l BB

Information Society

Technologies

D6.3 Collection of all SWP deliverables (with
nature=R) produced during month 13-24

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing
Deliverable type Deliverable

Deliverable reference number IST-027635/D06.3/FINAL | 1.00

D6.3 Collection of all SWP deliverables (with
nature=R) produced during month 13-24

WP contributing to the deliverable WP6

Deliverable title

Due date Oct 2007

Actual submission date Nov 2007

Responsible Organisation LDV,Lehrstuhl fur Datenverarbeitung, TUM
Authors Chun Hui Suen

Abstract

Keywords OpenTC WP6

Dissemination level Public

Revision FINAL | 1.00

Instrument IP Start date of the 1%t November 2005

project
Thematic Priority |IST Duration 42 months

xH
3%
) 2

*

D06a.1 Preliminary DRM System Specification FINAL | 1.00

This document is a compilation of the following deliverables:

D06a.3 Final DRM system specification (M 24)
D06b.2 A report containing the MEITC specification and test plan (M13)
D06b.3 Detailed design and test document (M15)

D06c.1 High level requirements specification (for Proof-of-Concept WYSIWYS
application) (M 24)

D06d.1 EFS C/C++ API Specification (M18)
D06e.4 Final MFA System Specification (M 18)

Note: The deliverable D06d.1 has been placed in the annex, as it is still incomplete
and will be revised in the next phase of the project. It is deemed not suitable for public
release and will thus not be included in the public dissemination of this document.

Open_TC Deliverable D06.3 2/2

¥
* e
»* Information Society

Technologies

l BB

WPO06a.3 Final DRM system specification

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing
Deliverable type Internal document

Deliverable reference number IST-027635/D06a.3/FINAL | 1.00
Deliverable title Final DRM system specification
WP contributing to the deliverable WP6

Due date Oct 2007

Actual submission date Oct 2007

Responsible Organisation LDV,Lehrstuhl fur Datenverarbeitung, TUM
Authors Chun Hui Suen, Florian Schreiner
Abstract

Keywords DRM, fair, interoperable, MPEG-21
Dissemination level Public

Revision FINAL | 1.00

Start date of the o
Instrument IP project 1%t November 2005

Thematic Priority IST Duration 42 months

% l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

Table of Contents

j I [o e Yo [U Tt f o] o AP 4
P § L < =T <SPPI 4
p A O 1V = o V= PP PP 4
2.2 DesCription Of USE CaS@S. . u i ittt e e e aees 5
3 .Design SPeCifiCatioNS. ... i 10
I Y el o V1 (=T ot AU | =T PP 10
3.2 Player APl and Player appliCation. ..o 10
3.2.1 ReGISTrAtION . cce it 10
3.2.2 Content AULNOMIZatioN. . ..o 11
3.2.3 Legacy Player AppliCation. ..o 11
3.3 MaN@GEE APl e 12
3.4 APPICAtION [0AAEN ... e e 12
T o] ¢ I\ =T g T= T [PP PP 13
3.6 LiCENSE MaN A0l ittt e 13
3.6.1 LiCENSE INtO PO O . e e e 13
3.6.2 License Translation Manager ..o 14
3.7 State Management. ... e 15
3.8 Saled SEOrAg . . e it e 15
3.8. L KEY SEOME. i 15
3.8.2 LiCBNSE SEOM . ittt 16
< TG T U Y= gy o] R PP 16
I I U 1Y T o =] Y 2 PP 16
T A 010 LI Y =T VT ol 16
4 XEN/L4 virtualization @nVIrONmMENt.........iiiiii e 18
4.1Co mpartment arChit@CtUre. ..o 18
4.2In terfaces between compartments..... ..o 18

5 .Component Interaction within the DRM system.........ccccoiiiiiiiiiii e, 20
5.1 Functional parts of the DRM COre ... 20
5.2 SEQUENCE AIagramMS. .. ittt e e e e e e 21
5. 2. L PlaY @ APl e 21
5.2.2 Management APl ... 22
5.3 Interaction between different Peers.........ove i 22
5.3.1 License and Content Key transfer.........coouiiiii i 22
5.4 DOmMain ManagemeNt.........iiuiii i 23
6 .Technical SPeCifiCatioNS. ... 24
B.1 EXEOINAl AP e 24
6.2 INEEINAl AP .o e 24
7 .Requirements from other Partners.......... i 25
8 .Glossary Of AbDreViatioNS.o 26
S T Y =Y =T o =P 27

Open_TC Deliverable D06a.3 2/27

:“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

List of figures

FIQUIE 1: SYSEemM OVeIVIEW. ... i e e e et e e e e e e ens 10
Figure 2: License Translation. e 15
Figure 3: Virtualization of the DRM COre.. ..o e 18
Figure 4: Interface CRain. .. 19
Figure 5: Internal and external components of DRM Core..........ccooviiiiiiiiiiiiiiiiiiiineeenes 20
Figure 6: Sequence diagram for media playback..........ccooiiiiiiiiiiiice 21
Figure 7: License transfer sequence diagram.......cooiuieiiiiiiiiiisine e 22
Figure 8: Domain Client Management... ... e 23

Open_TC Deliverable D06a.3 3/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

1. Introduction

This document collects the specifications of a DRM system to be developed as sample
application for the OpenTC framework. These specifications define the scope of
system, describe its functional requirements and its design. The design sections of
this document are mainly focused on the definition of the system architecture by
depicting the system modules, the function of each of them and the related
interactions. Specific details of the APl and communication protocol are still subject to
change depending on the interfaces provides by the underlying OpenTC framework
developed in workpackage 3 to 5 and implementation issues to be resolved.

The principal scope of the DRM system will be the protection of multimedia content.
Generalization of the DRM system for the protection of other contents, such as
personal data, secret information or medical records of the patients, would be
possible through extension of the DRM system. However, specific implementation of
such generalization will not be implemented in this sub-workpackage.

This document is organized into 9 sections. Section 2 describes the functional
requirements in terms of use cases while sections 3, 4 and 5 include the design
specifications of the system. Section 6 contains the API specification and section 7
shows the requirements for this application within the OpenTC System. Sections 8
and 9 provide glossary and references to the terms and technologies used in the DRM
system. And external companion document contains the detailed API specification.

2. Use Cases

2.1 Overview

The Interoperable DRM system application scenario describes a DRM system that is
based on Trusted Computing and MPEG-21 for protecting multimedia content. The
system can be divided in 2 main parts: the DRM Core and the secure application.

The DRM-core runs as an independent domain that handles the content licenses and
the content keys. It exposes this functionality through an application programming
interface (DRM Core-API) to applications. The DRM-core is responsible for parsing
licenses, deciding on whether access to requested content is allowed and managing
the content keys. The core also support the management of user domains, which
allows a user to play content on multiple platforms, that belong to his domain. The
core handles the registration of other platforms to a domain and issues domain
licenses for these peers.

The secure application is in the simplest case a media player. The application uses the
DRM Core-API provided by the DRM-core to gain access to protected content. After a
verification process, the application receives the content key from the DRM Core and
is able to render the content.

The user can perform different actions with the secure application. Every action
triggers a process between the application and the DRM Core. For the DRM system we
differentiate between these 5 main use cases:

- Installation of the system
- Download content

Open_TC Deliverable D06a.3 4/27

D06a.1 Preliminary DRM System Specification FINAL | 1.00

« View / Consume Content

- Renew License

- Transfer License

In the following sections these different use cases are explained in detail. They
describe step by step, what happens when the user intends to perform an action.

2.2 Description of Use Cases

Use Case Unique ID

/UC 10/

Title

Installation of the system

Description The administrator installs the DRM System within the
OpenTC framework.
Actors Administrator

Preconditions

The OpenTC framework was started.

Postconditions

The DRM Core is installed/initialized.

Comment

Normal Flow

1. The administrator installs a DRM-Core and starts it
in a separate compartment.

2. The administrator installs the DRM player in a
separate secure environment for rendering of the
content.

3. A signed policy file establishes the following
requirements:

Trusted I/O Channels: We need a secure audio
and video output path for rendering content.
Access to the trusted services from the
compartment, especially to the DRM Core.
Access to the Core will be limited by its API.
Ability to display an application in a Window-
System, which is started in the secure
environment. An efficient method for video
rendering should also be supported in a secure
manner (for example Overlay).

Integrity measurement of all applications and
plugins that can be used to reproduce content
in a secure way.

Open_TC Deliverable D06a.3

5/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

Use Case Unique ID

/UC 20/

Title

Download content and install license

Description

The user downloads a content.

Actors

User

Preconditions

The OpenTC framework was started and the DRM Core is
running in a secure environment.

Postconditions

The content keys and the license are kept secure in the
sealed storage.

Comment

Normal Flow

1. The user downloads a container file either from a
provider or another user. The file consists of the
multimedia content. The downloading and the
storage can be unsecured, because the data is
always encrypted.

The license can also be transferred in this step. It
doesn't need to be protected, since it is signed by
the content provider.

. The user starts the secure environment.

. The user starts the player application for the
retrieval of the content keys.

4. The player application establishes a secured
connection to the provider for exchanging the
content keys.

5. The DRM Core generates an attestation identity
keys (AIKs) and encryption keys using the TPM, so
that the content provider can encrypt the content
key.

6. The user receives the content with an embedded
license. This license is forwarded to the DRM core.

7. The license for the content is checked and
preprocessed in the DRM core. The encrypted
content is decrypted and stored in sealed storage.
The important information of the license is stored
in the sealed store.

wN

Open_TC Deliverable D06a.3

6/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

Use Case Unique ID

/UC 30/

Title

View / Consume content

Description The user tells the player that he wants to view or
consume the content of a protected file.
Actors User

Preconditions

The OpenTC framework was started and the player
application and DRM Core are running in a secure
environment.

Postconditions

Comment

Normal Flow

=

. The user starts a player application, which runs in

the secure environment.

. The user triggers the application to access a

protected media file for rendering.

. The player application registers with the DRM-

Core. Then it asks the DRM-core through the API to
enable access to the protected information by
handing out the content key from the key store.
The Core is presented with the content's unique DI
(Digital Item Identifier) along with the requested
action (e.qg. play, print, burn etc.) and decides on
whether access is granted or not. If yes, the DIl is
used to query the key store for the content key.
The key store itself is an encrypted file and is
protected by sealing its key to a trusted system
configuration. Thus, the core can only access the
key store when the system is in a known trusted
state.

. Then the DRM-Core hands out the content key to

the application. It poses no threat since the system
and the player application are trusted.

Open_TC Deliverable D06a.3

7127

b l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

Use Case Unique ID /UC 40/
Title Renew License
Description Generally licenses are valid until a final date. After this

date, the license expires and the user has to renew his
license from a license server.

Actors User
Preconditions The OpenTC framework was started and the DRM Core is
running in a secure environment.

Postconditions New license is stored securely in the sealed storage.

Comment

Normal Flow 1. The user triggers the license renewal and the
player application connects to the content
provider.

2. The DRM-Core performs an authentication
procedure similar to that in the download
procedure.

3. The player application replaces the existing license
by a new one.

Open_TC Deliverable D06a.3 8/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

Use Case Unique ID /UC 50/

Title Transfer License

Description Licenses are transferred to other computers or are
translated to other DRM-Systems.

Actors User

Preconditions The OpenTC framework was started and the DRM Core is

running in a secure environment. Manager application
and target DRM system are running in a secure
environment.

Postconditions Transferred license is stored secure in target DRM
system.

Comment

Normal Flow 1. The user initiates a transfer.

2. Then the Manager application establishes a secure
and authenticated connection between the two
systems. The license and content key are
transmitted securely. A similar authentication
procedure as in the download and renew license
use case is required.

3. In case a different DRM system needs to be
supported, the existing license must be translated
by the DRM Core. The translation may also require
a re-encryption of the content. Furthermore, the
translated license has to be signed by the DRM
Core, which will use the TPM to enable trust to its
signature.

4. The player application transmits the content itself.
This is not a security problem, since the
transferred data is always encrypted.

Open_TC Deliverable D06a.3 9/27

* D06a.1 Preliminary DRM System Specification FINAL | 1.00
) J[e |

3. Design Specifications

3.1 Architecture

The diagram below shows the major components which make up the OpenTC DRM
system. The entire system can be divided into 3 sections, namely applications running
in userspace, the DRM Core which is running in a secure compartment, and security
services provided by the operating system and compartment management. The
precise separation of the system components among different secured compartments
is explained in section . The following sections will explain the individual components
of the system in detail.

Userspace Applications
Manager
GUI

DRM .
c License
ore
Core Manager
Manager (License |
. Interpretation
Application
P & Translation)
Loader
___________ L

i i H
OS-Services \Sealing/ \ Measurement / \ Secure Time/ \ Attestation / \Crypto. Lib./
Figure 1: System Overview

3.2 Player API and Player application

The Player APl is used for two purposes: the registration of a player application
(Player) and the content authorization. The following sections describe these two
functionalities in details.

3.2.1 Registration

Each Player who wants to access a protected content must register with the DRM Core
first. During registration, the Player and DRM Core starts a secure channel which can
only be opened if the core and player are running in a trusted state (provided by
OpenTC framework).

Additionally, the Core gets some information about the player, e.g. the version number
or process information, so that the Core can distinguish between multiple players on

Open_TC Deliverable D06a.3 10/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

the same machine. After the authentication the capability negotiation follows, where
the core negotiates a common rule set with the Player instance. This rule set defines
the REL commands, that both, player and core, have a common understanding of. This
mechanism enables the Core to discover, which commands the player supports and in
what way the Core can control the Player.

This restriction description can be done by using the subset of REL commands related
to representing conditions on operations, time and state. This allows a well defined
command set to be used, without defining a new standard.

After successful registration, the player is considered trustworthy to handle the
protected content in a correct and predictable way.

3.2.2 Content Authorization

After a successful registration the player can request the content key for a particular
protected content. This triggers a process of retrieving the associated license(s) of the
selected content and interpretation of this license. The Core then comes to the
decision if the player is allowed to access the content or not. This “Result” is described
in a XML format similar to the MPEG-21 REL and is transmitted to the Player.

If the Result is positive and the Player is generally allowed to access the content.
Together with a positive Result, the Core also transmits the content key so that the
Player can decrypt the content.

Furthermore the Result may contain several additional conditions, which have to be
enforced during the process of rendering. The content provider can define these
conditions to specify in what way the content can be rendered. An example condition
would be that the player should play only the first 10 seconds of a song. The player
has to understand these conditions in order to be able to enforce it correctly.

The capabilities of the player for these conditions are negotiated during the
registration, so the Core knows which conditions the player is able to enforce. For
example during the registration, the player informs the core, that he is able to enforce
the rule “play only the first x seconds” and the Core saves this property in an internal
storage. When a license is validated and this rule should be applied for the value 10,
then the Core generates a Result, which contains the rule that states “play only the
first 10 seconds”.

Decryption Modules are needed, when the Player receives a positive Result and then
wants to decrypt a specific content. Generally every content can use its own
encryption algorithm depending on the producer of the content. If the Player wants to
decrypt these contents, he needs access to all corresponding encryption libraries. This
functionality is provided by the Utility Library, which the player can use to get access
to a corresponding implementation of the encryption algorithm. The Utility Library is a
part of the APl and provides a standardized interface for essential algorithms. The
mechanism within the Utility Library is explained in section 3.9.

3.2.3 Legacy Player Application

All specifications in the APl are standardized and can be used by the player
applications. Generally the Player should be compatible to the DRM-System to know
the API of the core and how to handle content. An optional feature is to provide
support for legacy players, which cannot access the API directly. Players of that kind

Open_TC Deliverable D06a.3 11/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

are not aware of the DRM Core, but maybe favored by users for whatever reason.
These cases are handled by capturing the file reading operation and redirecting the
request to the DRM core during the read cycle. In this way, the handling of license
authentication and interpretation occurs transparent to the application.

For the player, the whole process is similar to a normal file access. The player receives
the unprotected content from the socket and can render it. The file access capturing in
this case converts and forwards requests through the API to the DRM Core. Since all
applications, including the legacy ones, run in the secured environment, handing out
the content key or the decrypted content itself is no problem, since it is guaranteed
that the applications cannot compromise it.

3.3 Manager API

Manager APl provides an interface to management features of the DRM Core, The
provided functionalities can be divided in the following four categories:

- License Management:
- Insertion of new licenses into the DRM Core
- Renewal of existing licenses
- Deletion of invalid or expired licenses
- License Transfer:
- Generation of a Transfer Licenses to an external peer
- Request for attestation keys
- Generation of signed certificates
« User Management:
- Adding and Removing users of the system
- Domain Management:
- Registration and de-registration of Domains

License Management is used to update the license storage of the DRM Core. For a new
content, the respective licenses can be added and for an expired content, the
corresponding license can be renewed or removed. The License Transfer functions
provide information for the acquisition and transfer of licenses to external peers. The
Domain Management and User Management functions allow the Manager GUI to
update the current domains and the users of the system.

The Manager API (defined in ManagementInterface) differs from the Player API, so
that playback and administrative functions of the DRM Core are clearly separated.

3.4 Application loader

The initial loading of the DRM Core needs to be done in a secure manner. This should
be handled by the compartment and device manager, which will check the integrity of
the compartment image before loading the DRM Core. In addition to the main image, a
secure persistent storage is used to provide secure storage for the DRM Core, that will
be discussed in sections and .

Open_TC Deliverable D06a.3 12/27

:“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

3.5 Core Manager

The central component of the system is the Core Manager. It's tasks are the central
management of the different parts of the DRM-Core. It coordinates the requests from
the application layer and forwards them to the appropriate components. It also
contains the error handling such as fail over, treatment of invalid data, error logging
and exception handling.

3.6 License Manager

The core manager implements the interface to the Player and Manager GUI, and
coordinates the management and enforcement of licenses. When the player wants to
decrypt a protected content for a particular action, it sends a request to the core
manager, with a reference to the protected content and the request parameters. This
request contains the rights and the corresponding license, which have to be verified. A
request may also consist of multiple licenses.

Upon request from the player, the DRM Core makes the appropriate query to the key /
license storage, and sends the complete request to the license manager. In this case
the License Interpreter has to verify each license and determine if the right may be
granted over the content.

Depending on the license type, this is performed by the appropriate license
interpreter, generating an internal representation of the license. When the license is
positively authorized, the content key is retrieved from the key storage and returned
to the player with an appropriate player restriction description.

When this player restriction needs to be adapted, or if a license is requested, then the
query is passed to the license translation manager.

3.6.1 License Interpreter

The licenses, that are stored in the sealed storage are in an XML format. Before these
licenses can be interpreted, license parsing needs to be carried out. This process maps
a license into an internal representation suitable for interpretation.

The parsing process takes place in two steps. First, the formal integrity of the received
data is validated, for e.g. XML-formatted licenses this includes schema- or DTD-
validation.

In the second step the authenticity and integrity of the data must be validated. The
most utilized approach is using digital signatures on the license, like XML dsig,
together with X509 based certification chains. To leave the possibility to extend the
concept to new formats, the signature checking uses the utility library as plug-in
architecture for the verification.

After the parsing of the license, the interpretation can be performed. In this process
the internal representation of the license is matched against the operation request
from the player application. The matching returns either a positive or negative result.
A positive result implies that the player application is allowed to decrypt and render
the specified content. However, depending on the license, a positive result may also
include additional restrictions which the player must support and enforce.

The OpenTC license model strives to support the concept of a “fair” DRM system as
well. This means, that the content creator has the possibility to create licenses, that

Open_TC Deliverable D06a.3 13/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

are beneficial not only for the content provider, but also the consumer of a content.

The DRM system is designed in such way, that all participants will be treated equally,
so that every participant can either act like a content consumer or a content provider.
A content provider can use the system to protect his own creation against any misuse.
Nevertheless the content provider can still decide to restrict the usage of the content
in an “unfair” way. This decision isn't based on a technical problem, but rather a
consequence of the business model. In order to have a fair usage of DRM, each
participant has to consider carefully its business model. The business model should
provide different added-value to the user, by granting additional rights to the user. We
foresee the following rights, which would support a “fairer” usage of DRM:

e cCopy
e burn

e sell

With the right to “copy”, the consumer can create a limited amount of private copies.
By transferring these copies, the content can be shared with a small number of
OpenTC devices, which belong to the domain of the user. This domain is defined
beforehand in the license, which contains a specified maximum number of devices
within the domain.

In the same way, the right “burn” grants the user to save the content on a disc. “Sell”
means, that a consumer can sell the content to another user. With these technical
possibilities, the DRM works almost transparently to the consumer.

3.6.2 License Translation Manager

In order to support interoperability between different systems, we propose to include a
license translation system, to support the translation of licenses between different
license description schemes, e.g. Open Mobile Alliance (OMA) REL, Digital Video
Broadcast Content Protection or Content Management DVB-CPCM. This allows content
to be received from or exported to foreign DRM systems or to external devices which
do not support the MPEG-21 REL license format.

This enables a seamless experience for the user, by allowing multimedia content to
easily move between different interoperable systems and devices.

The parsing of the license to be translated is first performed, which creates an internal
representation of the license. This is then handed to the translation engine with the
required translation requirements, such as target license language and profile.

Requirements for the translation system are:
e Element name translation / adaptation
e Restructuring of license elements to a legal structure in the other language
e Contractive translation of unsupported elements

Figure 2 shows the translation between two license languages. Element renaming can
be handled trivially, but restructuring and contractive translation (where an alternative
description must be generated that best matches the original element) of elements
not found in the original language, will require intelligent rules for such
transformation.

Open_TC Deliverable D06a.3 14/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

The proposed solution is to use an expert system architecture to transform a
knowledge representation of the original license into another license language.
Transformation rules can be built to translate the element names, make appropriate
contractive translation of elements which are not found in the target language, and an
output phase which generates the output license in a different structure.

Figure 2: License Translation

3.7 State Management

The State Manager is responsible for managing system and license-related states.
System states are a general framework to access information related to the DRM
system (such as current player capabilities and credentials) and machine-related
parameters (such as time and location). License-related states are used to store
persistent information needed for license interpretation (such as playback counter).

3.8 Sealed storage

The sealed store consists of three parts: the key store, the license store and the user
store.

3.8.1 Key store

A particularly important component of the core is the key store. The key store contains
the keys which are used to access (namely decrypt) the protected content in the
system. The DRM Core ensures that a content key is given out only when a requested
action is allowed by the license. The key store is organized as a table which contains
keys and unique content identifiers. The same identifiers are used in the licenses to
reference content. Respective technologies are part of the MPEG-21 standard. The key
store is implemented as a secure database, which is decrypted by the core when a
secure environment is established. This is done with the help of the TPM, which seals
the key storage master key, so that it can only be accessed when the system is in a
secure state. The core itself is thus only able to retrieve the master key when the
system has not been compromised.

Open_TC Deliverable D06a.3 15/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

3.8.2 License store

As described previously, License Interpretation Manager relies on an internal
representation of licenses. The structure of this Internal license store is similar to the
structure defined in MPEG-21. To speed up the evaluation of licenses by the License
Interpretation Manager, each single syntactic object of a license, namely principal,
digital item, grant and condition, is mapped to a specific internal object representation
that is optimized for the evaluation process. The internal storage offers some basic
search methods on the storage objects for selecting certain items based on different
criteria or for matching two items against each other. The license is also stored in the
secure database, to protect against any unauthorized change to the license outside of
the DRM Core. Regarding the semantic of the stored elements, we strictly use values
from the RDD-Standard issued within the MPEG-21 framework.

3.8.3 User store

The User store contains credentials of the user of the system. This information is
needed to authenticate different consumers and to verify if a consumer is allowed to
access the content. The storage contains an identifier of every user and public/private
key pair for the verification of signatures. The user authentication depends also on the
user management of the underlying operating system, so that the credentials might
change or additional information might be needed.

3.9 Utility library

In order to support an extensible DRM system, a utility library is provided to both the
player application and the DRM Core. This utility library provides a centralized
mechanism in which new tools for decoding, encryption, decryption, signing, and so
on, can be retrieved and made available.

The Player Application can request a decryption tool from the Utility library to be able
to decode the content. The DRM Core may also need cryptographic tools, for signature
verification or self-signing generated licenses (for instance, in the case of license
translation from another DRM system).

The Utility library follows the concept of MPEG-21 IPMP tools, in which tools for specific
functions can be identified and automatically retrieved for the target platform. This
allows the DRM Core and player to support new media (new codecs) and licenses (new
cryptographic tools) when newer tools become available.

An important security aspect is that this utility library itself must be verified
beforehand, and must run within a secured environment. Mechanism to verify the
integrity of the retrieved tools, such as tool signing, must be implemented to ensure
that the tool cannot be modified to introduce security weaknesses.

3.10 OS Services

The necessary OS services required by the DRM Core are secure time, sealing,
compartment measurement, attestation, cryptographic libraries. Secure time
mechanism provides a trustworthy source of time, on which time-related license
conditions can be verified.

