforge.net
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org/groups/tpm/TPM_1_2_Changes_final.pdf
https://www.trustedcomputinggroup.org/groups/tpm/TPM_1_2_Changes_final.pdf
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
https://trustedcomputinggroup.org
www.openssh.org/txt/draft-ietf-secsh-transport-14.txt
www.openssh.org/txt/draft-ietf-secsh-transport-14.txt

	D05.2-v01-SecServicesPoC.pdf
	D05.2-v01-SecServicesPoC.pdf
	Corporate Computing at Home Scenario Analysis
	Basic Setting
	Threats

	Xen Security Services
	Xen Security Services Overview and Implementation Status
	Overview
	TVD network infrastructure
	Bridge
	Virtual Private Network
	VM admission control
	Summary

	Xen Virtual Networking Devices
	Overview
	Background
	Virtual Switch
	Linux Dom0 Prototype

	Management of Trusted Virtual Networking Domains
	Auto-deployment of TVDs

	Xen Hierarchical Integrity Management
	Our Solution
	Use Cases for Dynamic Registers
	Conclusion

	Xen Cross-resource Policy Validation
	Introduction
	Formal Integrity Model for Virtual Machines
	The PEV Integrity Architecture
	Realisation using Xen and Linux
	Use Cases
	Conclusion

	Xen Secure GUI Services
	An Example Secure GUI Use Case
	Current State
	Prototype Design
	Conclusion


	L4 Security Services
	Introduction
	Basic Concepts
	Implementation
	Secure Virtual Private Network

	Security Considerations for the CC@H Scenario
	Basic Security Concepts
	Facing Threats


	Bibliography