Sealing of the license and key stores of the DRM Core, and measurement of the DRM

Open_TC Deliverable D06a.3 16/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

Core compartment should be performed by the OS compartment manager, prior to the
starting of the DRM Core compartment.

Services to aid the attestation of the DRM Core to services on the Internet, such as the
generation of AIK keys, need to be provided by the underlying framework.

Standard cryptographic libraries are also necessary in order to perform decryption and
hash operations as required by the DRM Core and Player application.

Open_TC Deliverable D06a.3 17/27

:“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

4. XEN/LA4 virtualization environment

4.1 Compartment architecture

Hypervisor

kernel kemeL kinell kemel
3:]%2?2 DRM Secure
Core Application
—v>
Sealed
storage
Service Protected Protected Unprotected

Compartment | |[Compartmentl (Compartment2 | Compartment
Figure 3: Virtualization of the DRM Core

In order to take advantage of the secure application isolation provided by the
virtualization framework in OpenTC, higher security can be achieved by separating the
player application and DRM Core into separate compartments. Figure 3 shows virtual
machine partitioning of different components. The DRM Core as described in section 3
runs in a protected compartment, while the OpenTC Player runs in a different
protected compartment. Since the information traffic between the DRM Core and
player is not high, this is not a big performance penalty. The hypervisor, and OS
components such as kernel and drivers are not described in this document.

For the rendering of the content, the player needs access to device drivers/kernel
modules. This access is controlled by security policies which only allows
communication with signed device drivers/kernel modules in the service compartment.
This enforces the secure output path criteria. The DRM Core has access to a secure
storage provided by the service compartment. Sealing is used to encrypt this storage,
such that the DRM Core can only access it when the OS and the DRM Core are not
modified.

Open_TC Deliverable D06a.3 18/27

:“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*
4.2 Interfaces between compartments
Mounted Network
Sealed | directory | pRM RPC Secure
storage Core Application

Figure 4: Interface Chain

A generic way to achieve communication between two compartments is the definition
of a network RPC between them. This form is used for the connection from the secured
application to the DRM Core. The security policy of the channel can be defined via an
interface from the operating system. Furthermore some rules of the license may have
to be applied, e.g. the content may not be rendered at the same time in more than
one player application. XML-RPC [7] is the RPC protocol used in this case, as it
provides a simple implementation as well as widely available cross-platform libraries
for binding with many languages. This RPC interface exposes methods from the

Pl ayer | nterface and Managenent | nterface.

The interface between the DRM Core and secure sealed storage is implicit, in that it is
achieved by mounting secure mount points within the compartment of the DRM Core.
This is controlled by the compartment and device manager in service compartment.
The sealed storage is used for the storage of the licenses and the content keys.

Open_TC Deliverable D06a.3

19/27

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

5. Component Interaction within the DRM system

5.1 Functional parts of the DRM Core

v

Utility Library OpenTC Player Manager GUI

; ; DRM Core

Player Interface ‘ Manager Interface

Core Manager

License
e me— State Manager
Y Y A
Licensg Ligarse Database Manager
Translation [T
Manager I3 o ’m‘
\

Sealed & encrypted
storage

Figure 5: Internal and external components of DRM Core

The DRM Core consists of five key functional parts: The Core Manager, License
Manager, License Translation Manager, State Manager and Database Manager. The
Database Manager is a component that provides the access to the sealed storage.
Figure 5 shows the inter-relations of the different modules.

The Core Manager provides the API's to the user level applications. The Core Manager
is directly connected to the License Manager, the State Manager and the Database
Manager.

The License Manager can process licenses and then decides to which component the
license should be forwarded. If a license shall be interpreted, he uses the License
Interpreter, which parses the license and compares it to a given set of conditions. The
License Translation Manager is used, if a license has to be converted to or from other
DRM-Systems. The Manager can either import or export a license from another
compatible system.

The State Manager contains the current states of the applications and contents. It
monitors all players that are connected to the DRM Core and provides state
information about players, system and digital items.

The Database Manager has a connection to the key store and the license store. The
Core Manager can request specific keys and licenses from the Database Manager,

Open_TC Deliverable D06a.3 20/27

»*

*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

which are then retrieved from the key store or the license store.
5.2 Sequence diagrams
5.2.1 Player API

Figure 6 shows the sequence diagram for interaction between the player and different
components within the DRM Core. The player application first performs an initial

]
=
ful
5
= |
I | |
= rS
=
a
ey
=
=
o
=
Ll
=
i
T
o |] []
o | | | |
=
o
£
|
af
o
b4
]
=
o
=
o
=
z
=] | |
= rS
o
&
z
]
=
n
o
%
£
& @
o =
z =1
= z
] =
E &
o &
1 3]
s 2 |
o
o T
2]
£ o
] g
A o
2
g 5 "
= = s
1 =
o]
T = &
o =
@ o =
=
3 2 b=
= = o
[£
]
i |] 3 |
z + |] J
o
o] i
E. o z
& = 2
2 2 ai
i k] o
=]] o
=] [
5 £ = 2
= = 5 T =
=) = n = =
i o | = — o
= o I o Y
= ol B 2 g
A £l o 5 = eiog|l g
@ gl w om =2 3 e] -1
=1 S
= ol o o & E[#H £ @i
o) = =i 51 5 & @ £ g &
E 2 S 8 £ & & 5 2 g
= o S w5 om @l o= ol og .
& o = = o= E =
B 8 |
= v %
[
= | 5 = 3
b P 4]
Fi I I =
2 = 2
o £
o
=1 2
2 >
o 5 &
k= = <
= S
SN
b] =t 2
] I e S
& 8] & 5 3
'_Q =]
=
2 ! -
o
=]
i
Ei

Figure 6: Sequence diagram for media playback

’*“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

handshake with the DRM Core by reporting its playback capabilities, and receives as a
response a PlayerI D, which the DRM Core uses to identify different players
connected to the core. Upon the player requesting to decrypt a digital item, the core
manager handles the request and calls the appropriate modules within the DRM Core
to process the request. Upon success, the content key is retrieved and returned to the
player.

5.2.2 Management API

The functions of the Management API are processed in a similar way to the ones of the
Player API. The functions called from the Management GUI are processed by the
CoreManager, which passes the parameters to the corresponding component.

5.3 Interaction between different peers

5.3.1 License and Content Key transfer

A license and Content Key has to be transferred, when a content is moved from one
peer to another, e.g. when a content is sold to another user.

The figure shows the sequence diagram of the key and license transfer from user B to
user A.

User A User B

Content Request Certificate

Encrypted Content Key

Signed license

Figure 7: License transfer sequence diagram

In a first step the public key of the user B need to be transferred to user A. This step
can be skipped, if the key of user B can be verified by a certificate hierarchy based on
a trusted root certificate. After that, User A transmits the Content Request Certificate
to User B. The Content Request Certificate contains a public encryption from User A
and a content identifier to request a specific content from User B. The certificate is
signed by User A using an AIK.

User B responds with the Encrypted Content key, that is encrypted with the public key
of user A. User A can decrypt the key and store the key in the key storage of the DRM
core. Then user B transmits the license, which is signed using his private key. User A
verifies the signature and stores the license in the license store. If the transmission
were successful, user B removes the license and the content key from his sealed

Open_TC Deliverable D06a.3 22/27

"“’% AT ¢ D06a.1 Preliminary DRM System Specification FINAL | 1.00
. :é@JIQ [C y y p I

storage.

5.4 Domain Management

The DRM-Core supports the usage of domains, which allow users to share the content
with other platforms. A content can be consumed on every platform, that belongs to
the same domain. The license of the content specifies the maximum number of peers,
that are allowed to join the domain. Every content has an own domain, so each
content can be assigned to any other peer, when the limit of peers has not exceeded.

A peer can act either as a domain controller or as a domain client. The domain
controller manages the domain and controls the number of peers, that joined the
domain. The domain client is a member of the domain, who is able to play the content.

The following figure 8 shows the management of the domain clients. If a domain client
wants to play a content as a domain member, it contacts the domain controller. The
domain controller checks that the number of domain clients is not exceeded. After
that, the domain controller registers the requesting client as a domain member and
generates a domain license for the client. The domain license is a temporary license,
that is issued for the domain client and that is signed by the domain controller. With
this license, the domain client has the permission to play the content as a member of
the domain.

Peer A Peer B
Request Domain License . .
p- Domain Client

Domain License

qu st DOID

Re

Create Domain License

Figure 8: Domain Client Management

Open_TC Deliverable D06a.3 23/27

:“l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

6. Technical Specifications

The technical API specifications is described in a separate companion document
“System APl Specifications”, formatted in a javadoc style. The System API
Specifications describes both external and important internal APl used in the DRM
core.

6.1 External API

The DRM Core exposes 2 main API to the player and management software, namely,
the Playerinterface and Managementinterface. These 2 interfaces are used by the
network backend component of the DRM core, which handles communication between
the core, and the player and management software respectively.

6.2 Internal API

The System API Specifications also specifies important internal APl and classes. This
illustrates the internal structure and organization of the DRM Core.

Open_TC Deliverable D06a.3 24/27

xH
3%
) 2
*

D06a.1 Preliminary DRM System Specification FINAL | 1.00

7. Requirements from other Partners

The secure application is generally a media player that uses the DRM Core-API to
render protected content. The application needs to be secure, because it is allowed to
decrypt the content. To maintain the security of the system, the player application
should run in a separate compartment, whose integrity and authenticity were checked
before its execution.

Furthermore the DRM system expects the presence of an underlying trusted system
and requires the following services from it:

e Secure Environment. The DRM Core and the media player application may
only execute when a secured environment is present. Thus, the underlying
system must provide:

Memory isolation and protection of processes running in the secure
environment.

Secure audio and video output paths to certified (signed) hardware
drivers and/or hardware. No unauthorized application or service
should be able to read from this output path. Optionally cryptographic
protection between the driver and the hardware can also be applied
when supported by the hardware.

A means to measure the integrity of the DRM system and associated
applications. This implies the existence of a method for measuring
applications before they are loaded and executed. (this is implicitly
enforced by the installation policy definition)

e Cryptographic services. The DRM Core requires several cryptographic
services which have to be provided by the underlying system:

A Trusted Software Stack (TSS), supporting AIK generation and
sealing. AIKs are required for authentication/remote attestation
purposes, while sealing is used to lock cryptographic keys to specific
system configurations. The core can thus ensure that content keys
are only accessible when the systems integrity is ensured. (this is
done indirectly by TPA)

Sealed Storage. The DRM Core will use sealed storage for its license
and key databases. (this is implicitly mounted by the domain builder)

A system-wide database of certificates of root certification authorities,
along with services to verify certificates.

e Central policy management. Operation of the DRM Core and the media
player application will be subject to an operation policy. This policy
management would define policy governing communication and management
functions of domains in the OpenTC framework.

Open_TC Deliverable D06a.3 25/27

xH
3%
) 2

*

D06a.1 Preliminary DRM System Specification

FINAL | 1.00

8. Glossary of Abbreviations

Abbreviation Explanation
API Application programming interface
DI Digital Item
DII Digital Item Identifier
DRM Digital Rights Management
DVB-CPCM Digital Video Broadcast — Copy Protection
and Content Management
dsig Digital signature
DTD Document Type Definition
GUI Graphical User Interface
1/0 Input / Output
IPMP Intellectual Property Management and
Protection
MPEG Motion Pictures Experts Group
OMA Open Mobile Alliance
OpenTC Open Trusted Computing
(0 1 Operating System
RDD Rights Data Dictionary
REL Rights Expression Language
TPM Trusted Platform Module
TSS Trusted Software Stack
ucC Use Case
XML Extensible Markup Language

Open_TC Deliverable D06a.3

26/27

% l D06a.1 Preliminary DRM System Specification FINAL | 1.00
*

9. References

[1] MPEG: MPEG-21 Multimedia Framework Part 1: Vision, Technologies and
Strategy. Reference: ISO/IEC TR 21000-1:2004. From ISO/IEC JTC 1.29.17.11.

[2] MPEG: MPEG-21 Multimedia Framework Part 3: Digital ltem Identification.
Reference: ISO/IEC TR 21000-3:2003. From ISO/IEC JTC 1.29.17.03.

[3] MPEG: MPEG-21 Multimedia Framework Part 4: Intellectual Property
Management and Protection Components. Reference: ISO/IEC TR 21000-4. From
ISO/IEC JTC 1.29.17.04.

[4] MPEG: MPEG-21 Multimedia Framework Part 5: Rights Expression Language.
Reference: ISO/IEC FDIS 21000-5:2004. From ISO/IEC JTC 1/SC 29/WG 11.

[5] MPEG: MPEG-21 Multimedia Framework Part 6: Rights Data Dictionary.
Reference: ISO/IEC TR 21000-6:2004. From ISO/IEC JTC 1.29.17.06.

[6] Open Mobile Alliance (2005): DRM Specification Candidate Version 2.0.

http://www.openmobilealliance.org/release program/drm v2 0.html

[7]1 XML-RPC Specification
http://www.xmlrpc.com/spec (Oct 2007)

Open_TC Deliverable D06a.3 27727

*.‘
*.
*

*

[F]=]

Information Society

Technologies

WPO6a Final DRM system specification
Companion document: System API Specification

Project number
Project acronym
Project title
Deliverable type

IST-027635

Open_TC

Open Trusted Computing
Internal document

Deliverable reference number
Deliverable title

WP contributing to the deliverable
Due date
Actual submission date

IST-027635/D06a.3/FINAL | 1.00

D6a.3 Final System Specification:
System API Specification

WP6
Oct 2007
Oct 2007

Responsible Organisation

LDV,Lehrstuhl fur Datenverarbeitung, TUM

Authors Chun Hui Suen, Florian Schreiner
Abstract
Keywords DRM, fair, interoperable, MPEG-21
Dissemination level Public
Revision FINAL | 1.00
Start date of the ot
Instrument IP project 1 November 2005
Thematic Priority IST Duration 42 months

Table Of Content

ManNageMENLINIEITACE.u i e e et e e e e et e e e e e e et e e e e e eanaan s 3
e 2 YA L1 (Y 7= Lo =P 6
DOoMaINCHENTINIEITACEcevvi e e e e e e e et e e e e e et e e e e e e aaaaaas 7
] 0] = = T 1= oSS 8
o7 = 0 FST = 1Y F= T = T 1= PSP 10
ot = FST =Y = T F= T L= o [0 1 o PSP 12
TN ST 0] (=] (= o LY =T = o = RSP 13
Y] od S YA N Y (=T 0T (= PP UPPRTP 14
Y £ 1 (=AY =Y = (6 [PP UPPN 15
de.tum.|dV.OpPEeNtC.MANAGEI.COMEccceeeeeeeeeitiiieie e e e e e e e e e e e e e eeeae et a e e e e eeaeeaaeeeeessssssnnraaeaeaaaaees 16
L7011/ =T F= T [T PPN 17
de.tum.|dV.OPENIC. MANAGEI.USENccceeeeeeeeeitiieeas e e e e e e eeeeeeeeeeesaeraa e e e eeaeaeaaeeeeeesssnsnnnaaaaaaeaeaaees 20
O LT PPN 20
L ST 11V =V = T [20
de.tum.ldv.opentC.MaNAQEI.ULIluuuiiiiiiiiiii e e e e e e e e e e e e e aeees 22
Y 1 T | RPN 22
0] 11 PP 23
(o LS (8 10 01 [0 AV o Y=Y 01 (o 0 0o Yo (= PRSP 25
CoreAssigNedRANUOMKEYiiiiiiiiii e e e e e et e e e e e et e e e e e e ara e e e eeennaans 25
TS o [T 0 1T PSP 26
10 PPN 27
LC=Y 001 0 T 0 1T USSP 28
HS 010 Y = 1P 28
B ettt ettt ettt e e e e e e et eeeeeeeeeeeeeeea— e aaaeaeaeeeteerrrr———————— 30
o = 0 S = USSP 32
MPEAZ2LRENot e e e e e e e e e e e e e e e et e e e aaaaaaeeee e —————— 33
== 1 [0 =Y 011 34
= 34
R STSY 03 (=Y | = 35
o LSRN0 [0 LYo 01T a] (ol 100 o (=) = S 37
oY N 0 1 o 10 o P 37
License AuthorizatioNFAIled.cooviiiieiiiii e e e e e e 38
AT B Tod =Y oY= 1 1o U 38
(@] (o (= o1 1[0 o 39
de.tum.ldv.opentC.MOAELSIALE.cuveii e e e e e e e e e e e e e e e e e raa e eaeees 40
=T T0 [T T = L 40
e P2 L=] =1 =SSR 40

) A1 (] 11T = L (< U UPPPPTT 42

Interface Managementinterface

< Methods >

public interface Managementinterface

This class provides a second external interface for administrative functions to the DRM Core, such as
license management and controlling attestation.

Author:
chunhui

createDomainLicense

public License createDonninLi cense(Manager St at e nmanager St at e,
Peerldentity partner,
Itemitem

Request for a domain license from this core. This is usually requested from a domain member to
the the target DRM core to issue a license for the client.

Parameters:

managerState - state returned during initialization
item - Digital item in question.
partner - target(principal) of new license

Returns:
A transferable license.

createTransferLicense

public License createTransferLi cense(Manager St at e nanager St at e,
Peerldentity partner,
ltemitem
bool ean del et eSour ce)

Initiate a license transfer to an external peer.
Parameters:

managerState - state returned during initialization

item - Digital item in question.

partner - target(principal) of new license

deleteSource - This simultaneously removes the content key and license from the local
DRM core

Returns:
A transferable license.

deleteLicense

public License del et eLi cense(Manager St at e nanager St at e,
Li cense itenlicense)

Generate a license indicating that the particular license of an item has been removed from the
local DRM core. It returns a deauthorization notice, which is a REL prove signed by the core, that
the license has been removed.

Parameters:

managerState - state returned during initialization
itemLicense - license to deauthorize

Returns:
deauthorization notice license

getAllLicenses

public java.util.List getAllLicenses()

Dump all licenses. (Used as a management feature to view all licenses stored in the DRM Core.
Returns:
All XML licenses in the DRM Core.

getAttestationKey

public Key getAttestati onKey(Manager St at e nanager St at e,
Rel rel Type,
java.lang. String server URL)

Obtain an attestation key to be used for downloading content.
Parameters:

managerState - state returned during initialization

playerID - same ID as given by the Core during @method playerlnit
relType - REL language used.

serverURL - URL of the server to obtain license.

Returns:
an attestation key to be used for downloading content

getLicense

public java.util.List getLi cense(ManagerState nanager St at e,
Itemitem

Obtain license for a particular item.
Parameters:

managerState - state returned during initialization
item - Digital item in question.

Returns:
All XML license related to the specified digital item.

getLocalldentity

public Peerldentity getLocal | dentity(MnagerState nanager State)

Get identity of local DRM core
Parameters:

managerState - state returned during initialization
Returns:

peer identity

insertLicense

public void insertlLicense(Manager St ate manager St at e,
Li cense |i cense,
[temitem

Insert license into database.
Parameters:

license - license to be inserted.
item - The digital item associated with the license.

managerinit

publ i c Manager State managerlnit(java.lang. String userl D)

Initialize a connection to the management interface
Returns:
ManagerState object

signGeneratedLicense

public License signGeneratedLi cense(Manager St at e manager St at e,
Li cense unsi gnedLi cense,
[temitem
Cor eAssi gnedRandonKey key)

Request the DRM core to sign an application generated license (in the case of application
generated content).

Parameters:

managerState - state returned during initialization

unsignedLicense - application generated license

item - item reference

key - an empty CoreAssignedRandomKey Object. The actual key will be generated by the

core and stored
Returns:
signature for license

Interface Playerinterface

< Methods >

public interface Playerinterface

This class provides the main external interface to the OpenTC player.

getDecryptionKey

public Key getDecryptionKey(Pl ayer St ate player State,
[temitem
java.lang. Stri ng operation)

Main method to request for a decryption key for media playback.
Parameters:

playerState - same state as given by the Core during @method playerlinit
item - Digital item to be played
operation - Operation requested on item

Returns:
Content decryption key if successful

getSupportedREL

public java.util.List getSupportedREL()

Get a list of supported REL languages on this DRM core
Returns:
List of supported REL languages

playerinit

public PlayerState playerlinit(java.lang.String playerCapabilities,
java.lang. String userlD)

Initialization method called by the player
Parameters:

playerCapabilities - XML capabilities description of the player
Returns:

a player state referencing this session with the player

Interface DomainClientinterface

< Methods >

public interface DomainClientinterface
Interface for domain clients.

Author:
chunhui

attachDomainController

public void attachDomai nController(java.lang.String url)

Attach a new domain controller
Parameters:
url - URL of the new domain controller

dettachDomainController

public void dettachDomai nController(java.lang.String url)

Dettach a new domain controller
Parameters:
url - URL of the new domain controller

getAttachedDomainURLSs

public java.util.LinkedLi st getAttachedDomai nURLS()

Get a list of all domains associated with this DRM Core.
Returns:
List of name of all domains.

requestDomainLicense

public java.util.List requestDonmainLi cense(ltemitemn

request a license from the domain controller.
Parameters:
item - Digital item in question.
Returns:
All XML licenses related to the specified digital item.

returnDomainLicense

public void returnDomai nLi cense(java.lang. String url,
Li cense lic)

Send a deauthorization license of a license deleted from the local DRM core, back to the domain
controller. param url Domain controller param lic deauthorization license

Interface DbManager

< Methods >

public interface DbManager

Interface to the database engine.

Author:
chunhui

deleteLicense

public void del etelLicense(ltemiten)

Delete all licenses related to a digital item.
Parameters:
item - Digital item

getDecryptionKey

public Key getDecryptionKey(Ltemitem

Get the content decryption key for a digital item.
Parameters:

item - Digital item
Returns:

content decryption key

getltemState

public ltenfState getltenState(ltemiten

Get the item state of a digital item.
Parameters:

item - Digital item
Returns:

Item state

getLicense

public java.util.List getLicense(ltemitem

Get all licenses related to a digital item.
Parameters:

item - Digital item.
Returns:

All related licenses.

setLicense

public void setlLicense(ltemitem
Li cense license)

Store a license and item state linked to a digital item.
Parameters:

item - Digital item
license - license
state - item state

setState

public void setState(ltemitem
ItenfState state)

Store the item state linked to a digital item, without changing its license.
Parameters:

item - Digital item
state - item state

Interface LicenseManager

< Methods >

public interface LicenseManager
Interface to the license manager. This is the manager which

Author:
chunhui

getSupportSourceLanguage

public Rel getSupport SourcelLanguage()

Get supported REL language which can be parsed.
Returns:
REL language

getSupportTargetLanguages

public java.util.List getSupport Target Languages()

Get supported REL languages which can be generated during a license translation.
Returns:

List of REL languages

interpretLicense

public java.lang. String interpretLicense(java.util.List |icenseG oup,
[temitem
java.lang. String operation)
throws O cException

Authorize an operation performed on a digital item, based on the group of licenses
Parameters:

licenseGroup - List of licenses
item - digital item
operation - operation

Returns:
REL restriction for the operation

Throws:
de.tum.ldv.opentc.model.ex.OtcException -

translateLicense

public License transl atelicense(License sourcelicense,
Rel targetLicenselLang,
java.lang. String targetRestrictions)

Translates a license from one REL language to another.
Parameters:

sourcelLicense - input license
targetLicenselLang - target REL language
targetRestrictions - translation restrictions.

Returns:
translated license

Class LicenseManagerimpl

j ava. |l ang. Qbj ect
+--de.tum | dv. opent c. manager . | i cense. Li censeManager | npl

All Implemented Interfaces:
LicenseManager

< Constructors > < Methods >

public class LicenseManagerimpl
extends java.lang.Object
implements LicenseManager

Constructors

LicenseManagerimpl

public LicenseManager!| npl ()

getSupportSourceLanguage

public Rel getSupport SourcelLanguage()

getSupportTargetLanguages

public java.util.List getSupport TargetLanguages()

interpretLicense

public java.lang. String interpretLi cense(java.util.List |icenseG oup,
ltemitem
java.lang. String operation)

translateLicense

public License transl atelicense(License sourcelicense,
Rel targetlLicenselLang,
java.lang. String targetRestrictions)

Interface Interpreterinterface

< Methods >

public interface Interpreterinterface
Interface to REL interpreter

Author:
chunhui

getSupportedinterpretedLanguages

public java.util.List getSupportedlnterpretedLanguages()

Return the list of supported languages this interpreter can parse.
Returns:
List of REL languages

getSupportedSourceLanguage

public Rel get SupportedSourcelLanguage()

Return the supported language this interpreter can parse.
Returns:
List of REL languages

interpretLicense

public java.lang. String interpretLicense(java.util.List |icenseG oup,
Iltemitem
ItenfState state,
Systenftate system
java.lang. String operation)

Authorize an operation on a digital item, given a group of licenses, iten state and system state.
Parameters:

licenseGroup - List of licsenses
item - Digital item

state - Item state

system - System state

operation - Operation on digital item

Returns:
REL restriction of operation

Class MPEG21lInterpreter

j ava. |l ang. bj ect
+--de.tum | dv. opentc. manager.|icense.interpreter. MPVEQLI nterpreter

All Implemented Interfaces:
Interpreterinterface

< Constructors > < Methods >

public class MPEG21Interpreter
extends java.lang.Object

implements Interpreterinterface

Constructors

MPEG21lInterpreter

public MPER21lInterpreter()

getSupportedinterpretedLanguages

public java.util.List getSupportedlnterpretedLanguages()

getSupportedLanguage

publ i c Rel get SupportedLanguage()

getSupportedSourceLanguage

public Rel get SupportedSourcelLanguage()

interpretLicense

public java.lang. String interpretLi cense(java.util.List |icenseG oup,
[temitem
|tenft at e stat e,
Systenftate system
java.lang. String operation)

Interface StateManager

< Methods >
public interface StateManager
State manager

Author:
chunhui

checkCurrentUse

public int checkCurrentUse(ltemitem
java.lang. String operation)

Check current operation count
Parameters:

item - digital item
operation - operation on item

Returns:
current count of operation

checkLimit

public int checkLimt(ltemitem
java.lang. String operation)

Check limits of counter
Parameters:

item - digital item
operation - operation on item

Returns:
maximum count of operation

countUse

public int countUse(ltemitem
java.lang. String operation)

Increment counter for operation on digital tiem
Parameters:

item - digital item
operation - operation on item

Returns:
current count

Package de.tum.ldv.opentc.manager.core

Class Summary

CoreManager

The CoreManager coordinates the requests from the application layer and forwards them to the
appropriate components.

de.tum.ldv.opentc.manager.core

Class CoreManager

j ava. |l ang. Qbj ect
+--de.tum I dv. opent c. manager . cor e. Cor eManager

All Implemented Interfaces:
Managementlnterface, Playerinterface

< Constructors > < Methods >

public class CoreManager
extends java.lang.Object
implements Managementinterface, Playerinterface

The CoreManager coordinates the requests from the application layer and forwards them to the
appropriate components. It implements the Managerinterface and Playerinterface

Author:
chunhui

Constructors

CoreManager

public CoreManager (java.lang. String |ocalldentity)

addDomainController

public void addDomai nControl | er (Manager St at e manager St at e,
java.lang. String url)

createDomainLicense

public License createDonmainLi cense(Manager St at e nmanager St at e,
Peerldentity partner,
Itemitem

createTransferLicense

public License createTransferLi cense(Manager St ate nanager St at e,
Peerldentity partner,
Iltemitem
bool ean del et eSour ce)

deleteLicense

public License del et eLi cense(Manager St at e nanager St at e,
Li cense itenlicense)

getAllLicenses

public java.util.List getAllLicenses()

getAttestationKey

public Key get AttestationKey(Manager State ngr State,
Rel rel Type,
java.lang. String server URL)

getDecryptionKey

public Key getDecryptionKey(Pl ayer St ate player Stat e,
ltemitem
java.lang. Stri ng operation)

getLicense

public java.util.List getLi cense(ManagerState ngrState,
Itemitem

getLocalldentity

public Peerldentity getLocal | dentity(MnagerState nanager State)

getSupportedREL

public java.util.List getSupportedREL()

insertLicense

public void insertLi cense(Manager State ngrState,
Li cense lic,
Itemitem

managerinit

publ i c Manager St at e managerlnit(java.lang. String userlD)

playerinit

public PlayerState playerlnit(java.lang.String playerCapabilities,
java.lang. Stri ng userl D)

removeDomainController

public void renoveDomai nCont rol | er (Manager St at e nanager St at e,
java.lang. String url)

signGeneratedLicense

public License signGeneratedLi cense(Manager St at e manager St at e,
Li cense unsi gnedLi cense,
[temitem
Cor eAssi gnedRandonKey key)

Package de.tum.ldv.opentc.manager.user

Class Summary

User

UserManager

de.tum.ldv.opentc.manager.user

Class User

j ava. |l ang. Qbj ect

+--de.tum | dv. opent c. manager . user. User

< Constructors > < Methods >

public class User
extends java.lang.Object

Constructors

User

public User(java.lang.String UserlD)

getUserName

public java.lang. String get User Name()

de.tum.ldv.opentc.manager.user

Class UserManager

j ava. |l ang. Obj ect

+--de.tum | dv. opent c. manager . user . User Manager

< Constructors > < Methods >

public class UserManager
extends java.lang.Object

Constructors

UserManager

public User Manager ()

addUser

public User addUser(java.lang. String userlD)

listUsers

public java.util.List listUsers()

removeUser

public void renoveUser (User userQbj)

Package de.tum.ldv.opentc.manager.util

Interface Summary

IPMPTool
Interface for IPMP tool

Class Summary

1:|

Class to manage all IPMP tools in the system

de.tum.ldv.opentc.manager.util

Interface IPMPTool

< Methods >

public interface IPMPTool
Interface for IPMP tool

Author:
chunhui

getDescription

public java.lang. String getDescription()

Get tool description
Returns:
tool description

getName

public java.lang. String get Nane()

Get String name of this tool
Returns:
Name of tool

process

public java.lang. Object process(ltemitem
j ava. | ang. Cbj ect obj)

"Action" method of this tool to process a target object
Parameters:

item - Digital item to be processed
obj - processing parameter object

Returns:
result object

de.tum.ldv.opentc.manager.util

Class Ipmp

j ava. |l ang. Obj ect

+--de.tum | dv. opentc. manager. util .| pnp

< Constructors > < Methods >

public class Ipmp
extends java.lang.Object

Class to manage all IPMP tools in the system

Author:
chunhui

Constructors

lpmp

public 1pnp()

getTools

public static java.util.List getTool s()

Get a particular tool based on a string search
Parameters:

toolDescription -
Returns:

list of IPMP objects registered as IPMP tools

Package de.tum.ldv.opentc.model

Interface Summary

ltemIdentifier

Class Summary
CoreAssignedRandomKey

Int32ldentifier

te

Reference to a digital Item.

[temState
Item state object

Key
Generic Key object

License
License object

Mpeg21Rel

Peerldentity

|:U
@

REL language type

RestrictedKey
Content key with an associated usage restriction

de.tum.ldv.opentc.model

Class CoreAssignedRandomKey

j ava. |l ang. Qbj ect

+- - Key
I
+--de.tum | dv. opent c. nodel . Cor eAssi gnedRandonKey

< Constructors >

public class CoreAssignedRandomKey
extends Key

Constructors

CoreAssignedRandomKey

public CoreAssi gnedRandonKey(int | ength,
int kType)

de.tum.ldv.opentc.model

Class Int32ldentifier

j ava. |l ang. Qbj ect
+--de.tum | dv. opent c. nodel . I nt 32| denti fi er

All Implemented Interfaces:
Itemldentifier

< Constructors > < Methods >

public class Int32ldentifier
extends java.lang.Object
implements Itemldentifier

Constructors

Int32ldentifier

public Int32ldentifier(int id)

equal

public bool ean equal (ltem dentifier item

getint32ID

public int getlnt321D()

toString

public java.lang. String toString()

Overrides:
toString in class java.lang.Object

de.tum.ldv.opentc.model

Class Item

j ava. |l ang. Qbj ect

+--de.tum |l dv. opentc. nodel . Item

< Constructors > < Methods >

public class Item
extends java.lang.Object

Reference to a digital Item.

Author:
chunhui

Constructors

ltem

public Item(ltemdentifier id)

Constructor
Parameters:
id - ID of this item.

getiD

public Item dentifier getlD)

Read the ID of this item.
Returns:
ID of item

de.tum.ldv.opentc.model

Interface Itemldentifier

< Methods >

public interface Itemldentifier

equal

public bool ean equal (ltem dentifier item

toString

public java.lang. String toString()

Overrides:
toString in class java.lang.Object

de.tum.ldv.opentc.model

Class ltemState

j ava. |l ang. Qbj ect

+--de.tum |l dv. opentc. nodel . I tenfst at e

< Constructors > < Methods >

public class ItemState
extends java.lang.Object

Item state object

Author:
chunhui

Constructors

[temState

public ItentState(ltenm dentifier iteml|D)

Constructor
Parameters:
item_ID -

getitemID

public |temdentifier getltem D()

Get digital item 1D
Returns:
Item ID

getStateProperty

public java.lang. Qbj ect getStateProperty(java.lang. String key)

Get Item state property
Parameters:

key -
Returns:

stored value

setStateProperty

public void setStateProperty(java.lang. String key,
j ava. |l ang. Qbj ect dat a)

Set Item state property
Parameters:

key -
data -

de.tum.ldv.opentc.model

Class Key

j ava. |l ang. Obj ect

+--de.tum | dv. opent c. nodel . Key

Direct Known Subclasses:
CoreAssignedRandomKey, RestrictedKey

< Fields > < Constructors > < Methods >

public class Key
extends java.lang.Object

Generic Key object

Author:
chunhui

AES TYPE

public static final int AES TYPE

Constructors

Key

public Key(int |ength,
int kType,
byte[] key)

Constructor

Parameters:

length - number of bytes
kType - key type
key - byte array of key data

Key
public Key(int |ength,
int kType,
java.lang. String keyl nHex)
Constructor
Parameters:

length - number of bytes
kType - key type
key - String of key data in hexadecimal string notation

getKType
public int getKType()

Get key type
Returns:

key type

getKey

public byte[] getKey()

Get key data
Returns:
byte array of key

getLength

public int getLength()

get length of key
Returns:
length of key

de.tum.ldv.opentc.model

Class License

j ava. |l ang. Qbj ect

+--de.tum | dv. opent c. nodel . Li cense

< Constructors > < Methods >

public class License
extends java.lang.Object

License object

Author:
chunhui

Constructors

License

public License(Rel rel,
java.lang. String text)

Constructor
Parameters:

rel - REL language type
text - String of license

getRel

public Rel getRel ()

Get REL language type
Returns:
REL language type

getText

public java.lang. String get Text()

Get string text of license
Returns:
license string

de.tum.ldv.opentc.model

Class Mpeg21Rel

j ava. |l ang. Qbj ect
+-Rel

I
+--de.tum | dv. opent c. nodel . Mpeg21Rel

< Constructors > < Methods >

public class Mpeg21Rel
extends Rel

Constructors

MpegZ21Rel

public Meg21lRel ()

getMpeg21Rel

public static Rel getMeg2lRel ()

de.tum.ldv.opentc.model

Class Peerldentity

j ava. | ang. Qoj ect

+--de.tum | dv. opent c. nodel . Peerl dentity

< Constructors >

public class Peerldentity
extends java.lang.Object

Constructors

Peerldentity

public Peerldentity()

de.tum.ldv.opentc.model

Class Rel

j ava. |l ang. Qbj ect

+--de.tum | dv. opent c. nodel . Rel

Direct Known Subclasses:
Mpeg21Rel

< Constructors > < Methods >

public abstract class Rel
extends java.lang.Object

REL language type

Author:
chunhui

Constructors

Rel

public Rel ()

getName

public java.lang. String get Nane()

Get name of this REL type
Returns:
REL name

de.tum.ldv.opentc.model

Class RestrictedKey

j ava. |l ang. Obj ect

+- - Key

+--de.tum | dv. opentc. nodel . Restri ct edKey

< Constructors > < Methods >

public class RestrictedKey
extends Key

Content key with an associated usage restriction

Author:
chunhui

Constructors

RestrictedKey

public RestrictedKey(Key k,
java.lang. String usageRestriction)

Construction
Parameters:

k - normal key object
usageRestriction - Usage restriction in REL description

getUsageRestriction

public java.lang. String getUsageRestriction()

get usage restriction
Returns:
Usage restriction String

Package de.tum.ldv.opentc.model.ex

Class Summary

KeyNotFound

LicenseAuthorizationFailed

NoLicenselnCore

OtcException

de.tum.ldv.opentc.model.ex

Class KeyNotFound

j ava. |l ang. Qbj ect
+--j ava. | ang. Thr owabl e
+--java. |l ang. Excepti on

+- - O cException

+--de.tum | dv. opent c. nodel . ex. KeyNot Found

All Implemented Interfaces:
java.io.Serializable

< Constructors >

public class KeyNotFound
extends OtcException

Constructors

KeyNotFound

public KeyNot Found()

de.tum.ldv.opentc.model.ex

Class LicenseAuthorizationFailed

j ava. |l ang. Obj ect
+--java. | ang. Thr owabl e
+--java. |l ang. Excepti on

+- - O cException

+--de.tum | dv. opent c. nodel . ex. Li censeAut hori zati onFai | ed

All Implemented Interfaces:
java.io.Serializable

< Constructors >

public class LicenseAuthorizationFailed
extends OtcException

Constructors

LicenseAuthorizationFailed

public LicenseAuthorizationFail ed(java.lang. String reason)

de.tum.ldv.opentc.model.ex

Class NoLicenselnCore

j ava. | ang. Qoj ect

+--j ava. |l ang. Thr owabl e

+--java. |l ang. Excepti on

+- - O cException

+--de.tum | dv. opent c. nodel . ex. NoLi censel nCor e

All Implemented Interfaces:
java.io.Serializable

< Constructors >

public class NoLicenselnCore
extends OtcException

Constructors

NoLicenselnCore

public NoLicensel nCore()

de.tum.ldv.opentc.model.ex

Class OtcException

j ava. |l ang. Qbj ect

+--java. |l ang. Thr owabl e

+--java. | ang. Excepti on
+--de.tum | dv. opent c. nodel . ex. O cExcepti on

All Implemented Interfaces:
java.io.Serializable

Direct Known Subclasses:
KeyNotFound, LicenseAuthorizationFailed, NoLicenselnCore

< Constructors >

public class OtcException
extends java.lang.Exception

Constructors

OtcException

public O cException()

Package de.tum.ldv.opentc.model.state

Class Summary

ManagerState

PlayerState
State associated with a connected media player

SystemState
Sytem states in DRM core.

de.tum.ldv.opentc.model.state

Class ManagerState

j ava. |l ang. Qbj ect

+--de.tum | dv. opent c. nodel . st at e. Manager St at e

< Constructors >

public class ManagerState
extends java.lang.Object

Constructors

Manager State

public Manager State()

de.tum.ldv.opentc.model.state

Class PlayerState

j ava. |l ang. Obj ect

+--de.tum I dv. opent c. nodel . state. Pl ayer Stat e

< Constructors > < Methods >

public class PlayerState
extends java.lang.Object

State associated with a connected media player

Author:
chunhui

Constructors

PlayerState

public PlayerState(int playerld,
java.lang. String playerCapabilities)

Constructor
Parameters:

playerld - ID given by initialization.
playerCapabilities - player capabilities

PlayerState

public PlayerState(java.lang.String playerCapabilities)

Constructor. playerlID is automatically assigned in increasing sequence.
Parameters:
playerCapabilities - player capabilities

getPlayerCapabilities

public java.lang. String getPl ayer Capabilities()

Get player capabilities.
Returns:
player capabilities

getPlayerld

public int getPlayerld()
get player ID.
Returns:

player ID

getProperty

public java.lang. String getProperty(java.lang. String key)

Get property of player state
Parameters:

key - key of property
Returns:

data of stored property

setProperty

public void setProperty(java.lang. String key,
java.lang. String data)

Set property into player state.
Parameters:

key - key of property
data - data of property

de.tum.ldv.opentc.model.state

Class SystemState

j ava. | ang. bj ect

+--de.tum | dv. opentc. nodel . st ate. Syst enfst at e

< Constructors > < Methods >

public class SystemState
extends java.lang.Object

Sytem states in DRM core.

Author:
chunhui

Constructors

SystemState
public Systenttate()

getState

public static Systenfstate get State()

get system state.
Returns:
system state

getSystemDate

public java.util.Date get SystenDate()

Get system date.
Returns:
system date

INDEX

A

addDomainController ... 17
addUser ... 21
attachDomainController ... 7
AES TYPE ... 30

checkCurrentUse ... 16
checkLimit ... 16

countUse ... 16
createDomainlicense ... 3
createDomainLicense ... 17
createTransferLicense ... 3
createTransferlLicense ... 18
CoreAssignedRandomKey ... 25
CoreAssignedRandomKey ... 26

CoreManager ... 17
CoreManager ... 17

deletelicense ... 4
deletelicense ... 9
deletelicense ... 18
dettachDomainController ... 8

DbManager ... 8
DomainClientInterface ... 7

equal ... 26
equal ... 28

G

getAllLicenses ... 4

getAllLicenses ... 18
getAttachedDomainURLs ... 8

getAttestationKey ... 4
getAttestationKey ... 18
getDecryptionKey ... 6
getDecryptionKey ... 9
getDecryptionKey ... 18
getDescription ... 22
getiD ... 28

getint32ID ... 27
getltemlID ... 29
getltemState ... 9
getKey ... 31

getKType ... 31
getlLength ... 32
getlLicense ... 5
getlicense ... 9
getlicense ... 18
getlocalldentity ... 5
getLocalldentity ... 19
getMpeg21Rel ... 34

getName ... 22
getName ... 35

getPlayerCapabilities ... 41
getPlayerld ... 41
getProperty ... 42

getRel ... 33

etState ... 43
getStateProperty ... 29

getSupportedinterpretedLanguages ...
getSupportedinterpretedl anguages ...

getSupportedLanguage ... 15
getSupportedREL ... 7
getSupportedREL ... 19
getSupportedSourcelLanguage ... 13
getSupportedSourcel anguage ... 15
getSupportSourceLanguage ... 10

getSupportSourceLanguage ... 12
getSupportTargetLanguages ... 11

getSupportTargetLanguages ... 12
getSystemDate ... 43

getText ... 33
getToals ... 24

getUsageRestriction ... 36
getUserName ... 20

13
15

K

M

N

O

insertLicense ... 5
insertLicense ... 19

interpretlicense ... 11
interpretlicense ... 12
interpretlicense ... 14

interpretlicense ... 15
Int32ldentifier ... 26

Int32Identifier ... 26

Interpreterinterface ... 13
Ipmp ... 23

Ipmp ... 23
IPMPTool ... 22

ltem ... 27

ltem ... 27
Iltemldentifier ... 28
ltemState ... 28
ItemState ... 29

Key ... 30
Key ... 31
Key ... 31

KeyNotFound ... 37
KeyNotFound ... 37

listUsers ... 21
License ... 32
License ... 32

LicenseAuthorizationFailed ...

LicenseAuthorizationFailed ...

LicenseManager ... 10

LicenseManagerimpl ... 12
LicenseManagerimpl ... 12

managerlnit ... 5
managerlnit ... 19

Managementlinterface ... 3

ManagerState ... 40

ManagerState ... 40
MPEGZ?21lInterpreter ... 14

MPEGZ?21lInterpreter ... 14
Mpeg21Rel ... 33
Mpeg21Rel ... 33

NoLicenselnCore ... 38
NoLicenselnCore ... 39

OtcException ... 39
OtcException ... 39

38
38

P

R

S

T

U

playerlnit ... 7
playerlnit ... 19
process ... 23

Peerldentity ... 34
Peerldentity ... 34
Playerinterface ... 6
PlayerState ... 40
PlayerState ... 41
PlayerState ... 41

removeDomainController
removeUser ... 21
requestDomainLicense ...
returnDomainLicense ... 8
Rel ... 34

Rel ... 35

RestrictedKey ... 35
RestrictedKey ... 36

setLicense ... 10

setProperty ... 42
setState ... 10
setStateProperty ... 30
signGeneratedLicense ...
signGeneratedLicense ...
StateManager ... 15
SystemState ... 42
SystemState ... 42

toString ... 27
toString ... 28

translateLicense ... 11
translateLicense ... 13

User ... 20
User ... 20
UserManager ... 20
UserManager ... 21

.. 19

8

19

BUE

Information Society

Technologies

WPO06b.2 MEITC Specification and Test Plan

Project number
Project acronym
Project title
Deliverable type

IST-027635

Open_TC

Open Trusted Computing
Deliverable

Deliverable reference number
Deliverable title
WP contributing to the deliverable

IST-027635/D6b.2/ Final / 1.00
WP06b.2 MEITC Specification and Test Plan
WP 6

Due date Oct 07
Actual submission date 28 Oct 07
Responsible Organisation TUBITAK

Authors Gorkem Cetin, Kadir imamoglu, Volkan Erol
Abstract This internal deliverable is the specification
and test plan for MEITC system
Keywords
Dissemination level Public
Revision
Start date of the ..
Instrument IP project 1%* November 2005
Thematic Priority |[ST Duration 42 months

:“l D6b.2 MEITC Specification and Test Plan
*

Table of Contents

B A 1 o o Yo [Tt (o o PP 3
I U T o = T 3
1 Yol o] o 1= PP 3
1.3 Definitions, acronyms, and abbreviations...........coooiiiiiiiic 4

1.3,] DefiNitiONS. et 4
I 7 ol 0] 01/ 0 1 PP 4
S U =] /=] o Lol < PP 4
S T O 1T VT PP PR PPTPRPRN 4

2 OVErall DS O P ON. ittt 4

2.1 ProdUCE PeISPECHIVE. ...ttt et 4
2.1.1 SYStemM INEEI ACES. . e 5
2.1.2 USEr INEeI aCS. i ittt 5
2.1.3 HardwWare iINteraCeS. . i e e aas 5
2.1.4 SO ftWaAre INTEIaCES. . it 6
2.1.5 Communications iINTEITaCES.iiiiiii i 6
2.1.6 MemOry CONSEIAINES. . .cunie e 7
2 R A © T 1= = 1 o o o 1 7

2.2 ProduCt fUNCHIONS. . .u i a e 8

2.3 UsSer CharaCleriStiCS. . i e 8

2.4 Assumptions and dePeNAENCIES........iuiir i 9

3 Use Cases and SpecCifiC reqUIr@mMENtS.ccu i e 9
3.1 EXternal INEer aCeS. e 9
I U LY S G- 1] =L PP PRPRR 10
3.3 Performance reqUIrEMENTS.ttt e e e eans 27
I B T T Y Lo o I a0 1 o =Y 1 L P 27

3.4.1 Standards COMPIANCE. ... e 27
3.5 Software System AttriDULES.ooe 28
3.5.1 Reli@bility.cuceie e 28
3.5.2 AVaAIlabDilitY e 28
S T B =Tl U L 1 x2S 28
3.5.4 Maintainability . ..o 28
3.5.5 POrtability ..o e 28

T =TS o o] = | o T PP 28

5 AppendiX - 1 i DefinitioNS. ..o 29

(SN o] o1=] aTe | D QA Vel o1 01V o 0 =T PP P TR 29

List of figures

Figure 1:The general structure of the MEITC and communications among MEITC
(a0 0 0T oo 1=y o | = PP 8
Figure 2:Architecture of the MEITC system......ccoiiiiiiii e 10

Internal document 2/31

D6b.2 MEITC Specification and Test Plan

*)Ht
=

1 Introduction

1.1 Purpose

The purpose of this document is to describe the Software Requirement Specifications
(SRS), the use cases and test plan of the Message Exchange Infrastructure for Trusted
Computing (MEITC) system which is a sub-workpackage of the Open Trusted
Computing (Open TC) project to be developed by TUBITAK-UEKAE. Open TC is a
European Union Sixth Framework Programme Project which was started after the FP6
IST4 call.

1.2 Scope

The system developed will be a fully secure message exchange infrastructure for
Linux Operating System by using the Trusted Platform Module (TPM) and the Trusted
Software Stack (TSS), built over a virtualization layer. This infrastructure will ensure
confidentiality, authentication, non-repudiation and data integrity on the installed
base. In this document, the functionality and system requirements specifications of
the MEITC's five base components also will be defined. These five base components
are the following.

MEITC Database Server

MEITC Mail Server

MEITC Web Server

MEITC Trusted Log Server

MEITC Certificate Service Provider

MEITC Database Server: A database server will host users' mailboxes. All e-mail
headers, user information and quota information will be kept in this database.

MEITC Mail Server: This component will handle all the e-mail traffic and it will use
the Trusted Log and the Certificate Service Provider (CSP) to implement the security
services for the messages, namely, integrity checking and non-repudiation.

MEITC Web Server: This component will be the front-end for users and the system
administrators. Users and system administrators of MEITC will connect to this web
server via their web based browsers to compose or read e-mail messages.

MEITC Trusted Log Server: This component guarantees the integrity checking of e-
mails and also the non-repudiation: it holds a record for each e-mail that includes data
about the message (i.e. the sender and the recipient addresses, etc.), the digest
calculated over the message and optionally the details of the remote attestation of the
various components.

MEITC Certificate Service Provider: This component will hold users' digital
certificates and keys for signing and encrypting e-mails. It can use the TPM as crypto
device for asymmetric operations and also other hardware signing devices. Symmetric
encryption will be done by using the cryptographic trusted services developed within
OPEN TC Work package 5. The user and the CSP keys will be sealed to the state of the
CSP in order to be released only if the system integrity is provided.

Internal document 3/31

:“l D6b.2 MEITC Specification and Test Plan
*

The server running the Trusted Log Server (LS) and Certificate Service Provider (CSP)
is also responsible to provide measurement values of the compartments, and check
this value before other servers are up and running. See Figure 1 for more information
on the MEITC system implementation.

1.3 Definitions, acronyms, and abbreviations

1.3.1 Definitions

Appendix 1 in the section 5 (Annex 1) contains definitions for words used within this
document.

1.3.2 Acronyms

Appendix 2 in the section 6 (Annex 2) contains commonly used acronyms used in this
report.

1.4 References

e |IEEE Recommended Practice for Software Requirements Specifications IEEE Std
830-1998

e PET (Private Electronic Transaction) Use Case Document

e OPEN TC DO02.1 Requirements Definition and Specification
IST-027635 / D02.1/ Final | 1.00

e OPEN TC Annex | - “Description of Work”

e Siani Pearson (ed.): Trusted Computing Platforms: TCPA Technology in Context,
Prentice Hall PTR2003

e TCG Specification Architecture Overview

1.5 Overview

This document is prepared in accordance with the IEEE Std 830-1998, IEEE
Recommended Practice for Software Requirements Specifications, and extended by
including use cases.

In the following sections of this documentation the software requirement specifications
of the MEITC system will be explained in a more detailed manner. Second section
(Overall Description) of this document gives a general description of the MEITC. In this
section, we will explain, respectively, product perspective, product functions, user
characteristics, constraints, assumptions and dependencies. In the third section we
will define the specific requirements in order to facilitate our work in the design step.
The specific requirements that we will talk about are respectively, external interfaces,
functions, performance requirements, logical database requirements, design
constraints and software system attributes.

2 Overall Description

2.1 Product perspective

In this part, the software specification requirements defined for the MEITC system will
be explained in a more detailed manner. We will define also under which constraints
the MEITC system will be developed. The interfaces, which will connect the internal
and external components with the MEITC, will be explained. Additional requirements

Internal document 4/31

’*“l D6b.2 MEITC Specification and Test Plan
*

such as memory constraints, additional operations and site adaptation requirements
will also be defined here.

This project is not self-contained system. It depends to a larger system which will be
developed in OPEN TC. This larger system which is a trusted environment must be
ready to support the MEITC system.

The users of the MEITC system will use an unmodified web based browser (Mozilla
Firefox, Konqueror, Internet Explorer etc.) to access their accounts. In the client side of
the MEITC system users need to have a Trusted Platform Module (TPM) enabled
computer for remote attestation purposes. In a MEITC environment, users will be able
to read, send and delete e-mail messages securely.

2.1.1 System interfaces

All of the machines in the system will work with TPM support. Access to the web server
will be done through a web based browser. In order to guarantee the trustworthiness
of the whole system, web browser and web server will communicate on a trusted
channel by using HTTP on top of the conventional TLS/SSL protocols.

2.1.2 User Interfaces

Users will connect to MEITC system via their web based browsers. Each page of the
messaging system will be prepared using JSP and HTML. There will be two types of
users: system administrators and unprivileged user. System administrators will have
administrative privileges to arrange users accounts. The other user type will not have
administrative privileges, and instead they only have access to their messages in their
own message boxes.

User interface of MEITC should have user-centered design, in which tasks are easily
followed and executed by the end-user. User interface should also satisfy the general
requirements of customer as the software evolves. End-users of MEITC will see a
simple webmail that will give them the ability to read, send and delete e-mails (or
other actions) they would like to take.

2.1.3 Hardware interfaces
Minimum recommended hardware for MEITC system in server side is as follows:

At least 2 Ghz Intel or AMD processor

Infineon TPM 1.2 enabled mainboard

At least 2 GB of RAM

100 GB hard disk. More disk space is needed to handle more inboxes.

Ethernet card with a bandwidth of at least 100 Mbps

SVGA colour monitor; minimum 800x600 screen resolution, 1024x768
recommended; minimum of 16 bit colours

On the client side, web based browser requires the following hardware specifications.

e Infineon TPM 1.2 enabled mainboard
e Enough free disk space in hard disk
e 128 MB or more RAM

Internal document 5/31

:“l D6b.2 MEITC Specification and Test Plan
*

e SVGA colour monitor; minimum 800x600 screen resolution, 1024x768
recommended; minimum of 16 bit colours

2.1.4 Software interfaces

The following software products will be installed on the main MEITC server
components.

MEITC Web Server

Any Linux distribution with kernel 2.6
TSS Version: 1.2

PKI

Tomcat version >= 5.0

Apache Web Server version >= 2.0
Open SSL

OPEN TC Crypto Utilities

OPEN TC Measurement Service

OPEN TC Attestation Service

MEITC Database and Mail Server (also includes CSP and Trusted Log Server
for the first prototype)

Any Linux distribution with kernel 2.6
MySQL Version >= 5.0

Postfix Version >= 2.3

OPEN TC Measurement Service

OPEN TC Sealing Service

On the client side the main required software product is a web based browser with
Hyper Text Markup Language (HTML) version 4.0, Java and Javascript enabled. The
following web based browsers are recommended.

e Mozilla Firefox, version 1.0 or higher
e Microsoft Internet Explorer (MSIE), version 5.0 or higher

2.1.5 Communications interfaces

Default communication protocol for data transmission between servers and the client
is Transmission Control Protocol / Internet Protocol (TCP/IP). At the upper level Hyper
Text Transfer Protocol (HTTP, default port=80) and Secure Socket Layer (SSL, default
port = 443) will be used for communication between the web server and client.
Current implementation will depend on the output of WP5 remote attestation
deliverables.

Access to the web server will be done through a web based browser: in order to
guarantee the trustworthiness of the whole system, the browser and the web server
will communicate on a trusted channel by using HTTP on top of the conventional
TLS/SSL protocols enabled for the mutual platform authentication. General structure of
the MEITC system and communication among MEITC components can be visualized in
the figure below:

Internal document 6/31

X ¥,

l D6b.2 MEITC Specification and Test Plan

MEITC
mail DB
server server

Web
browser :>

MEITC MEITC
| rusted Lo CSP

Trusted channels
H SSL/TLS with remote attestation or via OTC TCB

<:> SSL/TLS with remote attestation

~——p yja OTC TCB

Figure 1:The general structure of the MEITC and communications among
MEITC components.

In this model, the CSP and TL will be run on the domO0, and all other servers (DB, MS,
WS) will be run on domU, where it's assumed that they are isolated from each other
using Xen virtualization layer technology. MEITC prototype will be based on Xen.

2.1.6 Memory constraints
The server system will be able to run 4 operating systems (instances or
compartments) as once, so the memory would be sufficient for memory-intensive
applications. If the system requires more memory, necessary memory must be added
to the system. On the other hand, depending on the configuration, the number of
compartments can easily be reduced in order to benefit from low memory and CPU
power.

The client computer, which runs the web browser, should have enough physical
memory to run this program.

2.1.7 Operations

Following items are a list of operations end users and administrators can do.

User can login to the message exchange system
User can read a message

User can delete a message

User can send a message

User can ask for a certificate

Administrator can define a user account

Internal document 7/31

:“l D6b.2 MEITC Specification and Test Plan
*

e Administrator can remove a user account

e Administrator can change / reset a user password

e Administrator can manage CA (i.e generate, revoke or accept certificates and
certificate requests)

2.2 Product functions

MEITC message exchange system is an application, which will ensure the “trusted”
message exchange between the predefined users in the system by using the trusted
computing modules. There are five base components in the system. These
components are respectively, MEITC Database Server (DB), MEITC Mail Server (MS),
MEITC Web Server (WS), MEITC Trusted Log Server (LS) and MEITC Certificate Service
Provider (CSP). These components' functionalities are explained in the section 1.2
(Scope) of this document.

The user names should be generated in CSP and in database, to be authenticated by
the system. Communication between client system and web server will be ensured in
a “trusted” manner by using attestation services and encryption.

Following operations can be made by end users:

Read an email

Send an e-mail

Delete existing e-mails
Request a certificate
View a certificate

A user friendly and interactive interface with a help system will be designed for users
in order to do these operations easily.

The operations, that the system administrator can do, are defined respectively as:

Define a new user account
Delete an existing user account
Reset / change users' passwords
Accept a certificate

Revoke a certificate

A system administrator interface will also be defined to realize the defined actions.
If necessary, additional roles can be defined in the following parts of the project life
cycle.

2.3 User characteristics

We have foreseen that the users, who will use the MEITC system, should have an
existing knowledge about how to use Internet or an e-mail client software like
Thunderbird, Outlook etc. The potential users of the MEITC system will be
organisational users. In many organisations, the computer user profile is more that the
expected ones for our application. When designing the system, necessary precautions
will be applied to realize a usable and intuitive user interface, which can be utilized by
users who don't have specific computer knowledge.

Internal document 8/31

’*“l D6b.2 MEITC Specification and Test Plan
*

For the system administrator we have foreseen that, they know at least what trusted
computing is. Similarly, we have considered that the administrator knows how to
define user accounts or change the existing users' definitions.

For these two user profiles (i.e users and administrators), intuitive help menus will be
created in order to facilitate the work of the users.

2.4 Assumptions and dependencies
We assume that all the software modules which will be developed in WP5 will be ready
during the development phase. This will ensure that MEITC implementation will work in
the desired manner. The delay of these modules' implementation can affect the MEITC
implementation process.

The following figure shows the architecture of the MEITC system and the relationship
between the main components of the MEITC. In the first phase of the project, two
components holding CSP, web server, DB server and mail server will be provided.

Security Kernel

Trusted .
Management MEITC Mail | MEITC Web MEITC DB
VM(s) server VM server VM server VM
Trust TPM
Mgr | Server
Encr Services MEITC MEITC MEITC
Mail server|| Web server DB server
Trusted
Csp
log
. Linux OS Linux OS Linux OS
Linux O3 minimal minimal minimal
HW Drivers vDrivers vDrivers vDrivers

T Sy

Virtualization Layer

........ TIT Physical Hardware
(CPU, e.g. AMD Pacifica) TPM

Figure 2:Architecture of the MEITC system

3 Use Cases and Specific requirements

In this part of the SRS document, we will explain the MEITC application use cases
specific requirements in a manner that can help the design phase of the project. We
will consider the relations of MEITC with other modules developed in the Open TC
project. In this part, the inputs and the outputs of the system will also be examined.

3.1 External interfaces

Internal document 9/31

:“l D6b.2 MEITC Specification and Test Plan
*

MEITC will work over stacks mentioned in the previous paragraph and will
communicate with other components via trusted channels. For the MEITC CSP, openssl|
crypto service will be used. This CSP will in turn evolve into a certificate authority (CA)
which will manage user keys together with certificates. Private keys will be used for
signing the e-mails and public keys will be used for encrypting. End users will be able
to validate signed e-mails.

3.2 Use Cases

In this section, we will see what the users and the system administrators can do when
using the MEITC system.

General assumptions and requirements

The assumptions below describe the security aspects of the environment in which the
result will be used or is extended to be used. These assumptions are heavily based on
PET Banking Demonstrator Use Cases document.

AR 10: Correct hardware

The underlying hardware is non-malicious and behaves as expected. Optionally, the
correct properties of the hardware can be attested by platform certificate

AR 20: Trusted Administrator

Standard services for compartment administration and platform management must be
trusted to act in accordance with the wishes of users, since they have to access
security-critical information.

AR 30: Physical attacks

Physical attacks against the underlying hardware platform must not happen.

AR 40: Xen based system

The MEITC system will benefit from virtualization, so, a Xen based system is already
installed on the system, featuring domO (the hypervisor) and domU (the virtual
machines).

AR 50: Trusted bootloader

A trusted bootloader, specifically tGRUB, is required to be used to measure the
integrity of the system.

AR 60: TPM driver
A TPM driver is required to reach the TPM module on the mainboard.

AR 70: Trusted Software Stack (TSS)

Internal document 10/31

’*“l D6b.2 MEITC Specification and Test Plan
*

A trusted software stack (v1.x) is required to use the TPM driver.

Internal document 11/31

*“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 10: MEITC system startup

Primary actors

System administrator

Stakeholders and interest

All MEITC servers

Assumptions

1. The MEITC components are installed on a
trusted computing base

2. A script is used which will allow all servers
to identify their status

3. The TPM ownership is already taken by the
system administrator

Postconditions

All the servers have remotely attested and are up
and running

Main flow

1. System is powered on by the administrator
2. domO0 is checked and booted by tGRUB

3. domO starts up the DB, WS and MS servers
on different domU compartments

4. domO checks running status of the domuU
compartments

Alternative flow

2.a If integrity checking process fails, the system
halts

5.a.1 If one of the compartments do not boot
properly, then the system administrator makes
sure that the corresponding domU starts

5.a.2 Operation continues with step 3

System requirements

See assumptions in 2.5

Open issues

None

Internal document

12/31

:“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 11: Taking TPM Ownership

Primary actors

System administrator

Stakeholders and interest

All MEITC servers

Assumptions

1. The MEITC components are installed on a
trusted computing base

2. The ownership of the system's TPM has not
yet been taken.

Postconditions

TPM Ownership has been taken.

Main flow

1. The ownership of the system's TPM is
properly taken.

Alternative flow

1. The system administrator takes the
ownership of the system. As part of this
process, he specifies the owner password.

System requirements

See assumptions in 2.5

Open issues

None

Internal document

13/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 12: Remote Attestation

Primary actors

System administrator

Stakeholders and interest

All MEITC servers

Assumptions

1. The MEITC components are installed on a
trusted computing base

2. The TPM ownership is already taken by the
system administrator. (UC 11)

3. The known-good values of any
compartment is known by remaining
compartments.

Description

ClientA is the name of the user requesting trusted
channel. ClientB is the name of the user
answering this request.

Postconditions

ClientA and ClientB attested each others trusted
state.

Main flow

1. ClientA tries to connect to ClientB.

2. In order to allow the target computer to
attest the state of the source computer,
ClientA computes a quote of its state.

3. ClientB verifies the quote from ClientA.

4. In order to allow the source computer to
attest the state of the target computer, the
target client computes a quote of its state.

5. ClientA verifies the quote from ClientB.

6. Attestation succeeds.

Alternative flow

3.a.1. Due to modifications of the source
computer, the attestation fails
5.a.1. Due to modifications of the target
computer, the attestation fails

System requirements

See assumptions in 2.5

Open issues

None

Internal document

14/31

:“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 15: Establishing a trusted channel

Primary actors

Trusted channel application

Stakeholders and interest

All MEITC servers

Assumptions

1. MEITC components are installed on a
trusted computing base

2. Attestation configuration files have been
prepared.

3. The TPM ownership is already taken by the
system administrator (UC 11).

4. MEITC System has been started (UC 10).

Description

1. The listener compartment is named “LC”
and the requesting compartment is named
MRC".

Postconditions

Secure trusted channel is established.

Main flow

1. Application on LC reads the configuration
file.

2. Application on LC starts the listener.
3. Application on LC waits and tries to detect
possible incoming connections.

4. If an incoming connection is detected,
application on LC opens an SSL connection
to RC.

5. LC makes a successful remote attestation
with RC using UC 12 and a session is
started.

6. LC establishes a secure channel for
communication

Alternative flow

5.a.1. If attestation (UC 12) fails go to step3.

5.a.2. If attestation already has been made go to
step 6.

5.a.3. If session timeouts go to step 3.

System requirements

See assumptions in 2.5

Open issues

None

Internal document

15/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 40: Add a new user

Primary actors

System administrator

Stakeholders and interest

MEITC web server, MEITC database server, web
browser

Assumptions

The system administrator is logged in to the
system.

Postconditions

User created.

Main flow

1. System administrator uses the web
interface to choose “add user” operation.

2. System administrator enters to the web
interface for user details.

3. Web server demands from the database if
the entered username is already defined.

4. Database server responds that the user is
not already defined.

5. User information is registered to the
database server.

6. Database server informs the web server
that new user is created.

7. Web server informs administrator that the
new user is created.

Alternative flow

4.a.1 If the user is already defined the database
server sends an error message to web server.

4.a.2 Web server displays the message on the
web browser.

4.a.3 Web browser demands from the system
administrator to enter users' informations one
more time.

4.a.4 The operations continue with the step 2.

System requirements

See assumptions in 2.5

Open issues

None

Internal document

16/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 50: Delete an existing user

Primary actors

System administrator

Stakeholders and interest

MEITC web server, MEITC database server, web
browser

Assumptions

The system administrator is logged in to the
system.

Postconditions

User is deleted

Main flow

1. System administrator uses the web
interface to choose “delete user” operation.

2. System administrator enters the username
to be deleted to the web interface.

3. Web server demands from the database
whether this username is already defined.

4. Database server responds the username is
already defined.

5. Web server sends a confirmation request to
the web browser.

6. Web browser requests confirmation from
the system administrator.

7. System administrator confirms the
operation.

8. Web browser sends the confirmation to the
web server.

9. Web server sends the delete operation to
the database server.

10.User is deleted from the database and a
message is sent to the web server.

11.Web server passes this message to the web
browser.

12.Web browser displays that the selected
user is deleted.

Alternative flow

4.a.1 If the user is not already defined, database
server sends to the web server an error message.

4.a.2 Web server displays this message on web
browser.

4.a.3 Web browser requests from the system
administrator to select another username.

4.a.4 The operation continues with the step 2.

Internal document

17/31

D6b.2 MEITC Specification and Test Plan

*)H'i
=

7.a.1 System administrator doesn't confirm the
operation.

7.a.2 Operation is interrupted.

System requirements See assumptions in 2.5

Open issues None

Internal document 18/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 60: User authenticates via MEITC

Primary actors

User

Stakeholders and interest

All MEITC servers and web browser on client side

Assumptions

1. User is already defined in MEITC system.

2. A web browser is installed in the client side
platform.

Postconditions

User is authenticated via MEITC

Main flow

1. User opens web browser in the client side.

2. Web browser establishes a trusted channel
with the MEITC Web server as explained in
UC 12: a mutual remote attestation is
executed.

3. User enters her username and password.

4. Web browser sends wusername and
password to the web server.

5. Web server sends username and password
to the mail server.

6. Mail server asks the database server for the
username and password

7. Database server returns username and
password.

8. Mail server checks username and password
with the database server.

Alternative flow

10.a. If the authentication process fails, operation
stops.

System requirements

See assumptions in 2.5

Open issues

1. How to implement the mutual remote
attestation is still an issue

Internal document

19/31

:“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 100: Accessing user's inbox

Primary actors

User

Stakeholders and interest

All MEITC servers

Assumptions

1. MEITC system is running
2. The user is authenticated as in UC 60.

Postconditions

User accesses her inbox

Main flow

1. WS connects to MS for accessing the mail
inbox data of the user

MS gets the inbox data from DB server
DB server gives the user data to MS
MS sends the data to WS

WS forwards the data to the client
User chooses next operation

oukWwWN

Alternative flow

l.a.1 If MS is not properly functioning, then web
server gives an appropriate error message and
goes back to login page

2.a.1 If DB is not properly functioning, then web
server gives an appropriate error message and
goes back to login page

System requirements

See assumptions in 2.5

Open issues

None

Internal document

20/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 110: Sending an e-mail

Primary actors

User

Stakeholders and interest

All MEITC servers

Assumptions

1.
2.
3.

MEITC system is running
User is authenticated as in UC 60.
User can read mails as explained in UC 100.

Postconditions

User sends an e-mail

Main flow

1.

2.
3.

User composes the e-mail and selects the
signing and encryption options.

Client sends the e-mail data to the WS.
WS sends the e-mail data to the MS.

MS sends the e-mail data to the CSP for
signing and encrypting the e-mail.

. MS generates the signature for the e-mail

by using the sender's private key and/or
encrypts it by using the public keys of the
recipient.

MS sends the e-mail transmission
information to trusted log server (LS).

. LS stores a record that contains details of

the e-mail and the digest calculated over
the message bytes; this secure record is
held for non-repudiation purposes.

MS sends the e-mail data to the DB.
DB stores the signed and/or encrypted e-

mail to the sender's and the recipients'
mailboxes.

10.MS sends the acknowledge of the operation

and the update of the mailbox to the WS

11.WS forwards the acknowledge to the web

browser.

Alternative flow

. In any of the steps above, if the

corresponding (affected) server is not
functioning properly, then the WS sends a
reply showing the error to the user.

System requirements

See assumptions in 2.5

Open issues

None

Internal document

21/31

*“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 120: Deleting an e-mail

Primary actors

User

Stakeholders and interest

All MEITC servers

Assumptions

1.

2.
3.

4.

MEITC system is running, not necessarily
with all compartments.

The user is authenticated as in UC 60.

The user can read her e-mail as explained
in UC 100.

The user has her inbox open.

Postconditions

The user deletes the selected e-mail

Main flow

1.

User selects the appropriate e-mail to be
deleted

User clicks on the Delete button

WS sends this information to MS

MS deletes the e-mail and informs DB
E-mail is deleted from the DB

Alternative flow

=R W

In any of the steps above, if the
corresponding (affected) server is not
functioning properly, then the WS sends a
reply showing the error to the user.

System requirements

See assumptions in 2.5

Open issues

None

Internal document

22/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name UC 200: Requesting a certificate

Primary actors User

Stakeholders and interest |All MEITC servers

Assumptions 1. MEITC system is running.

2. User logins to the certificate manager.
Postconditions User requests a certificate
Main flow 1. User requests for a new certificate.

2. This request is stored in the DB repository.

3. The request process is continued by the
administrator in UC 230

Alternative flow

System requirements See assumptions in 2.5

Open issues Normally this should be done by administrator.
Usual certificate requesting mechanisms will be
investigated.

Internal document 23/31

*“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 210: Revoking a certificate

Primary actors

User

Stakeholders and interest

All MEITC servers

Assumptions

1. MEITC system is running
2. User has a certificate
3. User logins to the certificate manager.

Postconditions

Certificate is revoked

Main flow

1. User asks for revoking his certificate.
2. This request is stored in the DB repository.

3. The revocation process is continued by the
administrator in UC 240

Alternative flow

System requirements

See assumptions in 2.5

Open issues

None

Internal document

24/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 220: Viewing a certificate

Primary actors

User

Stakeholders and interest

All MEITC servers

Assumptions

1. MEITC system is running.
2. User logins to the certificate manager.
3. User already has a certificate.

Postconditions

User views the selected certificate.

Main flow

1. User clicks on the menu item in order to
view the certificate.

Alternative flow

None

System requirements

See assumptions in 2.5

Open issues

All users should be able to see other's
certificates.

Internal document

25/31

*“l D6b.2 MEITC Specification and Test Plan
*

UC name

UC 230: Accepting a certificate request

Primary actors

User

Stakeholders and interest

All MEITC servers

Assumptions

1. User has requested a certificate as in UC

200.
2. MEITC system is running.

3. Administrator logins to the certificate

Mahager.

Postconditions

Certificate request is granted and certificate is

generated.

Main flow

1. Administrator views the certificate request.
2. Administrator accepts the certificate

request.

3. Certificate is generated by CSP and stored

on the database.

4. When the user logs in again, he'll
informed that certificate is generated.

be

Alternative flow

3.a. System administrator rejects certificate

request.

System requirements

See assumptions in 2.5

Open issues

None

Internal document

26/31

Y l D6b.2 MEITC Specification and Test Plan
*

UC name UC 240: Accepting a certificate revoke
request
Primary actors User

Stakeholders and interest |All MEITC servers

Assumptions 1. User has issues a certificate revocation
request as in UC 210.

2. MEITC system is running.

3. Administrator logins to the certificate
manager.

Postconditions Certificate revocation request is accepted and
certificate is revoked.

Main flow 1. Administrator views the certificate
revocation request.

2. Administrator accepts the certificate
revocation request.

3. Certificate is revoked generated by CSP and
revocation information is stored on the
database.

4. Certificate is deleted from the DB.

Alternative flow 3.a. System administrator rejects certificate
revocation request.

System requirements See assumptions in 2.5

Open issues This process can optionally automatically be

issued by the system, immediately after user
request, without administrator intervention.

3.3 Performance requirements

In this step of the project, it is not possible to give numerical performance
requirements. Normally, the application focuses on the security of messaging system.
Therefore the performance of the system is not considered as an important issue for
the project yet.

3.4 Design constraints

In this section, the standards that the MEITC have to comply with and the hardware
constraints to be obeyed will be examined.

3.4.1 Standards compliance
Generally, the components developed in the OPEN TC project will support TPM 1.2 and

Internal document 27/31

:“l D6b.2 MEITC Specification and Test Plan
*

TSS 1.2. In this case the TSS implementation written for Linux will have to comply with
the standards prepared by the Trusted Computing Group (TCG). TSS developed in
Open TC project will support the version 1.2 of the standards, and so will MEITC. For
hardware compliance, MEITC will utilize Infineon TPM 1.2 supported mainboards.

3.5 Software System Attributes
Software system attribute requirements for the MEITC system are as follows.

3.5.1 Reliability

Software developed for MEITC system must run without any critical problems on
installed base. All requests in the software system must run correctly and finish
requests without any error. When an error occurs in the system, accurate knowledge
should be given to the user. The minimal configurations for computers must be
provided in the MEITC systems. Reliability shall depend on the reliability of hardware
devices. Failure of one will render the other useless for this application. For this
project, all systems in server side will be running on OpenSUSE. For the initial
prototype, Pardus Linux will be used.

3.5.2 Availability

This system is designed to run 24 hours a day and be readily available to the user.
System administrator makes necessary controls for the availability of the MEITC
system. Administrator of the system must be sure of running web, e-mail, database
and CSP services correctly. In any problems if necessary computers can be restarted
by the system administrator and loss or corrupted data can be restored from backups.

3.5.3 Security

To make a secure system, unnecessary ports in the MEITC system should be closed for
internal and external access. For the end users connecting to the system via browser
necessary ports like HTTP (80), OpenSSL (443) and TSS communication should be
open.

3.5.4 Maintainability

User administration and application running in the MEITC system will be via web
browser based interface. Necessary OpenSSL certificates which will be used in the
system should be installed for each user computers separately for a smooth run.

MEITC system should be backed up during predefined intervals. In this way we can
decrease data loss and corruption when system collapses. Database, Trusted Log and
CSP server backups must be taken frequently.

3.5.5 Portability

All the applications developed are portable to other Linux distributions since they will
be provided with RPM packages together with source code. MEITC is not portable itself
to other platforms.

4 Test plan

MEITC test plan will include unit tests, module test, integration test and usability test
during the project development phase. “MEITC Detailed Design and Test Document”
includes an extended test document which is based on this test plan. All tests except

Internal document 28/31

xH
3%
) 2

*

D6b.2 MEITC Specification and Test Plan

usability test will be accomplished by TUBITAK staff who whote the application itself.

5 Appendix - 1 : Definitions

Table 1 contains definitions for words used within this document.

Table 1. Definitions

Attestation

Terminology Definition

Apache A general purpose web server

Browser Software used to view hypertext documents

Integrity Integrity measurement is the process of obtaining metrics of

Measurement platform characteristics that affect the integrity (trustworthiness)
of a platform; storing those metrics; and putting digests of those
metrics in PCRs

Java A programming language created by Sun Microsystems

MySQL MySQL is a database management system

Postfix Postfix is an open source mail transfer agent

Sealing Sealing provides assurance that a protected messages are only
recoverable when the platform is functioning in a very specific
known configuration.

Remote Remote attestation is a way to prove to a challenger that you're

truly running the software on your computer that you say you are.

6 Appendix - 2 : Acronyms

Commonly used acronyms used in this report are given in Table 2.

Table 2. Acronyms

Acronym Terminology Definition
CSP Certificate Service |CSP is the certificate service provider for MEITC
Provider
DB Database DB is a collection of information organized in such a
way that a computer program can quickly select
desired pieces of data
HTML Hyper Text HTML, a subset of Standard Generalized Mark-Up
Markup Language |Language (SGML) for electronic publishing, the
specific standard used for the World Wide Web
(WWW)
HTTP Hyper Text HTTP, the actual communications protocol that
Transfer Protocol |enables web browsing
LS Log Server LS is the machine to which log events are sent by the
system
MEITC Message MEITC is a secure message exchange environment.

Internal document

29/31

a%
3%
) 2

*

D6b.2 MEITC Specification and Test Plan

Acronym

Terminology

Definition

Exchange
Infrastructure for
Trusted

Computing
OPEN TC | Open Trusted OPEN TC consortium is an R&D project focusing on
Computing the development of trusted and secure computing
systems based on open source software.
Open SSL |Open Secure OpenSSL is a popular package to add cryptographic
Socket Layer security to applications communicating over a
network
JSP Java Server Pages |Java Server Pages (JSP) are normal HTML with Java
code pieces embedded in them. A JSP compiler is
used to generate a Servlet from the JSP page.
PKI Public Key PKI is a secure method for exchanging information.
Infrastructure PKlI uses a public/private key, to encrypt IDs,
documents, or messages. It starts with a certificate
authority (CA), which issues digital certificates. Digital
certificates or digital IDs authenticate the identity of
people and organizations over a public system such
as the Internet.
SRS Software SRS is a complete description of the behaviour of the
Requirements system to be developed.
Specification
SVN Subversion SVN is a tool which allows development teams to
safely coordinate and track software source code
changes.
TC Trusted Trusted computing is a combination of software and
Computing hardware supporting applications to ensure that data
cannot be accessed unless the user's system is
operating as expected and has not been tampered
with.
TCB Trusted TCB is a part of a platform that is assumed to perform
Computing Base |its tasks correctly, even if the platform itself is
corrupted.
TCP/IP Transmission TCP/IP is a set of protocols developed to allow
Control Protocol / |cooperating computers to share resources across a
Internet Protocol |network.
TPM Trusted Platform | The TPM is a micro controller that stores keys,
Module passwords and digital certificates.
TSS Trusted Software |The TSS is a software specification that provides a

Stack

standard API (Application Programming Interface) for
accessing the functions of the TPM.

Internal document

30/31

’*“l D6b.2 MEITC Specification and Test Plan
*

Acronym Terminology Definition

WS Web Server A web server is a computer that stores web
documents and makes them available for the rest of
the world to see through the world wide web.

Internal document 31/31

BUE

Information Society

Technologies

WPO06b.3 MEITC Detailed Design and Test

Document
Project number IST-027635
Project acronym Open_TC
Project title Open Trusted Computing
Deliverable type Deliverable

Deliverable reference number

Deliverable title

IST-027635/D6b.2/ Final / 1.00

WPO06b.3 MEITC Detailed Design and Test
Document

WP contributing to the deliverable WP 6
Due date Oct 07
Actual submission date 28 Oct 07
Responsible Organisation TUBITAK

Authors Goérkem Cetin, Kadir imamoglu, Volkan Erol
Abstract This internal deliverable is the detailed

design and test plan for MEITC system
Keywords
Dissemination level Public
Revision

Start date of the <

Instrument IP project 1°* November 2005
Thematic Priority ST Duration 42 months

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

Table of Contents

J [oY [U Tt f o] o FU PP 5
O A U o Yo L] < PSPPI 5
1.2 Definitions and abbreviations ... 5

2 DeESigN AeSCIiPIION. .. 5
2.1 DesSign PhilOSOPNY et 6
2.2 Implementation LanQUAaGgE.t 6
B T =T Lo [T @ V7= V=R 6
2.4 MEITC Components and Software Modules...........oviiviiiiiiiiiiin e 8

2.4.1 MEITC WebServer COmMPONENT. ... eae e 8
2.4.2 MEITC MailServer CompPOneNnt.. ... e 9
2.4.3 MEITC DBServer COMPONENT... ..ot e 9
2.4.4 MEITC LogServer COmMPONENT.iiiiiie et e e aeens 10
2.4.5 MEITC CertificateServices COmMPONENt........oiiiiiiiiii e 10
2.4.6 MEITC Administrator COmMPONENt........ccouiii e 11
2.4.7 MEITC Webmail COMPONENT... ... 11
2.4.8 Meitc System ComPONENt. ... 11
2.4.9 MEITC Measurement COMPONENT.......oiuiiiiiic e 12
2.4.1 0 MEITC TrustedBoot COMPONENT... ...t 12
2.4.1 1 MEITC Attestator COmMpPoNeNnt.... ... 13
2.4.1 2 MEITC Connector COMPONENT.......cuiiiiiiii e e 13
2.4.1 3 MEITC ApplicationServer COmMpPONENtc.viiiiiiiiiiiiee e 13
2.4.1 4 MEITC Sealing CoOmMPONENTouiiiiiiiii e e eaeaas 14
2.4.1 5 MEITC TimeServices COMPONENT........oiiuiiiiiiiiiiieei e ens 14

3 Project standards, conventions and proCeduUres..........covuiiiiiiiiiiiiiiee e 14
o 20 I 7T T | o T = o = o £ 14
3.2 Documentation StandardsS.......c.coviiiiiiiii 15
3.3 NaAMING CONVENTIONS. ...ttt et e et e e e et e a e enns 15
3.4 Programming StandardsS.........ooiiiiiiiii e 16
3.5 Database DeSIGN....ccuu it en e 18

3.5.1 AdMIN LAl e 18
3.5.2 AlAS LAl 18
3.5.3 dOmMain tab .. 19
3.5.4 domain_admins table.......oo i 20
78 10 TR 1o Yo =1 o] = 20
3.5.6 MailboX table. ... 20
3.5.7 Vacation table. 21
3.6 Software development tOOIS.o 21

O B Tt o | W LT U= PP 22
4.1 LOCAlZATION. ot 22

o T =YY A o] = o O PPN 22

(SIS Y=To [UT=T g Tt =Ie IT=To | =] 0 17O PP 24
6.1 MEITC system startup sequence diagram.......ccoeoiiiiiiiiiii e 24
6.2 Adding a new user SeqUENCE Aiagraml.. ... i i e ae e 25
6.3 Deleting an existing user sequence diagram.......c.c..vveieiiiiiieii e 26
6.4 Sending an e-mail SEqUENCE Aiagram. ... e 27

Internal document 2/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.5 Sending a signed e-mail sequence diagram......ccccvvviiiiiiiiiiiin 28
6.6 Sending an encrypted e-mail sequence diagram.......c.ccovviiiiiiiiiiiii i 29
6.7 Sending a signhed and encrypted e-mail sequence diagram.........ccccoveeviviienennnnnnn. 30
6.8 Deleting an e-mail sequence diagraml......c.couiiiiiiiiii 31
6.9 Accessing user's iNbox sequence diagrami........coovu i 32
6.1 OUser authenticates via MEITC sequence diagram.......ccccceeviviriiiiiiiniiiieeneneaeennn 33
6.1 1Taking TPM ownership sequence diagram.... ..o eiuiieieeeieiee e ene 34
6.1 2Establishing a trusted channel sequence diagram..........ccooviiiiiiiiiiiiiiieen 35
6.1 3Remote attestation sequence diagram.......ccoveiiiiiiii 36
6.1 4Creating a certificate sequence diagram.......ccoiiuiiiiiiieie e 37
6.1 5Creating a certificate request sequence diagram........coccovviiiiiiiiiiiiiiii e 38
6.1 6Creating a certificate revocation request sequence diagram..........ccccevevevenennnnn. 39
6.1 7Revoking a certificate sequence diagram...........ooeeiiiiiiiiiiii e 40
7 MEITC All Class@Ss diagram. i eeieeiee ettt e et e e e et e e e e e e e enes 41
8 INSEAll@tiON. e 42
8.1 PacKage SErUCTUIE.o e e e e e e e 42
8.2 File and direCtory StrUCTUME.......iiiiiiii e e 42
8.2 L WD SO V.. it 42
82,2 Ml SO VT e it 44
8.2.3 Database SEIVEr 44
9 Graphical USer INEEITACE ...vee e 44
9.1 WeEbMaAil GUILL...ieiiiiiiii e 44
O0.1.1 USEI LOGIN SCI@EN ... ettt ettt e et e et e e e et e e enees 45
0.1.2 INDOX SCIEBN. ettt 45
9.1.3 ComMpPOSE EMAil SCrE@N..... e 46
9.2 AdMIN GULL e 46
1 272 R o [o a1 T o Yo T T=Tel =T o PP 46
S I Y =TT o I 0 g =T o LU Yol =T o [P 47
S G B U L < gl 11y A o =TT o F PP 47
S B o [0 U 1= el <1< o DO PP 47
0.2.5 Delete USer ISt SCreeN. ... 48
0.2.6 Dl USEI SCIEEN.. . e i 48
0.2.7 ReSet USer [IST SCIEBN. ...ttt 49
0.2.8 RESEE USEI SO BN e ittt e e e aeans 49
S B Y= oV Tl LI Yol £ =T o PP 50

Internal document 3/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

List of figures

Figure 1: MEITC first prototype software modules...........cocouiiiiiiiiiiii e 7
Figure 2:MEITC system startup sequence diagram.......ccc.veviiiiiiiiiieiiineee e 24
Figure 3:Adding a new user sequencCe diagram.. . ccvi e iiiiiie e aneaas 25
Figure 4:Deleting an existing user sequence diagram.........oveeuiiiuiiiiieiieeeeeieeeeeieeanes 26
Figure 5:Sending an e-mail sequence diagram........ccooiiiiiiiiiiii i 27
Figure 6:Sending a signed e-mail sequence diagram.........covviviiiiiiiiiniiiiin e 28
Figure 7:Sending an encyrpted e-mail sequence diagram.........cccccievviiiiiniiieineeneennnns 29
Figure 8:Sending a signed and encrypted e-mail sequence diagram........................... 30
Figure 9:Deleting an e-mail sequence diagram........coouiiiiiiiiiii e 31
Figure 10:Accessing user's inbox sequence diagram........cocuvieirieiiiiiiieeeeeeeeeeeaas 32
Figure 11:User authenticates via MEITC sequence diagram........cccooeviiiiiiiiiiniiiienenen. 33
Figure 12:Taking TPM ownership sequence diagram.......cocevuiiuniiniiiiiineiieeneneanenaneans 34
Figure 13:Establishing a trusted channel sequence diagram..........cc.cooeviiiiiiiiiiiiinennns 35
Figure 14:Remote attestation sequence diagram........ccccooiviiiiiiiiiici i, 36
Figure 15:Creating a certificate sequence diagram..........coooeiiiiiiiiiiii e 37
Figure 16:Creating a certificate request sequence diagram.........cccccoiviiiiiiiiiiiniininennns 38
Figure 17:Creating a certificate revocation request sequence diagram....................... 39
Figure 18:Revoking a certificate sequence diagram........ccocuiiiiiiiiiiiiiiineeee e 40
Figure 19:MEITC all classes diagrami...... ..o e 41
FIgure 20:UsSer [0QIN SCIEEN. . .. e e e e e e e e e ens 45
FIQUIre 21:1IND0OX SCrEEN. ... e e e e 45
Figure 22:Compose €mail SCIrEEN.......ieuiii e 46
Figure 23:Admin LOGIN SCIrEEN......iu i e e e e eaeaes 46
FIQure 24:Main MENU SCIEEM... ... ettt e e e e et e e e e e e ea e enaennas 47
FIgure 25:USer [IST SCrE@N ... i eans 47
o To T8 A S B AN [o BN F] =Y gl Y of == o 48
Figure 27:Delete user lISt SCre@N.... ... i 48
FIQUre 28:Delete USer SCIEEONM. .. et ean s 49
Figure 29:Reset USer lISt SCreeN.... .. 49
Figure 30:RESEE USEI SO N. ittt 50
(o U e N Y <] oV (ol ST of ¢ =T o T PP PRSPPI 50

Internal document 4/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

1 Introduction

This detailed design document (DDD) is the high level design of MEITC application
(D0O6b3). Prior to this document, a report containing the MEITC specification has been
created and submitted which in turn includes the use case scenarios, requirements
and test cases complying IEEE specification requirements document.

Detailed design document introduces how MEITC system will work and various
interfaces between different components of MEITC. Since low level use-case diagrams
have been mentioned in a previous deliverable (D06b2), these will not be considered
again to be included in this document.

Generally speaking, MEITC system should be capable and have an easy to use
interface. For each additional level of complexity that is added, there should be a
compelling reason. Clients and servers are different components for obvious reasons
which has been detailed in D06b2. This framework includes more than one
compartment installations with different capabilities plus many frameworks, utilities
and drivers.

1.1 Purpose

This document defines design, coding standards and tools. Programmers should obey
the standards and use the applications and tools mentioned in Part 2 of this
document. During the implementation of the design, documentation for each
component is produced.

1.2 Definitions and abbreviations

MEITC: Message Exchange Infrastructure for Trusted Computing

GUI: Graphical user interface

DDD: Detailed design document

MS: Mail server

WS: Web server

LS: Log server

CSP: Certificate service provider

DB: Database server

HTTP: Hypertext transfer protocol

TLS: Transport layer security

SSL: Secure socket layer

2 Design description

This section aims to describe the architecture of the MEITC system. It also provides
explanations about the choices made for the implementation of different parts of the
system. The section is split into 4 parts which explains the design philosophy, the
implementation language, the design overview and the system components which are
MEITC Web Server (WS), MEITC Mail Server (MS), MEITC Database (DB) server, MEITC
Log Server (LS), MEITC Certificate Service Provider (CSP) and user interfaces and also

Internal document 5/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

other software modules defined for implementation purposes. The descriptions of
modules and components are made by the structure of the components and also
paying attention to the virtualization concepts.

2.1 Design philosophy

The preliminary architecture of the MEITC system is explained in the report D06b.2
MEITC Specification and Test Plan. The approach explained in this Detailed Design and
Test Document is based on these specifications. It is always possible that some minor
changes can be made in different components during the implementation phases of
the project but the fixed general and detailed concerns of the MEITC system design is
explained in the following subsections of this document.

2.2 Implementation Language

In the MEITC system, due to the structure of the already developed open source
packages taken for some components, different programming and scripting languages
will be used. For the system installation and configuration, bash shell scripts will be
used. For some applications that interacts directly with the TPM chip, C programming
language will be used. For user interface JSP scripting language will be used. For
modules interacting the core components of the system (for example: one of the
server components) with the user interface the Java programming language will be
used. The components developed will be implemented in a manner that will not cause
major problems for portability.

2.3 Design Overview

The system developed will be a fully secure message exchange infrastructure for
Linux Operating System by using the Trusted Platform Module (TPM) and the Trusted
Software Stack (TSS), built over a virtualization layer. This infrastructure will ensure
confidentiality, authentication, non-repudiation and data integrity on the installed
base.

MEITC system is composed of 6 components: MEITC WS, MEITC MS, MEITC DB Server,
MEITC LS, MEITC CSP and User interface as described in the MEITC Specification and
Test Plan document. As the OpenTC infrastructure uses the virtualization concepts, the
architecture of the system is designed as follows:

The previous architecture was based upon previous discussions and such, they do not
refer to the latest mutual agreement of what MEITC will look like. I'm amending the
following items so they reflect the final MEITC framework.

e DomO0O contains no software applications other than Trusted Grub (tGrub),
measurement services and helper utilities to start DomuU.

e First prototype only includes MEITC WS, MEITC MS and MEITC DB Server on two
compartments, and 3™ year protototype will include MEITC CSP and MEITC LS, ,
where it's assumed that all of these compartments isolated from each other
using Xen virtualization layer technology. MEITC prototype will be based on Xen.

e For suitability and performance considerations, there can be two virtual
compartments, one holding web services and the other holding database, mail
server, log server and CSP where certificates, keypairs, passwords for users are
hold and is assumed to be more secure than the first compartment. The first

Internal document 6/50

C OTC-364: WP06b.3 MEITC Detailed Design and Test Document

prototype will be built on this model.

The general model of these compartments is in the following figure, according to the
first prototype:

Webmail

Administration Mail server

Trusted log and

e e Server secure time service

Attestator Certificate services

Connector Connector

Measurement
services

tGRUB

Virtualization layer

Physical hardware

Figure 1: MEITC first prototype software modules

Below is a short explanation about each of the MEITC components:

MEITC Database Server: A database server will host users' mailboxes. User
information and quota information will be kept in this database.

MEITC Mail Server: This component will handle all the e-mail traffic and it will use
the Trusted Log and the Certificate Service Provider (CSP) to implement the security
services for the messages, namely, integrity checking and non-repudiation. E-mails
will be stored in a directory structure.

MEITC Web Server: This component will be the front-end for users and the system
administrators. Users and system administrators of MEITC will connect to this web
server via their web based browsers to compose or read e-mail messages.

MEITC Trusted Log Server: This component guarantees the integrity checking of e-
mails and also the non-repudiation: it holds a record for each e-mail that includes data
about the message (i.e. the sender and the recipient addresses, etc.), the digest
calculated over the message and optionally the details of the remote attestation of the
various components. Trusted log server needs a secure time component from WP05a
in domU which could be used to count ticks after synchronizing from a trusted time

Internal document 7/50

’*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

server.

MEITC Certificate Service Provider: This component will hold users' digital
certificates and keys for signing and encrypting e-mails. User and CSP keys will be
sealed to the state of the CSP in order to be released only if the system integrity is
effective.

DomO0 is responsible to provide measurement values of the specific files in
compartments, and check this value before corresponding servers are up and running.

The default communication protocol for data transmission between servers and the
client is Transmission Control Protocol / Internet Protocol (TCP/IP). At the upper level
Hyper Text Transfer Protocol (HTTP, default port=80) and Secure Socket Layer (SSL,
default port = 443) will be used for communication between the web server and client.
Proxies will be used for remote attestation in the MEITC system.

Access to the web server will be done through a Javascript compliant web based
browser: in order to guarantee the trustworthiness of the whole system, the browser
and the web server will communicate on a trusted channel using HTTP on top of the
conventional TLS/SSL protocols enabled for the mutual platform authentication.

MEITC system components are named as follows. Each compartment holds one or
more of these components.

MEITC WebServer component (in 1 compartment)

MEITC MailServer component (in 2" compartment)

MEITC ApplicationServer component (in 1 compartment)
MEITC Administrator component (in 1°* compartment)
MEITC Attestator component (in 1 compartment)

MEITC Connector component (in 1t and 2" compartments)
MEITC CertificateServices component (in 2" compartment)
MEITC DBServer component (in 2" compartment)

MEITC LogServer component (in 2" comparment)

MEITC Sealing component (dom0 and 2nd compartment)
MEITC Measurement component (domO)

MEITC TimeServices component (in 2nd component)
MEITC TrustedBoot component (domO)

MEITC Webmail component (in 1st compartment)

The items in red above show the corrent placement of compartments (i.e sealing,
trusted boot and measurement).

As mentioned above, these system components do not necessarily need to be on their
own compartments. Components can logically be distributed in two or more
compartments for better scalability and preserving machine power. Detailed
explanations are made for these components in the next section.

Detailed explainations are made in each of the subsections of the following paragraph
which explains each system components respectively.

Internal document 8/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

2.4 MEITC Components and Software Modules

2.4.1 MEITC WebServer Component

Purpose: This component is the front-end for users and the system administrators.
Users and system administrators of MEITC will connect to this web server via their web
based browsers to compose or read e-mail messages.

Responsibilities:

1. Web Server ensures the connection between the MEITC MS and Administrator
component in many cases.

2. When adding a new user to the system, WS takes user information from the
Administrator component. It checks whether the user is already defined in the
system or not. If the user is already defined, it send an error message to be
displayed on the Administrator component.

3. When a user wants to access his inbox in order to send or receive a message,
MEITC WS component takes inbox data from MEITC MS component.

4. Web server shows the administration interface to request, revoke or delete a
certificate.

Collaboration: MEITC MailServer Component, MEITC DBServer Component, MEITC
CertificateServices Component, MEITC Administrator Component

SRS References: 1.2, 2.1.1, 2.1.4, 2.1.5, 2.1.6, 2.2, 3.2-UC10, 3.2-UC12, 3.2-UC40,
3.2-UC50, 3.2-UC60, 3.2-UC100, 3.2-UC110, 3.2-UC120, 3.6.2, 3.6.3

2.4.2 MEITC MailServer Component

Purpose: This component handles all the e-mail traffic and it will use the Trusted Log
and the Certificate Service Provider (CSP) to implement the security services for
messages.

Responsibilities:

1. MEITC MailServer component handles all e-mail traffic using security services
ensured by MEITC infrastructure.

2. When user wants to access to his inbox in order to read/write/delete an e-mail,
MEITC MailServer component gets/sends inbox request from the MEITC WS and
requests this data from MEITC DBServer component.

Collaboration: MEITC LogServer component, MEITC CertificateServices component,
MEITC DBServer component, MEITC WebServer component.

SRS References: 1.2, 2.1.4, 2.1.5, 2.2, 3.2-UC10, 3.2-UC12, 3.2-UC60, 3.2-UC100,
3.2-UC110, 3.2-UC120, 3.6.2, 3.6.3, 3.6.5

2.4.3 MEITC DBServer Component

Purpose: This component will host users' mailbox authentication information together
with keys, certificate status information and certificates.

Responsibilities:

Internal document 9/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

*)Ht
=

MEITC DBServer component keeps user e-mail preferences including passwords.
MEITC DBServer component is responsible for storing user certificates and keys.
MEITC DBServer component gets DB requests from webmail and sends required
information back.

4. MEITC DBServer component can get/set certificate status information. Database
is directly informed from certificate requests by using request and certificate
fields in mailbox table which corresponds to each user. There are 3 use cases
for certificates, mentioned below:

WN =

1. User has just been created: Both the request field and certificate field is
empty.

2. User requests a certificate, but not yet approved by the administrator:
Request field is populated with certificate request file. Certificate field is still
empty.

3. User requests a certificate and this is approved by the administrator:
Request field still includes the certificate request file. Certificate field is
populated with assigned certificate.

Collaboration: MEITC MailServer component, MEITC WebServer Component, MEITC
Administrator component

SRS References: 1.2, 2.1.4, 2.1.5, 2.1.8, 2.2, 3.2-UC10, 3.
uCs0, 3.2-UCe60, 3.2-UC100, 3.2-UC110, 3.2-UC120, 3.4

2.4.4 MEITC LogServer Component

Purpose: This component guarantees the integrity checking of e-mails and also the
non-repudiation by storing a record for each incoming and outgoing e-mail.
Responsibilities:

1. MEITC LogServer component holds records for each e-mail sent includingthe
hash of the message.

2. When a user wants to send an e-mail, MEITC MS sends e-mail data to MEITC LS
and it generates a secure record for these e-mail data and stores this record.
This will be done by referring to the ticks of TPM together with the referenced
time frame taken from a trusted time server.

Collaboration: MEITC MailServer component, MEITC TimeServices component

SRS References: 1.2, 2.1.4,2.1.8, 2.2, 3.2-UC110, 3.4, 3.6.4

2.4.5 MEITC CertificateServices Component

Purpose: This component stores users' digital certificates and keys for signing and
encrypting e-mails.

Responsibilities:

1. MEITC CertificateServices component stores user certificates for further
information retrieval.

Internal document 10/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document

2. MEITC CertificateServices component stores user keypairs for encryption and
signing of e-mails.

3. When MEITC Administrator component sends a certificate generation or revoke
request, MEITC CertificateServices component generates the certificate
together with user keys.

Collaboration: MEITC Administrator component, MEITC ApplicationServer component,
MEITC DBcomponent

SRS References: 1.2,2.1.4,2.2,2.4, 3.1, 3.2-UC60, 3.2-UC110, 3.6.2, 3.6.3, 3.6.4
2.4.6 MEITC Administrator Component

Purpose: This component provides interaction between the users (including system
administrator) and other components.

Responsibilities:

1. This component is a java application which receives user/administrator requests
and acts accordingly. Administrator component ensures all the interaction
between the users and the MEITC components

2. Administrator component receives the “adduser”, “delete user” and “modify
user” requests from administrator and component.User management is done
via administrator component, which in turn passes the requests to web server.

3. Administrator component receives the signature generation, revoke or view
request from user or administrator and passes this to MEITC WebServer
component. (again, same applies here).

Collaboration: MEITC Webmail component, MEITC ApplicationServer component,
MEITC WebServer component

SRS References: 1.2, 2.1, 2.1.1, 2.1.2, 3,2.1.4 1.6, 2.1.8, 2.2, 2.3, 3.2-
3

2.1 , 2.1.5, 2.1.6,
UC40, 3.2-UC50, 3.2-UC60, 3.2-UC110, 3.2-UC120, 3.6.3, 3.6.4, 3.6.

2.4.7 MEITC Webmail Component
Purpose: This component provides web based mail services.

Responsibilities:

1. Sending, receiving and displaying the e-mails passed by MailServer component.
2. Deleting an e-mail on behalf of a user's request.
3. Authenticating via Mailserver component.

Collaboration: MEITC ApplicationServer component, MEITC WebServer component

2.4.8 Meitc System Component

Purpose: It is the core module of the system which constitutes the main function for
MEITC system components. It is point of entry for the application. It can be thought as
the engine ensuring the working status of different components.

Internal document 11/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

Responsibilities:

1. This the core module for the MEITC system. As it is the point of entry for the
system, it has little direct responsibilities. All other responsibilities are shared
between the components and software classes.

2. In the TPM take ownership operation, the SystemAdministrator chooses the
operation within it.

3. System wants owner and SRK password from the SystemAdministrator.

4. When he gives the password, it calls the TPMTakeOwnership method via the
TPMHelper class.

Collaboration: MEITC LogServer component, MEITC WebServer component, MEITC
DatabaseServer component, MEITC MailServer component

SRS References: 3.2-UC11
2.4.9 MEITC Measurement component

Purpose: DomO0 includes the Xen kernel which includes all the trusted computing and
virtualization functionalities provided by the OpenTC infrastructure. DomO includes all
the Trusted Computing Base and virtualization functionalities for our implementation.

Responsibilities:

1. During the MEITC system startup process the dom0 checks the compartments in
which the MEITC DB Server, MEITC WS and MEITC MS stay and if the integrity
checks are successful, domO starts the MEITC DB Server, MEITC WS and MEITC
MS.

2. MEITC WS, MEITC MS and MEITC DB Server sends messages to domO0 that they
have been properly started.

Collaboration: MEITC CertificateServices component, MEITC LogServer component,
MEITC WebServer component, MEITC MailServer component, MEITC DatabaseServer
component

SRS References: 3.2-UC10
2.4.10 MEITC TrustedBoot Component

Purpose: This component contains TrustedGrub boot loader which checks the
measurement values of different compartments in the system and ensures the system
integrity.

Responsibilities:

1. During MEITC startup procedure SystemAdministrator boots dom0 and tGrub
checks integrity of dom0 and domUs in which the MEITC WS, MEITC MS and
MEITC DB Server stay.

2. If the integrity check is successful the compartments are started. If not, the
operation is stopped.

Collaboration: None

Internal document 12/50

*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

SRS References: 3.2, 3.2-UC10

2.4.11 MEITC Attestator component

Purpose: This component forms the source proxy application during the remote
attestation procedure.

Responsibilities:

1. In the remote attestation procedure, server opens connection with client.

2. Server gets its own TPMQuote and sends it to client.

3. Client verifies the server's quote and if the verification is successful, it sends a
message to the server.

4. Client takes its own TPMQuote and sends it to server.

5. Server verifies client's quote and if the verification is successful, it sends
message to client and attestation is succeeded.

Collaboration: domT and domU

SRS References: 3.2-UC12

2.4.12 MEITC Connector Component

Purpose: This component connects domT and domU.
Responsibilities:
1. Connector in domT receives MySQL commands from Administrator component
and sends these commands to domU via an encyrpted channel.
2. Connector in domU recevies these commands and interprets them, sending
directly to MEITC Database component.
3. Connector in domU sends back possible errors and outputs.
Collaboration: domT and domU

SRS References: None
(read until here)

2.4.13 MEITC ApplicationServer Component

Purpose: This component runs MEITC Administrator component and MEITC Webmail
component

Responsibilities:
1. MEITC Administrator component is responsible from starting MEITC

Administrator component and MEITC Webmail component and ensures that they
run properly.

Internal document 13/50

*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

Collaboration: MEITC Administrator component, MEITC Webmail component
SRS References: None

2.4.14 MEITC Sealing Component

Purpose: This component seals MEITC CertificateManager component database
against TPM

Responsibilities:
1. MEITC Sealing component seals the keys which reside in MEITC
CertificateManager component database and unseals them when requested by
domT.

Collaboration: MEITC CertificateManager component, domT

SRS References: None

2.4.15 MEITC TimeServices Component

Purpose: This component provides log files utilizing secure time service from TPM.
Responsibilities:

1. MEITC TimeServices component provides trusted time services to for MEITC
LogServer component.

Collaboration: MEITC LogServer component

SRS References: None

3 Project standards, conventions and procedures

3.1 Design standards

For the Java and JSP parts of the project, the design method used is object-oriented in
design. The standard UML diagrams is used for representing MEITC components and
software classes.

For the parts of the system which are connected directly to the TPM chip, a procedural
programming language, C, is used so for these parts some special attention has to be
paid. This means:

e We don't use jumps (goto)
e We use hierarchical decomposition: if nesting becomes too deep, define a new
lower-level module.

For installation and system startup procedures some bash shell scripts will be written.
Since various Linux distributions use different local startup scripts, the installer will

Internal document 14/50

b l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

detect and identify which Linux distribution is used and install the bash scripts
accordingly. The system will use basic bash 2.0 functions to guarantee a foolproof
system startup by checking for exceptions, control and eliminate possible errors.

3.2 Documentation standards
The tools used for the detailed design are:

Visual Paradigm UML modelling software for UML diagrams
OpenOffice for documentation

Eclipse for Java/JSP programming

Vi and Kate text editors for writing shell scripts

3.3 Naming conventions
For Java/JSP part:

e Variables will be documented in the following style:
int maxSpeed; // the maximum speed of the upper arm
e Exceptions are defined as Java-style. For example: TcException
e Class names will be documented in the same way as variable names, except
that the first letter must be a capital letter, for instance: rRobot.
e Interface names will be begin with a big 'l', for instance: IcompartmentManager
e Method names will be in the following style:
void thisIsAFunction (int a, int b);

Table 1: Naming Convention for Java/JSP

File Type Extension Comment

documentation html These are javadoc generated from Java files
source code .Jjava Should be same name as the class nhame
For C part:

e Variables will be like Java style and will be documented in the same line:
int anyVariable; // this is a comment
e Function names will be in the following sytle and will be document with a single
line:
// this is a comment for this function
void this_is_a_function (int a, int b);

Table 2: Naming Convention for C

File Type Extension Comment

documentation .odt If needed some specific documentation will be
made in OpenOffice text format. In C files there
will be comments for code fragments.

source code .Jjava Should be same name as the class name

Internal document 15/50

’*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

For shell scripts:

e Shell variables are named using the same general rules as C programming
language variables. Capital letters will be used for readability, i.e
TCSD_STARTUP=/usr/sbin/tcsd

e Function names are all lower letter.
function startvnc () { exit 0; }

Table 3 : Naming Convention for shell scripts

File Type Extension Comment

documentation .odt If needed some specific documentation will be
made in OpenOffice text format. Necessary
comments will be placed in shell scripts

source code .sh The script name consists of lowercase letters

3.4 Programming standards
During the MEITC application development the following standards on behalf of coding
and commentary constructs and layouts are used. This means that source code
written in the project must comply to these standards.

e Standard file headings

e Header file headings (For .h files):

// MEITC header file: —-file name-, version: —-version number-
// Author: —-Author(s) of document-—
// Created on: —-creation date-

// Description: -description of contents-

e Source file headings (For c-code (.c) files):

// MEITC source file: —-file name—-, version: -version number-
// Author: —-Author(s) of document-
// Created on: —-creation date-—

// Description: —-description of contents-
e Source file headings (For java (.java) files):

Standard javadoc style headings will be used. For details, see:
http://java.sun.com/j2se/javadoc/writingdoccomments/index.html

e Source file standard(For(.jsp) files):

.jsp source files will be coded in the following standard

Internal document 16/50

X ¥

“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document

<?xml version = "1.0"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtmll-strict.dtd">

<!-- JSP that take does something -->

<%-- page settings —-—-%>

<%@ page import = "Jjava.util.*" %>

<html xmlns = "http://www.w3.0rg/1999/xhtml">
<!-- head section of the document -->
<head>

<title>Some heading</title>

</head>
<!-- body section of the document -->
<body>

<% some Jjsp statement %>
some html statement

<% some jsp statement
&>
</body>

</html> <!-- end XHTML document —-->

e Standard class definitions (Java classes)

class —-class name- ((extends, implements) -—-parentclass-—)
{
-tab- -variable declarations-—
-tab- —-constructor declarations-
-tab- -method declarations-—

}
e Standard method declarations (Java and C files)
-return type—- -method name- (—parameters-—)
e Standard methods definitions (Java and C files)

—return type- -method name- (—-parameters-—)

// pre-condition: —-pre-condition description-
// post-condition: -post-condition description-—
// returns: -return description-

{

Internal document 17/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

- implementation -

}
e Standard variable names

Variable names in British English. If a variable name is a combination of several
words then these words are separated by capital letters. For instance: maxint.

e Comment language

All comments are written in British English. Shell comments are written clear
and short. No comments are written after the command, and they will be placed
in a new line.

3.5 Database Design

In this documentation a main title (level 1) exists for each table in the database. For
each table; “Fields”, “Referential Integrity Constraints” sub titles (level 2) exists. If
necessary “Indexes” sub titles could be exists in this level (level 2). Before “Fields”
sub titles descriptions about table exists. This descriptions explains table fields and
their usage.

A matrix exists under the “Fields” title. The rows of this matrix contains field
informations and the column of the matrix contains field name, fields type, default
value and descriptions. All field names is defined in the database as given below.
(small/big letter etc. with properties).

MEITC administration screen uses postfixadmin database tables. Postfixadmin
management applicaton works with Postfix mail server with no issues.

3.5.1 Admin table
This table contains administrator user information. This information is used to login
MEITC administration module.

Fields of admin table is defined below.

Name Type Default Value Description

username |varchar(255) Administrator user name
password varchar(255) Administrator password
created datetime 0000-00-00 00:00:00 Creation time of the record
modified datetime 0000-00-00 00:00:00 Last update time of the record
active tinyint(1) Status of the record

Index of admin table is defined below.

Name Fields Description

username username To disallow dublicate usernames and allows quick

Internal document 18/50

a%
3%
) 2

*

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

access to records

3.5.2 Alias table

Postfix alias information exists in this table. Postfix mail server uses address ve goto
fields. This tables is similar to /etc/aliases file.

Fields of alias table is defined below.

Name Type Default Value Description

address varchar(255) Source email address

goto text This field is destination email address.
Multiple destination email addresses
need to be separated by a "," (comma).

domain varchar(255) Domain name

created datetime 0000-00-00 00:00:00 |Creation time of the record

modified datetime 0000-00-00 00:00:00 last update time of the record

active tinyint(1) 1 status of the record

Index of alias table is defined below.

Name

Fields

Description

address

address

To disallow dublicate usernames and allows quick access

to records

3.5.3 domain table

Domain information exists in this table. In this table domain and description fields is
used by postfix mail server.

Fields of domain table is defined below.

Name Type Default Value Description

domain varchar(255) domain name

description |varchar(255) description of the domain name
aliases int(10) 0 alias quantity

mailboxes |int(10) 0 user account quantity
maxquota |int(10) 0 maximum quota

transport varchar(255)

backupmx |tinyint(1) 0

created datetime 0000-00-00 00:00:00 creation time of the record
modified datetime 0000-00-00 00:00:00 last update time of the record
active tinyint(1) 1 status of the record

Index table is defined below.

Internal document

19/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

Name

Fields

Description

domain

domain

to records

To disallow dublicate usernames and allows quick access

3.5.4 domain_admins table

This table contains domain administration informations. Field table is defined below.

Name Type Default Value Description

username |varchar(255) domain administration user name
domain varchar(255) domain name

created datetime 0000-00-00 00:00:00 creation time of the record

active tinyint(1) status of the record

Index table is defined below.

Name

Fields

Description

username

username

allows quick access to records

3.5.5 Log table

Log information exists in this table. Field table is defined below.

Name Type Default Value Description

timestamp |datetime 0000-00-00 00:00:00 process time

username |varchar(255) username of the user which made
the process

domain varchar(255) domain name

action varchar(255) process type

data varchar(255) information about process

Index table is defined below.

Name

Fields

Description

timestamp

timestamp

allows quick access to records

3.5.6 mailbox table

Postfix account information exists in this table, also including certificates and keypairs
for users. The following table shows the fields of mailbox table.

Name

Type

Default Value

Description

username

varchar(255)

postfix user name

Internal document

20/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

password varchar(255) postfix user password

name varchar(255) real name of the user

maildir varchar(255) folder name of the email information
which is saved

quota int(10) 0 quota information

domain varchar(255) domain name

created datetime 0000-00-00 00:00:00 creation time of the record

modified datetime 0000-00-00 00:00:00 last update time of the record

active tinyint(1) 1 status of the record

certreq text certificate request

cert text certificate of user

publickey text public key of user

privatekey |text private key of user

Following table gives index field.

Name

Fields

Description

username

username

to records

To disallow dublicate usernames and allows quick access

3.5.7 Vacation table
This table keeps a history of days taken for each vacation by the postfix user.

Name Type Default Value Description

email varchar(255) e-mail account

subject varchar(255) subject of the message
body text message content

cache text

domain varchar(255) domain name

created datetime 0000-00-00 00:00:00 creation time of the record
active tinyint(1) 1 status of the record

Following table gives index field.

Name

Fields

Description

email

email

to records

To disallow dublicate usernames and allows quick access

3.6 Software development tools

We used Visual Paradigm UML modelling tool for the object-oriented design. In
particular for the drawing of the sequence and class diagrams. For the development of

Internal document

21/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

the software Eclipse is used. This tool is the best known and widely used tool for Java
style programming. It consists of a source code editor, java compiler, javadoc
generator, jar builder and with some plugins it is possible to make programming in
widely different programming languages including JSP. For C and bash scripts standard
Linux editors Vi and kate are used.

For our documentation javadoc documents which are generated from the Java source
codes are used. OpenOffice is used for writing requirements and design documents.

4 Design issues

Design issues of MEITC regarding portability, maintainability, extendibility and
reliability has been explained in “WP06b.2 MEITC specification and test plan”. Most
important software system attribute requirements for the MEITC system which will be
developed is localization, defined below.

4.1 Localization

The webmail and the administration pages will have multilingual framework. The
language determination can be done in two ways.

e Either using the language and locale preferences that are transmitted from the
browser to the server using the HTTP request header field “Accept-Language”.
Since this header is intended primarily for language and cultural preferences.

e Using the locale determination and localization framework in JSTL.

In our system, we'll go with the second approach. JSTL supports both ways of
determining the user's locale preferences. MEITC webmail and MEITC Admin panel will
specify a fixed locale (usually one that the user has explicitly selected from the list of
supported languages), using JSTL's <fmt:setLocale> action. Once this action is used,
the specified locale is used for all locale-sensitive operations. If the <fmt:setLocale>
action is been used, locale-sensitive operations will search for the first supported
locale from the list of preferred locales provided by the Accept-Language header.

MEITC system is able to show all GUI in English and Turkish, however since a
localization framework is introduced, it's possible to localize the system (user and
admin screens) to other languages to ease communication.

5 Test plan

MEITC test plan will include the following items during the project development phase.
“MEITC Specification and Test Plan” includes a primary test document which is used as
a basis for this plan. It's planned that all tests will start by M30, the time 2" prototype

is ready.

1. Unit tests: This will be accomplished by the person who wrote the MEITC
administration screen. In order to find logical design errors, white box testing
will be used.

2. Module tests: This testing will be accomplished by all programmers working in
MEITC project. All the modules mentioned in use cases and later in MEITC
detailed design document will be tested. The expected outputs are those which

Internal document 22/50

X ¥,

l OTC-364: WP06b.3 MEITC Detailed Design and Test Document

are considered valid during the system's normal operation.

3. Integration test: This test will be done after all the MEITC components and
modules are fully tested using unit tests and module tests. All the upper
components (WS, MS, LS, DB) will be combined one by one (i.e incrementally) to
the domO and integration tests will be made accordingly.

4. Usability test: Since MEITC will be used by humans, functional testing should
be accompanied by usability tests to measure the layout, efficiency and
effectiveness of the user interface. The set of tasks will be identified after the
second prototype in M30 is finished. At the same time the analysis method of
collected data and representative sample of the real user population will be
discussed and finalized.

Internal document 23/50

*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6 Sequence diagrams

6.1 MEITC system startup sequence diagram

| sd MEITCSystem Startup,l

dom0 MEIT CWebS erver MEITCDES erver MEITCMailServer
SystemAdministrator tiGrub : : : :
1: ponar | | |
[}tl | | |
| | | |
| | | |
| | I I
2: integritfdh ecl = medsurevalues : : :
[: E] | | |
} } } }
£ | | I I
imegrityCheck = Success
[g] : 3 startlp : : :
4: pruperlyStan : :
< I I
| | |
Lz | | |
[properlyStarted = false] | | | |
5: domUnotitarted I I I I
| | |
- |"—I'| | | |
| | | |
| | | |
I | 1 I
| o | |
| 6 startlp | |
4 |
[:J 7 pl'upeli'ly'Star‘ted I
[f I I
| |
T | |
E"J | | | |
[properlyStarted = false] : : : :
| | | |
8: domUnofStarted I I I I
L1
[~ | | |
|:] | | |
| | | |
T | | |
| | | |
| | | |
| | | |
| | 9 startlp | |
| i
|:|j I 10: properlyStanedI
Iy i !
T |
[ait] I I I
[properlyStart ed = false] : : :
| | |
11: domUnoftrarted I : :
1
I~ L‘] | |
| |
| | |
T | | |
| | b L b |
limegrityCheck = Fail] " 1 1 1
| : | |
D‘{]__| 12: shutdawn, I I
| | | |
| | |
| | | |
T T | |
L L | | | |

Figure 2:MEITC system startup sequence diagram

Internal document 24/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.2 Adding a new user sequence diagram

sd AddANewl ser

Sy

Webinterface JConsole A pplication

MEITCWebSerer

MEITCDBSerder

temuddim ini Strator

1+ chias afddL 48 D peer Slian

2 ¢ enter L e dnformation

3: sendUsérinlainmation

A i Lse i dr aady Deliged

En

[result = true]

T di splayMe ssage

E: demand userinfor matien

<l

[result = false]

R -

e £ e e

|
|
|
|
[
|
|
|
|
|
|
[
|
4
|

S| re gyt Leer L5 er Infor ma tion

PRI T

L
|
]
|
|. B &rrorMelisge

N

I newlierlrealed

12: newllienrCremead E]d
|
|

Fiéure 3:Adding a new user sequence diagram

Internal document

25/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.3 Deleting an existing user sequence diagram

|sd DeleteAnExistingl serl,J

Sy PtemAdmini Strator

Wi bBrowser | Consoledpplication

METCWeb5erver

1 dhigaaasDy el ete L der Dips ration

27 enterlser name ToBel l sped

3! sendUsednformation

9

4 s Use raddr eady Defined
§imasult j]

[carfirm ation = true]

15 wser Deleted

| - 13: delerels arff rem Db

H(JERE e 1

[corfirm ation = false]

1% aparaticninterrupted

i Py OO 1 NS
iy

T
|
1
|
|
|
|
1
1
|
|
| |
| |
alt] | |
| | ’
[result = false] B wrrof Mei sage
| |j 2]
| D
1 |
1 T errarMes sage |
g |
|
1 [I |
| | |
B: demand userinformation | | |
<] | |
I"—rl | |
| | I
1 | I
1	
! ! !	
I	I
	I
! % demandConflirmation	:
iy	
1 demiandConfinmation	
<	

! !	
alt	
—‘)I 12: confirmatien : :	
DD i	

—_—————]emm e ——

1B: aperation iptenupted
1
i By
|
|
|
|
1 |
T T
| |
| |

Figure 4:Deleting an existing user sequence diagram

Internal document

26/50

X ¥,

l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.4 Sending an e-mail sequence diagram

WebB rowser

‘ MEITCDBServer

‘MEITCWEbSeNer

‘ MEITCMailServer

‘ MEITCLogServer

T

} An e-mail can be sent

| unsigned and
1: com poseEMail } unencryptad, signed,

| encrypted or signed and

! encrypted. This is the
case of unsigned and
unencrypted.

2: sendEMailD ata

| 3t sendEMailData

} 4: sendEMailD ata

ﬂ<]__| S: generateASecureReqordForEMail

6: sendEMailD ata

I "

7: storeEMailData

& dataStored

iy

9: sendUpdatedData |

10: sendUpdatedData }

L1: sendUpdatedData

Figure 5:Sending an e-mail sequence diagram

Internal document 27/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.5 Sending a signed e-mail sequence diagram

| sdl SendingASignedAndEnc rypted EMail |

x

WebBrowser

MEITCWebServer

MEITCM ail Server

METCCSP MET CLogServer

| METCOBServer

T
|
I
|
1: com poseEMail }

T
I
1
]
]
I
|
2: selectSignAnd EncryptEM ail Option | |
1
1
I

73 sendEM ail Data.

An e-mail can be sent as unsigned
and unencrypted, signed, encrypted

T
|
|
|
|
I
|
i
|
i
I
|
|
|
} or signed and encrypted. This is the

1
! 4 sendEM ailData

1

case of asigned and encrypted mail.
The signature of the user is already
generated.

q__| 5: signEMail

6:sendSignedEMailD ata

E—
[

71 encrpytEMail

I
I
|
B: dendSign ecn dEncrypte dEM aill ata

9: sendEM dil Data

]

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
B

10: generateASecureRpcordForEMail

11: sendEMailData

|
|
|
|
|
|
12: storeEM ailData

!

13 dataStored

I
I
]
1
1
1
I
1
]
]
I
i
]
]
1
1
I
1
1
1
I
i
]
]
I
I
I
]
1
1
1
I
1
]
]
I
i
]
]
| 14 sendUpdatedData

L S

15: sendUpdatedDzfa

|
16 sendUpdatedData |

Figure 6:Sending a signed e-mail sequence diagram

Internal document 28/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.6 Sending an encrypted e-mail sequence diagram

sd SendingAnEncryptedEMail)

X

User

WebBrowser MEIT CWeb5 erver

| MEITCMailS erver

| MEITCCSP | ‘ MEITCLogServer

| MEITCDBServer

T
|
1: composeEMail }

T
13: s endEMailD ata

An e-mail can be sent as
unsigned and unencry pted,
signed, encrypted or signed
and encrypted. This is the
case of an encrypted mail.

T
|
|
|
|
|

2: selectEn cryptEMail Option | }
|
|
|
|

4 sendEMailD ata

|
| | 5:sendEMailD ata

B encrpytEMail

T

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| |

| |

| | | |
| | | |
} } T: sendEncypted EMailDatd }
| | |
|
|
|

8 sendEHlIaiIDala |
| DE' |
|

1 1
: |:| a9 generaIaASecul'eReco"dFmEMaH
i

10: sendEMailDat]

A

UI_‘ 11: storeEMailData

e e =

13: sendUpdatedData

|
14; sendUpdatedData

15: sendUpdatedData }

L3
L
|
|
|
|
|
|
|
12: dataStored |
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Bt e e B

Figuré 7:Sehding an encyrpted e-méil sequencIe diagram

Internal document 29/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.7 Sending a signed and encrypted e-mail sequence diagram

| sd SendingASignedAndEnc ryptedEMail)

s

User

WebBrowser

MEITCWebServer

MEITCM ailSe rver

METCCSP METCLogServer

| MHTCDBServer

T T

I I

I I

| |

1: com poseEMail } }
|

2: selectSignAnd EncryptEM ailDption | |
I
|
|

|3 sendEM ailData

An e-mail can be sent as unsigned
and unencrypted, signed, encrypted
or signed and encrypted. This is the
case of asigned and encrypted mail
The signature of the user is already
generated.

T
! 4: sendEMail Data

| —

q__| 5: signEMail

6: sendSignedEMailData

U

72 encrpytEMail

endSignedAn dEncrypte dEM aild ata

-

:H

a: sendEM il Data
|

I S

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
B

10: generateASecureRecordForEM ail

11: sendEMailData

|
|
|
|
|
|
12: storeEM ail Data

!

é
@
&«

I
|
|
I
|
|
i
I
|
I
I
I
|
I
|
I
i
I
|
I
|
I
I
I
|
I
i
|
|
I
|
i
I
I
|
I
|
|
I
I
|
i
I
|
| 14: sendUpdatedData
|
|
I I
5. sandUpdatedDafa

|
16: sendUpdatedData |

Figure 8:Sending a signed and encrypted e-mail sequence diagram

T
I
|
|
|
I
|
I
]
T
|
I
|
|
I
I
|
I 13 dataStored
T
|
I
|
|
I
I
|
I
I
|
I
I
|
|
I
|

Internal document 30/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.8 Deleting an e-mail sequence diagram

| sd Deleting AnEMail)

% ‘We bE rowser MEITCWebServer MEITCMailserver MEITCDE Server

User

|
|
|
|
1 selectEI‘daiITDEeDeletde

2I startDeleteOperation

g
:

3: sendDeletingData

ijl 4: sendDeletingData i
u 5. delete EM ail
|
|
|
I

|

vJ<IS: eMailDeleted
7. eMailDeleted |

I

|

|

|

|

|

!

8. eMailDeleted

|
9: eMailDeleted

A .
I
|

e

Figure 9:Deleting an e-mail sequence diagram

Internal document 31/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.9 Accessing user's inbox sequence diagram

|sd AccesﬂngTheUserﬂnbuxJ

% WebBrowser MEITCWebServer MEITCM ail Se rver METCDEServer

Uzer I T
I |

1:getinboxData : :
|

|

|

g

| 2: getinboxData

3:inboxData [j:|
e e — —
I
|
|
|
1
|
|
|
|
|
|
|
|
|
1
|
|

4:inboxData

!
|
|
|
|
|
|
|
|
|
5 inboxData !

ErinboxData | D

|

D |

| |
| |
:ImoseNenDpegtE_ll:-n :
I

|

|

"

s [s

Figure 10:Accessing user's inbox sequence diagram

Internal document 32/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.10 User authenticates via MEITC sequence diagram

UserAuthenticatesy iaM BTC)

% Web Br owser MET CWebServer MIET CMailServer WET COBServer MEITCCSP
T
|
|

User

T

] |

L stanUp :

&> |
| |
| I
|

1

‘ﬁes tablishATrustedCha E"E

),

Remateditestation

fenner s erinformy ioh
[4 sendUserinto rmaticy

Y,

Remotetiestation

I
|5.esl.:blulmTuu|ec.'C||.:u|E|
|
T
|
I
|
t
I
|

D & sendU sernformation

7: establishATrus tedC hannel

N

(]

RemaoteMtet stion

B! demand userinformation

9. sendlde mameAndPassward

|
10 checkUse rmameAnd: P.n|\ ward
I

al 1 11 aparationinterrupted 1
[checkUsernam eAndPas sword = false] D

2: eperation intemupled :

I

13 perafioninterr upted !

| |

14: aperationinterrupted |

i< |

|

I

: i

|
15: establishATru sted Channe iContr olle dBYTCB

T
I
1
i
I
I
1
i
I
I
1
]
I
I
1
i
1
I
1
i
I
1
1
i
I
1
1
i
I
I
1
i
I
I
1
I
I
I
1
I
I
1
I
I
I
1
i
1
I
1
I
I
I
1
I
I
1
1
I
I
I
1
I
I
I
i
I
I
1
1
I
I
1
i
|
I
1
i
I
|
1

%

D 1 1

16 isCertificaeDelihedForlser
I
1
| 17: chet kllserCenilicate
18: resuly
T T

T

I |

I

1

|

1

i

I

I

1

i

I

I

1

]

I

I

1

|

1

I

1

i

I

I

1

i

I

1

1

i

I

I

1

i

i

alt] 18 operaticninterrupted |
[result = false]

20: operationintdrrupted

17 gperatioh interrupled I]
22: operajion interr upted
I
| [I

23: operation Interrupted I

R

<
i i
| |
I I
| |
| |
| Zg] Authentic stienSuc ceaded |
zj. jullueummcuﬁucmwﬁ
|
|
26{Juthentic sticnSuc cestied

Figure 11:User authenticates via MEITC sequence
diagram

Internal document 33/50

*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.11 Taking TPM ownership sequence diagram

| s TakingTPMDwnership)

System TPM

Syste mAdm inistrator I
I

I
1: chq DseTakeOwner’shi|:|0|:|eratlin:|n

I
|
2 requestOwnerPassword |

<

___:_

3. enterCwhe rPassword

=2

4: reqguestSREPassword

<

5. enterSRE Password |

.:.____

6: takeCwnership

P

7 ownershiplsTaken

<

A

Figure 12:Taking TPM ownership sequence diagram

Internal document 34/50

OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.12 Establishing a trusted channel sequence diagram

[sd EstablishingAT rustedC hanne|)

Prosypplicatien0nlc

Li g & Coum partm &n 1

T

|

i
2: 5.I1.||IF'n'.';':".-.l"n:-|:-Ii\'.1.1lia'_'nI:ﬂ::I

|

i Tiowait

Inco mingC ennection

Prasyihpplatien0nhC

4; readProxyCaonfigurationFile
i 5 stanlinenaSolvaare

B create
| D

B! interruptListene rPraxy

O opeie nSSLC onnction

Regues tingC

1 sranProxy Ap phic ation

e

RemoteAtest ion

1 stansession

11: saweSessionTime

2 ¢ vrudtedl hannel Esta blishe d)

<

== _“Iﬁ_@]— M- 1-@:———%—

13: weustedC han nel Esta blis hedD

3 readProxyZontigurationfjilE

i pa rtm &n i

-

Figure 13:Establishing a trusted channel sequence diagram

Internal document

35/50

;T\LFFQ OTC-364: WP06b.3 MEITC Detailed Design and Test Document
y

6.13 Remote attestation sequence diagram

sd RemoteAttestation .-| s

Sour o Proxy TargetPraxy TIPM

Sy svem Ak ini strator
1: apeinC cnne clicn

2:1gE1 TPM Quate j]
S TPMQuat &
(S AEREE T T T T T T T T T T T T T m oo

O e B o PR

B werificationSudces ded [:]
[}
|
|
|
|
|

7 getTPMQuats
B TPMQuots

G sendQu ote :
|
|
|
|
|

11: anestationSucceeded % :
}
|
|
|
[}
|
|

0 e 0 uptes en By Tar getPraxy I
|
|

|

i |

1?} antes talionSu coeede |
]

|

|

Figure 14:Remote attestation sequence diagram

Internal document 36/50

’*”l\ OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.14 Creating a certificate sequence diagram

sd CreatingCertificaleJ

WebErowear WEITCWeES | WET CCentficateManag | ‘ WETCertifi a ‘ |Dp!n§!L| |MEIT(DE!!nrzr

SystemAdm inistrator

T
|
]
]
1: chdolse Certificate Re questippr wepp(iun :
|
]

T
|
|
|
I
1
|
|
2: sendC ertCreationDatd :
1
|

3:sendCertCreationData

D, 4: sendC enCreationData
|:| | 5: sendCertCreationData

il

I
| D;‘ &: gen erateC ertificat
I
|
I

|
|

7:sendCreatedCert | :

1

|

! |
| | |
| | |
! 1

8 sendGener*edCenDaﬂ
T

9: storeCertData

10 dataFtone d

11: certCreated

!

i

]
]
]
I
i
|
]
I
]
|
]
]
]
I
|
]
]
]
I
|
]
]
]
I
]
]
]
]
I
i
|
]
I
]
|
|
]
]
I
! 12: certCreated
]

]

I

|

I
13 certCreated |

14; cartCreated 1

= ey

15 informUse |(e|1cre aed

--------—--—-ﬂ-iﬁ-&

!

Figure 15:Creating a certificate sequence diagram

Internal document 37/50

;t’l\ 7~ OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.15 Creating a certificate request sequence diagram

sd CreatingCertificateRequest)

s

T

5

M |
I

METCCeni | MEITCCeni | DpenSSL METCOBS=rver

|
L: chapt eCe nificateReque s§Option

i
[giveConRagDats |

The Union of METC Certifical
Manager Frontend and

T
|
1
|
|
|
1
|
| |
2: askCen RegDana | !
|
|
i
| Backend is METCCSF.
|
|

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

| 4: sendCenkeqData }

|
|

5 sandCerRegData
I

| 6: sendCerRegDats

B generseCenfeg

3: generatePrivaeKey

sendGeneratadCenRegndP ity

! 11 seuuceueuueudfnkeunucrm-mymu
T

|
|
| 12: storeCen Reg Data
|

|
i
! 13: dafastorad
|
|

T
T
|
I
|
|
|
I
|
|
I
I
|
|
I
I
|
|
I
I
|
|
|
I
|
|
|
I
|
|
|
I
|
I
|
: 14: cerntRegCreatsd
I

|

15 coneaCreated |

L6 certRenCreated |

I
|
7 cerReqCreaed |

______________________E,ﬁézr-__

S W

Figure 16:Creating a certificate request sequence diagram

Internal document 38/50

*“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document

6.16 Creating a certificate revocation request sequence diagram

sd CreatingCan\ficaleRevocatmnRequestJ

S

‘WebBrowser

| METCWebS erver

| MEITCCertificate ManagerF rontEnd

| MEITCCertificateManager BackEnd

‘ METCDES erver

User

H (housaCenRevRerulion

| 2:sendCertRevReqData

2: taltRevRequeatec‘

|
11: certRevReqCreated |

3 sendCertRevReqData

10: certRevReqCreated

4:sendCertRevReqData

9: certRevReq Created

I
I
D<1__| 5. createCertRevReq
I

6:sendCertRevReq

B dataStored

D
.

13: informSysAdminCertR

eq

Sys

D:_‘ 7: storeCertRevReq Data

l?

ﬁ
:

Iministrator

Figure 17:Creating a certificate revocation request sequence diagram

Internal document

39/50

;l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

6.17 Revoking a certificate sequence diagram

sd RevokingCertificate,]

WebBrowser MEITCWebServer

System Adm nist rator :
1

MEIT CCertificateManagerFrontend

MEITCCertificateManagerBackEnd

| UpEnSSL| | METCDBServer

T
|
1

1 1

1: chpaseCertificateRevor ationAp prove) ption |

1

|

|

sendC ertRevo cation Datd

B

| 3 sendC enRevocationData

1

! 4: sendC ertRevo cation Data
C] I
15: sendC ertRevocationDatal

DQ_—| 6: revokeCert
DQ_—‘ 7: regenerateCRL

Dqt‘ SverifyCert

|
91 sendRevocationDatasndC PL

10: sandRevodationAndC RLData
1
|
]
1

T
|
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
I
I
I
|
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
|
o
|
| 11: storeCertRevandCRLData
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
|

|
12 ditaStored
I

T

1
]
]
]
1
I
1
1
1
1
I
1
1
1
]
I
|
]
]
I
|
|
]
]
I
|
|
]
]
1
I
]
1
1
1
I
1
1
1
! 13: certRevoked
1

]

]

14 certRevoked I

15: certRevoked |

e

16: certRevoked |

I
17: inform UsgiCertRevaked
H

—e——

Figure 18:Revoking a certificate sequence diagram

Internal document 40/50

g

% OTC-364: WP06b.3 MEITC Detailed Design and Test Document

7 MEITC All Classes diagram

M essageExchangelnfrastructureForTrustedComputing|
rox ion
+readProxyCorfigurationFilst
+truste dC hanne [Established
1
stansllp 1 makes remete attestationwith | ___
+create Conne tion) L ans ST)
+apenssLConne ction)
+properyStanedi 1 1 mtermipts
In comingConnection +saveSessionT ime()
1 1
RequestingCompartme nt [stenerCompartment |
startProxyApplication) 1 startslp
1 1
—METCKebSener — MEITCRBSever | +establishATrustedChanneld
~isUsarAlrsadyDsfined +sendResult]) +dem andUserinfom ationd +dem andUserirfom ation
+displayMessage0 +sendErmorhlessaged SO 0 e) +newl se i€ reated)
+registerlserinfarm ationg +nemliserCreated) +operationintermnipted +sandCanfirm ationD)
+nenl serC reated) +userDeletedh + establishATrustedChanne [Controlle dByTCEO +dem andConfirmation(
D e T 1 4| esendserman sandpasswordy | | | [+ist ertaeDetmeaFonlsery wuserDeleted)
0 - +operationinternipt ed
+userDeletediy isConnectedTo |4 store EM ail Datal) isConnectedTo | +getinboxDatag +sendlser|nform ation0
tedChannel) t 10
+authenticationSucceededi +eMailDelsted() +5endEM 2ilData0 +authenticationSuccesded)
+getinboxDatal +storeCenReqDatal tsendUpdateDatat +sendinboxDatal
+sendinboxData +storeCertData) +sendDeletingDatad +sendEMaiData)
+sendEMailDatal +storeCentRevReqDatad +delete EN ailFrom DEO +sendUpdaredDatat
+sendUpdateDatal +storeCertReuAndCRLData) +eMailDeleted) +sendDslstingDatal)
+sendDeletingData) LeignEMailo +eMailDeletedtn
+eMailDeleted() +sendSignedEM allData) +askCertReqDatal
+sendCertRenDatat +sendCertReqDatat
+eertReqCreatedis 1 1 +eenReqCreatediy
+sendCertCreationData) +inform SysAdm in€ ertRe i
+sendCentRevacationDatal +sendCenCreationDatal
+cetCreate dO +certCreate dO
+sendCentRevRe aData +infom ll e i€ ertC reated)
+certRevReqCreate i isConnectedT +sendCertRevFe aDatat
+eertRevoked) +eenRevReqC reatedi)
1 +infam SysAdm inC ertRevReqd
i +sendCertRevoeationDatal
“WEIT ChebServer W EITCC ertificate M anagerFromEnd +cenRevokedn
M EIT CMallServer ~MEIT CC ertificate M anagerBackEnd +inform Use i€ ertRevoked(
MEITCDBServer ——{+encrypEMailo £
-MEITCCSP +ssndEncrypte dEM 2iData) 1 1
-MEITCLogServer i
+requestwne Passnordl
+requestsRKPassword(| 1
e L e Y 1 akeng oo s
t’w isicludedin
uses
! istndhedin
+sandCertRaqDatan
+eartReqC reate o 1
+sendCertCreatianData) Ussy.
+sendCeneratedCenDatad +startUplserinterfaced
e e +ente rUserinfarm atiang
+create CartRevReqih +chaoseNextD pe ration)
+sendCertRevReql +eompaseEM il
+cartRevRaqC razte df) +selectEMaill oBeDeleted)
+sendCertRevocationDatad +startDelete Operationd
+sendRevacationsnd CRLDxta +selectEncryptEM ail Optian)
et B +selectsignAndEncryptEMailOptiond
+chaoseCerificateRe questOptiond
+give CertRa qData)
ipisedBy +chonseCerRevRagdptiond
+generata CertReqQ
+generate PrivateKey)
+5andGa ne FtedIC ertReq AndPrivKeyData
+generatedCenficate
+sendCreatedCeny
+revokeCert)
+regenerataCRLY
svarifyCan)
+sendRevocationAndC RO containg ufes
uges ' EConnactadTa
MEITCLogServer
+generate dASecureRecardFarEM ail]
domd domT
Meitcsystem “METCDESere r
~donT -MEITCC ertificate ManagerBackEnd
~domy
cwnfains
cqniains
damil
-MEITC ebS erver
o -MEITCH ailServer
o -MEITCC ertificate ManagerFrantEnd
+power)

+theoseTakeOwnership0pe rationd
+enterwnerPassword0

+ente rSRK Passwordd 1
+chooseAddUserd peration)
+ente tUserinform ationg
+theoseDeletellserOperationd
+enterlisernam e ToBeDelete d0

+sendConfimationd
+chooseCe tificateRe questApprove Optiond CETALL LT
+choaseCe ificateRevocationApprove Optiond +sendQuoted
+apenCanne tiond +uerifyQuoteSe mBySource Proxy)
1 | +geTPQuoten sverificationsucceeded(
+sendQuote) +gstTPH Quots)
+verifyQuoteSe mByTargetPraxy(+sendQuoted
+attestations uccasdedd

Figure 19:MEITC all classes diagram

Internal document 41/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

8 Installation

This section contains information resolving issues to do with the installation of all parts
of Message Exchange Infrastructure for Trusted Computing (MEITC) system.

8.1 Package structure
In MEITC the following software package structures will be used.

e RPM (Red Hat Package Manager)
e PISI (Packages Installed Successfully as Intended)
e TAR (Tape Archive)

PISI is the package management system of Pardus Linux distribution. It stores and
handles the dependencies for the other packages and libraries in a database in XML
format. Pardus repositories contain Apache, Dovecot, Cyrus-sasl, MySQL, Java
Development Kit and Postfix PISI packages, which are necessary for proper running of
MEITC system.

RPM is a powerful command line driven package management system capable of
installing, uninstalling, verifying, querying, and updating computer software packages.
RPM is a core component of many Linux distributions, such as Red Hat, Fedora, SUSE,
Mandriva and many others. All MEITC software components will be available in RPM
file format.

Tar archive is the most common means of distributing bundles of files. This format is
traditionally produced by the Unix tar command. Necessary software packages
for MEITC framework will also be prepared in tar file format. After installing a tar
package, some modifications may be needed to run software packages properly.

8.2 File and directory structure

The following MEITC components file and directory structures are explained in this
section:

e Web Server
e Mail Server
e Database Server

The symbolic name "$PREFIX" is used to refer to the full pathname of the release
directory of installed software.

8.2.1 Web Server

For the message exchange infrastructure on the web server part, the following
softwares should be up and running

Apache Web Server: Version 2.0.3 or more

Java 2 Standard Edition Runtime Environment (JRE)
Apache Tomcat: Version 5.5

Claros: Version 1.7

Apache web server is used for the incoming connections to the web server. Apache

Internal document 42/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

will redirect the requests via JSP to the mail server, where a Postfix system is installed.
Apache HTML files are located in the following folders:

e /var/www/localhost/htdocs (Pardus)
e /srv/www/htdocs/ (openSUSE)

Apache configuration file is located in the following locations:

e /etc/apache2/httpd.conf (Pardus)
e /usr/local/apache2/conf/httpd.conf (OpenSUSE)

By default, Apache uses port 80, and Tomcat uses 8080. These settings can be
changed in the configuration files.

Apache Tomcat 5.5 requires the Java 2 Standard Edition Runtime Environment (JRE)
version 5.0 or later. The following directories will be used for JRE.

e /opt/sun-jdk/bin: Executables for all the development tools contained in the JDK.
The $PATH environment variable will contain an entry for this directory.

e /opt/sun-jdk/demo: Examples, with source code that shows how to program for
the Java platform.

e /opt/sun-jdk/include: C-language header files that support native-code
programming using the Java Native Interface and the Java Virtual Machine
Debugger Interface.

e /opt/sun-jdk/jre: Root directory of the Java runtime environment used by the JDK
development tools.

e /opt/sun-jdk/lib: Files used by the development tools. Includes tools.jar, which
contains non-core classes for support of the tools and utilities in the JDK.

e /opt/sun-jdk/man : Contains man pages for the JDK tools.

These are some of the key apache tomcat directories

e S$PREFIX/bin — Startup (startup.sh), shutdown (shutdown.sh) and other scripts.

e $PREFIX/conf - Server configuration files (including server.xml).

e S$PREFIX/logs - Log and output files

e $PREFIX/shared - For classes and resources that must be shared across all web
applications

e S$PREFIX/webapps - Automatically loaded web applications

e $PREFIX/work - Temporary working directories for web applications

e /tmp - Directory used by the JVM for temporary files (java.io.tmpdir)

Claros files are located in $PREFIX/webapps/claros. Claros contains the following
directories:

Internal document 43/50

:“l OTC-364: WP06b.3 MEITC Detailed Design and Test Document
*

e $PREFIX/webapps/claros/WEB-INF/config/config.xml file can be used to
change main configurations. PREFIX is the real path to the Tomcat installation.

8.2.2 Mail Server

The mail server is used to handle the incoming and outgoing mails. Mail server runs
postfix and dovecot to answer POP3/IMAP connections and contains following software:

e Postfix
e Dovecot
e Cyrus-sasl

Postfix files are located in /etc/postfix directory. In this directory, settings for MySQL
are defined in order to store users' mailboxes properly in
database. /etc/postfix/main.cf file is used for main Postfix configuration.

Dovecot is used for handling POP3/IMAP connections for Postfix. The incoming
connections and requests for connecting users' mailboxes are redirected to cyrus-sasl
for encyrpted connection. Dovecot's files is located in the following folder:

e /etc/dovecot

/etc/dovecot/dovecot.cf file is used for configuration.
8.2.3 Database Server

Database server holds the users' mailboxes and informations. It contains following
software packages.

e Mysql
MySQL's files is located in the following folders:
e /etc/mysql : my.cf and mysqlaccess.cf is used for configuration.

e /var/log/mysql/ : Log files for mysqgl which is mysqgl.err, mysql.log and mysqgld.err
is located in this path.

9 Graphical user interface

9.1 Webmail GUI

Internal document 44/50

* OTC-364: WP06b.3 MEITC Detailed Design and Test Document
3 Ule

9.1.1 User Login Screen

YELAREDYS

in touch

LOGIN
Username: |D|:Jent|:: |

Password : [+ |

Server:[192.168.3.135 -]

Login

Figure 20:User login screen

9.1.2 Inbox Screen

C/CLARLH

Quick Menu < = Preferences : Loegout

= E-mail + E-MAIL - INBOX : (7 Messages) G % Car] @
Check E-mail Mew E-mail Folders Filters

(= msox (a)

acet | S

= sent Mail gorkem@meitc.com No Subject 29.12.2006 17:00 <1K

3 pardus l_ opentc@meitc.com opentc@meitc.com 29.12,2006 16:40 <1K

1 opentc@meitc.com No Subject 29.12.2006 16:38 <=1K

LIS = opentc@meitc.com opentc@meitc.com 29.12.2006 16:35 =<1K
« Calendar [T opentc@meitc.com asdasdasdasdad 29.12.2006 16:34 <1K
@ Notes l_ opentc@meitc.com opentc@meitc.com 29.12,2006 16:32 <1K

3 unfiled opentc@meitc.com asdads 29.12.2006 14:39 =1K

3 gebze Move Selected To : [ok |

Figure 21:Inbox screen

Internal document 45/50

* OTC-364: WP06b.3 MEITC Detailed Design and Test Document
) J[e

9.1.3 Compose Email Screen

.OCLAR(M

Quick Menu =

= Preferences - Logout

—
@ E-mail : EMAIL - COMPOSE : +
) @ Send Attachments
4 INBOX (4]
E& Junk Mail From: Gorkem Cetin <=gorkem@meitc.com=>
(=2 sent mail To: Search:
3@ pardus o
Bee:
© Addresses Subject: Please type in
. " == — s na—oeae o W some text(name,
» Calendar ~Fontsize—~ ~[B J U s | EE == [2E| 56| Eawpq|(@m middle name,
@ Notes surname, email
e . address) in the
o Lintder search textbox for
3@ gebze

to query for a
contact.

Figure 22:Compose email screen

9.2 Admin GUI

9.2.1 Admin Login screen

MEITC ADMINISTRATION SCREEN

login

LOGIN

Username : I

Password : I

Login |

Figure 23:Admin Login screen

Internal document 46/50

* OTC-364: WP06b.3 MEITC Detailed Design and Test Document
) J[e

9.2.2 Main menu screen

MEITC ADMINISTRATION SCREEN

main menu

+ User list

+ Add a new user

+ Delete an existing user
+ Reseting user password
« Backup

+ MEITC services

« Change admin password

+ Logout

Figure 24:Main menu screen

9.2.3 User list screen

MEITC ADMINISTRATION SCREEN

user list |
1D User Name Total Quota Status

100 kadir 20 MB passive

101 gorkem 50 MB active

102 volkan 30 MB active

103 ali 30 MB active

104 erdinc 20 MB passive

105 levent 10 MB passive

Figure 25:User list screen

9.2.4 Add user screen

Internal document 47/50

* OTC-364: WP06b.3 MEITC Detailed Design and Test Document
) J[e

MEITC ADMINISTRATION SCREEN

add a new user

User Name :

Password : |

Password (Again) :

Total Quota : I MEB

Status : |

Create User Account |

Figure 26:Add user screen

9.2.5 Delete user list screen

MEITC ADMINISTRATION SCREEN

user list

1D User Name Total Quota Status

100 kadir 20 MB passive delete
101 gorkem 50 MB active delete
102 volkan 30 MB active delete
103 ali 30 MB active delete
104 erdinc 20 MB passive delete
105 levent 10 MB passive delete

Figure 27:Delete user list screen

9.2.6 Delete user screen

Internal document 48/50

* OTC-364: WP06b.3 MEITC Detailed Design and Test Document
) J[e

MEITC ADMINISTRATION SCREEN

delete user
User Name : |Gorkem
Password : I’W‘““
Password (Again) : I""'"‘““
Total Quota : |50 MB
Status : I’
Delete User Account |

Figure 28:Delete user screen

9.2.7 Reset user list screen

MEITC ADMINISTRATION SCREEN

user list |
1D User Name Total Quota Status

100 kadir 20 MB passive reset
101 gorkem 50 MB active reset
102 volkan 30 MB active reset
103 ali 30 MB active reset
104 erdinc 20 MB passive reset
105 levent 10 MB passive reset

Figure 29:Reset user list screen

9.2.8 Reset user screen

Internal document 49/50

*‘@’% @ﬂﬁ OTC-364: WP06b.3 MEITC Detailed Design and Test Document
**J y U |

MEITC ADMINISTRATION SCREEN

reset user password

User Name : Gorkem
Password : I""W
Password (Again) : I*”"*
Status: Active

Reset User Password

Figure 30:Reset user screen

9.2.9 Services screen

MEITC ADMINISTRATION SCREEN

meitc services

database server running
mail server running
web server running
log server stopped

Figure 31:Services screen

Internal document 50/50

SWPO06.c: WYSIWYS high level requirements

specification
Project number IST- 027635
Project acronym Open_TC

Project title
Deliverable type

Open Trusted Computing
Internal deliverable

Deliverable reference number
Deliverable title

WP contributing to the deliverable
Due date
Actual submission date

IST-027635/D06c.1/FINAL 1.00
WYSIWYS high level requirements
specification

WP6

Oct 2007 - M24

Nov 2007

Responsible Organisation

Politecnico di Torino

Authors Gianluca Ramunno, Marco Vallini (POL)

Abstract WYSIWYS is a functional and security
requirement for electronic signatures,
especially when used in legal contexts. This
document consists in a high level
requirements specification for a WYSIWYS
application designed for OpenTC security
architecture.

Keywords

Dissemination level Public

Revision FINAL 1.00

Instrument IP Start date of the 1 November 2005

project
Thematic Priority IST Duration 42 months

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Table of Contents

1 Motivation and problem description..........ociiiiii 5
2 SECUNtY ENVIFONMENT. .. e 6
D A N~ U T o) o (o 1= PPN 6
p A 1 o] (1= | £ PR PP PPRPRN 7
3 Functional Requirements (Use Case Model).........ooooeiiiiiiiiiii e 10
Rt o - | PP 10
I T =Y o 1= A 1 o 11 1 o 1= 10
3. 3 ROIES AN ACTO S e ittt 10
T A @ V7= oY1= PP 10
3. 5 Use Cases (Detailed DeSCriptioN).......cuiiiiii e 11

s T Y o T = e [0 Yol [0 4 1< o | PP UPTR 13

3.5. 2 Verify a signed dOCUMENT 14

3.5, 3 BasSiC OPEratiONS. . e 15
4 Security Objectives & Security ReqUIrements..........coooui i 22
4. 1 SeCUNtY ODJECHIVES. ..o 22
Y =Yel U g YA A =To LU 11 =T 0 4 T= 1 =T 22
5 Supplementary ReQUITEMENTS.iuu i 24
T o =Y] o o Lo 1= PP 24
o T S =To LU 1 =T IO =] o - TSP 24
TG B B L= = To I O | = = TR PP 24
5. 4 DistingUISNING Criteria. ... vu i e e eees 25
5. 5 EXECULiON ENVIFONMENT. .. i e e e 25
s T Yo 1 T T = PPN 25
5. D 2 HalAWar e e 25
5. 6 Development ENVIrONMENT... ..o 25
5B, L SO WA i 25
SN T o =T o LT < T PP PRI 25
6 High-Level Software Archit@CtUre..o 26
ST A o To | Tof= | B) PP 26
B. 1. L PaCKAOES. ittt 26
6.1. 2 Use Case realization.........oiuiiiiiii e 28
7 List Of AbDreviations. 36

Open_TC Deliverable 06c.1 2/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

List of figures

(o TU) g I U LRt LY =T o [1= o | = o o TP 11
Figure 2: Package diagrami. .. i 26
Figure 3: UC 30 SequeNCe diagram. ... eiiiiie e et e e e et e et e e e e e eanens 29
Figure 4: UC 40 SeqUENCE Aiaglram......cuu it ei e et e et e et e et e e e a e e e e e eanas 30
Figure 5: UC 50 SeqUENCE Aiagram. .. i e e e e et e e e e eneens 31
Figure 6: UC 60 SeqUENCE iagram. ...t e e et e et e e aaneas 32
Figure 7: UC 70 SeqQUENCE AIagram. ... ceu ettt ei et et e e e e e e e e eanas 33
Figure 8: UC 80 SeqUENCE Aiagram. . it e e e e et e e e e eneens 34
Figure 9: UC 90 seqUENCE Aiagram......c.uieiiiieiteeeeee e e e e e e e e e e e e e e e e e eeneennnas 35

Open_TC Deliverable 06c.1 3/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

List of Tables

Table 1: Packages required DY USE CaSES.....c.iiiiiiiiiiii e 28

Open_TC Deliverable 06c.1 4/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

1 Motivation and problem description

“What You See Is What You Sign” (WYSIWYS) is a functional and security requirement
for electronic signatures, especially when used in legal contexts (e.g. the European
Directive 1999/93/EC on electronic signatures). To guarantee the trustworthiness of
the content displayed and being signed, there is the need to guarantee a trusted path
from the signing (or verifying) application to the user and in the opposite direction.
Many past and present solutions that claim to be WYSIWYS compliant, in reality they
are not. In fact they do not protect against the Trojan software or “malware” that can
act on either the document image displayed to the user or the user’s input to activate
the signing device operations. This is caused by the insecure architecture of the 1/0
subsystems integrated within the current monolithic Operating Systems.

Therefore the design of a WYSIWYS application must also take into account the
underlying architecture in order to guarantee the actual trustworthiness of the
application. In particular trusted input/output paths between the application and the
user must be must be in place in order to guarantee the correct binding between the
document presentation and the data actually signed or verified.

The security properties and services provided by OpenTC architecture can be used as
foundation for a WYSIWYS application; enabling features from OpenTC are the trusted
GUI, the assurance about the integrity of the security architecture and of the
application. Moreover memory isolation through virtualisation and information flow
control policies allow designing the WYSIWYS application in a modular fashion with a
strong confinement of components with different levels of requirements for strength.

Another relevant aspect is the correctness of the document presentation. Given the
complexity of the current document formats, designing and implementing trustworthy
viewers solely for the purpose of a secure electronic signature doesn't match the
market requirements, making this infeasible in practice. However a pragmatic
approach can be used to go in the right direction for achieving this requirement:
standard applications used to produce the documents being signed can be used as
“trusted viewers” provided that they are properly configured to avoid hidden content,
and dynamic content depending on the platform configuration or on the time when the
document is presented.

This document includes a high level requirement specification for a reference
architecture of an application for signing and verifying electronic documents that
satisfies the WYSIWYS requirement.

Open_TC Deliverable 06c.1 5/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

2 Security Environment

This section describes the security aspects of the environment in which the
product is intended to be used and the manner in which it is expected to be
employed.

2.1 Assumptions

A description of assumptions shall describe the security aspects of the
environment in which the Target of Evaluation (TOE) will be used or is intended
to be used. This shall include the following:

e information about the intended usage of the TOE, including such aspects
as the intended application, potential asset value, and possible limitations
of use; and

e information about the environment of use of the TOE, including physical,
personnel, and connectivity aspects.

/A 10/ Trusted Administrator
The security administrator of the system is non-malicious.

/A 20/ Correct hardware

The underlying hardware (e.g., CPU, devices, TPM, ...) does not contain backdoors, is
non-malicious and behaves as specified.

/A 30/ No Physical attacks
Physical attacks against the underlying hardware platform do not happen.

/A 40/ TOE Binding

The IT-environment offers a mechanism that allows the TOE (WYSIWYS application) to
store information and data like signing keys such that it cannot be accessed by
another TOE configuration. Example mechanisms are the sealing function offered by a
TPM as specified by the TCG in combination with an authenticated bootstrap
architecture, or a tamper-resistant storage in combination with a secure bootstrap
architecture.

/A 50/ No man-in-the-middle attack

A physical attack that relays the whole communication between a local user and the
I/O devices to another device does not happen.

/A 60/ Trusted video path
The architecture underlying TOE provides a reliable and secure video output path.

/A 70/ Trusted input paths
The architecture underlying TOE provides reliable and secure paths for input devices

Open_TC Deliverable 06c.1 6/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

(keyboard, mouse, etc.).

/A 80/ Trusted path to cryptographic devices

The architecture underlying TOE provides a reliable and secure path to signing
devices.

/A 90/ CRTM, TPM, boot loader, VMM and basic security services are
trustworthy

The architecture underlying TOE, namely Core Root of Trust for Measurement (CRTM),
TPM, boot loader, Virtual Machine Monitor (VMM) and services providing security
features behave as expected. All of them are referred to as Trusted Computing Base
(TCB) hereinafter.

/A 100/ TCB guarantees memory isolation between VMs

The TCB guarantees memory isolation between Virtual Machines (VMs) also called
compartments.

/A 110/ TCB is able to enforce security policies for information flow control

The TCB can enforce security policies for information flow control between
compartments: it can guarantees authenticity, integrity and confidentiality of
communication channels among compartment.

/A 120/ TCB prevents exploits and replay attacks

The TCB is designed to prevent exploits of uncritical applications to gain access to
security sensitive information and replay attacks, namely resetting the state of an
application by replaying an older state.

/A 130/ TCB provides secure installation services for TOE
TCB provides installation services for all security critical applications like TOE.

/A 140/ Integrity of TOE is guaranteed by TCB

The TCB guarantees the integrity of TOE: either preventing TOE from running if it
compromised or allowing TOE to be started but alerting the user about TOE being
compromised.

2.2 Threats

A description of threats shall include all threats to the assets against which
specific protection within the TOE or its environment is required. Note that not all
possible threats that might be encountered in the environment need to be listed,
only those which are relevant for secure TOE operation.

A threat shall be described in terms of an identified threat agent, the attack, and
the asset that is the subject of the attack. Threat agents should be described by
addressing aspects such as expertise, available resources, and motivation.
Attacks should be described by addressing aspects such as attack methods, any
vulnerabilities exploited, and opportunity.

Open_TC Deliverable 06c.1 7/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

If security objectives are derived from only organizational security policies and
assumptions, then the description of threats may be omitted.

/T 10/ Trojan Horse

An adversary may try to get access to sensitive information by deceiving
Administrators or Users such that a application under control of the adversary claims
to be the TOE.

/T 20/ Unauthorised User

An unauthorised user may use TOE to read or modify information owned by another
user.

/T 30/ Unauthorised Administrator

An unauthorised user may use a management functionality of the TOE to grant itself
access to sensitive information.

/T 40/ Unauthorised Data Access

An unauthorised application may read or manipulate user information persistently
stored by TOE.

/T 50/ Denial of Service

An adversary may try to prevent that authorised users can use the TOE by denial of
service attacks against the TCB or the TOE itself.

/T 60/ Document replacement when displayed

A malicious application may try to replace the document being displayed to fool the
user.

/T 70/ Document replacement when being signed

A malicious application may try to replace the document being signed with another
one while keeping displayed the document selected by the user.

/T 80/ Incorrect document visualisation by output device

The output device may be not able to correctly represent all document details, e.qg.
due to screen resolution or output device size not enough for a correct representation
or a limited set of available colours.

/T 90/ Misinterpretation of document format

The format of the document to be signed or verified may be wrongly interpreted by
the viewer.

/T 100/ Dynamic code embedded in the document

The document may include dynamic code (i.e. macros) which can, without invalidating
the signature, modify the document visualisation if different platforms are used or the

Open_TC Deliverable 06c.1 8/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

document is displayed at different times (e.g. signature or verification time).

/T 110/ Hidden content

The document may include hidden content being signed (e.g. text in the same colour
as the background) without the user being able to notice it.

Open_TC Deliverable 06c.1 9/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

3 Functional Requirements (Use Case Model)

3.1 Goal

The goal is designing an application for signing and verifying the electronic documents
that meets the WYSIWYS requirement. To achieve this goal, the design is based on
OpenTC, a security architecture built on top of Trusted Computing and virtualisation
technologies. The application performs the following operations: displaying the
document to be signed and electronically signing the document, displaying an already
signed document and verifying the electronic signature.

3.2 Target Groups
Defines the users/other components that wish to use the product.
e Home user (Single-user platform at home)
e Employee (Multi-user platform in enterprise environment)

3.3 Roles and Actors

In this section we define different roles and actors important for the use case
model. Actors are parties outside the system that interact with the system; an
actor can be a class of users, roles users can play, or other systems. Note that,
depending on the use case, some parties or actors may not be involved.

User: The user of a computing platform is an entity interacting with the platform
under the platform's security policy. Examples are employees using enterprise-owned
hardware.

3.4 Overview
The user can use WYSIWYS application to perform two main operations:
1. signing a document
2. verifying a signed document

Open_TC Deliverable 06c.1 10/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Figure 1: Use cases diagram

——— T ——____
- - e
< Send File to WSS application >
. —
—— —_—
/’ !
o I
.
b
.
- 4
s "
-
£
.
- i’
¢ '
’
¢
#
-’
i
-
.
. -
=gincludes»
-
s
.
-
-
7 - i
- -
s P ’
e 22includa=> '
- i
- -
. . fi
- -
- - llf
. -
- Phe i
. - h
- - B —
s s A ‘j
£ »3 -
I T ——
- T !
-
- ’
e t
~ - '
- D
s .ﬁcﬂllcludv;/
. E -~ o
- “zincludes> :
S ! i
- Fl ’ ;. - A‘_
- ; -+ T T
; 2 -
.l}-'\. l.n'.l L
\\ T =Zlnelode=> f’ Choosze signing dewice & key
I Fad
5 . - B
\ . <<|ncIuFre>>“\"f e o
.
! 4 E
s Y - S
i £ , -
N h ’ s S
vy i ; "
N muinclude: -
: ! ! S
) i IS .
i ’ £ "
SN Ny
H \ ; - —

B FATY
Jl-r l._.n’ ‘\ P Create signed document
f A
. s€includes> —
B

—_— -
¢ N

il ’ - A
' ! . "\
I LA
PR .
LY N
F .
P 4
P s n
- \
L l
4 i —
4 .
A h
. Signature check
Al =
i -
- e—

“dingludezs— -

- “

— —_— - 5

- N
™
(!erify’ signed document > "
4
i

-,
\h"“N—._.____.——-"' -

" -=<includers S
~ -

N :\}_______L____

-
(Delete file & close sessions >

—

3.5 Use Cases (Detailed Description)

Each use case focuses on describing how to achieve a single business goal or
task. From a traditional software engineering perspective a use case describes
just one feature of the system. For most software projects this means that

Open_TC Deliverable 06c.1 11/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

multiple, perhaps dozens, of use cases are needed to fully specify the new
system. The degree of formality of a particular software project and the stage of
the project will influence the level of detail required in each use case.

A use case defines the interactions between external actors and the system
under consideration to accomplish a business goal.

Use cases treat the system as a "black box", and the interactions with the
system, including system responses, are perceived as such from outside the
system. This is a deliberate policy, because it simplifies the description of
requirements, and avoids the trap of making assumptions about how this
functionality will be accomplished.

A use case should:
e describe a business task to serve a business goal
e have no implementation-specific language
e be at the appropriate level of detail
[}

be short enough to implement by one software developer in a single
release.

Open_TC Deliverable 06c.1 12/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

3.5.1 Sign a document

Use case unique ID

/UC 10/

Title

Sign document

Short description/purpose(s)

The user wants to sign a document

Actors

User

Includes

J/UC 30/ Send file to WYSIWYS

/UC 40/ Display document

/UC 50/ Choose operation

/UC 60/ Choose signing device & key
J/UC 70/ Create signed document
/UC 90/ Delete files & close sessions

Preconditions

WYSIWYS application is running

Postcondition

The user receives back the signed
document

Normal Flow

1. Send file to WYSIWYS

application /UC 30/
2. Display document /UC 40/
3. Choose operation (sign) /UC 50/
4. Choose signing device & key /UC
60/
Create signed document /UC 70/
Signature verification /UC 80/
Delete file & close sessions /UC 90/

Now

Open_TC Deliverable 06c.1

13/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

3.5.2 Verify a signed document

Use case unique ID /UC 20/

Title Verify signed document

The user wants to verify a signature

Short d ipti .
° escription/purpose(s) applied to a document

Actors User

J/UC 30/ Send file to WYSIWYS application
/UC 40/ Display document

/UC 50/ Choose operation

/UC 80/ Signature verification

/UC 90/ Delete file & close sessions

Includes

Preconditions WYSIWYS application is running

The user receives the result of signature

Postcondition e .
verification

1. Send file to WYSIWYS

application /UC 30/

Display document /UC 40/
Choose operation (verify) /UC 50/
Signature verification /UC 80/
Delete file & sessions /UC 90/

Normal Flow

ueWwN

Open_TC Deliverable 06c.1 14/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

3.5.3 Basic operations

Use case unique ID /UC 30/

Title Send file to WYSIWYS application

The user sends file to WYSIWYS

Short d ipti [[
ort description/purpose(s) application

Actors User

Preconditions WYSIWYS application is running

The document is loaded into WYSIWYS

Postcondition . .
application

6. The user sends the application the
document's file using a proper
command

7. The application saves the
document internally

8. The application activates a trusted
interface for user interaction

Normal Flow

Open_TC Deliverable 06c.1 15/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Use case unique ID

/UC 40/

Title

Display document

Short description/purpose(s)

The application shows the document and
guarantees a trustworthy display

Preconditions

/UC 30/

Postcondition

The document is shown to the user

Normal Flow

1. The application activates the
correct viewer for the document
format

2. The application loads the document
file from an internal storage

3. The document is displayed to the
user

Open_TC Deliverable 06c.1

16/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Use case unique ID /UC 50/

Title Choose operation

Short description/purpose(s) The user chooses to sign or verify a

document

Actors User

Preconditions /UC 40/

Postcondition The user has chosen the operation to be
executed

1. The user is required to choose one
operation

2. The user decides to sign or verify
the document

3. The application takes charge of
user's choice

Normal Flow

Open_TC Deliverable 06c.1 17/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Use case unique ID /UC 60/

Title Choose signing device & key

The user selects the signing device and

Short description/purpose(s) key

Actors User

Preconditions J/UC 50/

The signing device and the key are

Postcondition
chosen

1. The application shows to the user
the list of available signing devices

2. The user chooses the signing
device

3. The application shows to the user
the list of available keys

4. The user chooses the signing key

Normal Flow

Open_TC Deliverable 06c.1 18/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Use case unique ID

/UC 70/

Title

Create signed document

Short description/purpose(s)

Create the file containing the signed
document

Preconditions

/UC 60/

Postcondition

The user receives the signed document

Normal Flow

1. The application loads the document
to be signed from the internal
storage

2. The selected signing device
generates the electronic signature
over document file using the
selected key

3. The application creates the file
containing the document and the
signature

4. The application returns to the user
the signed document

Open_TC Deliverable 06c.1

19/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Use case unique ID /UC 80/

Title Signature verification

The application verifies the correctness of
the electronic signature over the
document

Short description/purpose(s)

Preconditions JUC 50/

Postcondition The user receives the result of verification

1. The application loads the signed
document to be verified

2. The application actually verifies
correctness of the signature

3. The application returns the result of
the verification to the user

Normal Flow

Open_TC Deliverable 06c.1 20/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Use case unique ID /UC 90/

Title Delete file & close sessions

All sessions are destroyed and the file

Short d ipti . .
ort description/purpose(s) internally saved is deleted

Preconditions /UC 70/ or /UC 80/

Postcondition The application returned to its initial state

5. The application deletes the file
from the internal storage
6. The application closes all sessions

Normal Flow

Open_TC Deliverable 06c.1 21/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

4 Security Objectives & Security Requirements

4.1 Security Objectives

The security objectives shall address all of the security environment aspects
identified. The security objectives shall reflect the stated intent and shall be
suitable to counter all identified threats and cover all identified organizational
security policies and assumptions. A threat may be countered by one or more
objectives for the product, one or more objectives for the environment, or a
combination of these.

/SO 10/ Separability

The use of different security-critical TOE components based on the OpenTC security
architecture has to be at least as secure as the execution of the same applications on
physically separated computing platforms connected via network.

/SO 20/ No unauthorized use of TOE components
Unauthorized entities must not be able to arbitrarily execute TOE components.

/SO 30/ Visual identification of TOE User Interface
The user must be able to reliably identify the User Interface of TOE.

/SO 40/ Correct visualisation of the document
TOE must correctly visualise the document being signed or verified.

/SO 50/ Binding between visualisation and signature/verification operations
TOE must actually sign or verify the document being displayed to the user.

4.2 Security Requirements

This part of the requirement specification defines the security requirements that
have to be satisfied by the product. The statements shall define the functional
and assurance security requirements that the product and the supporting
evidence for its evaluation need to satisfy in order to meet the security
objectives.

/SR 10/ No communication among TOE components and external parties

Security policies should be enforced to guarantee that TOE components cannot
interact with external parties.

/SR 20/ Information flow

Security policies should be enforced to guarantee that information flow is only possible
among TOE components. Primarily, eves dropping on another, non-cooperating
compartment must be foiled.

Open_TC Deliverable 06c.1 22/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/SR 30/ Integrity of document to be signed or verified

TOE should guarantee that the displayed document cannot be corrupted while being
signed or verified.

/SR 40/ Trusted WORM Storage

The TOE should use a trusted storage Write Once Read Many (WORM) for storing
documents to be signed or verified and used by TOE components during all
intermediate operations.

/SR 50/ Trusted RW Storage

The TOE should use a trusted storage Read/Write for temporary files during
operations.

Open_TC Deliverable 06c.1 23/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

5 Supplementary Requirements
Obligatory criteria, mandatory for successful completion.

5.1 Preconditions

Requirements that have to be fulfilled already, because they were needed for the
development process.

/PR 100/ Trusted Computing Base
The TOE is build upon OpenTC, a security architecture for Trusted Computing Base.

/PR 200/ Reliable document viewer

The TOE should use at least one application that is considered reliable as viewer for
one specific document format (e.g. OpenDocument).

5.2 Required Criteria
Mandatory criteria, that are obligatory for successful completion.

/RC 10/ Xen support
The realization of the use cases should be based on a Xen-based architecture.

/RC 20/ Single-user support
The TOE should support at least one user.

/RC 30/ Cryptographic devices

The TOE should support all common cryptographic devices - hardware and software -
through standard interfaces (particularly PKCS#11).

/RC 40/ Document formats

The TOE should support virtually any type of document format via plug-in based
architecture for document viewers.

5.3 Desired Criteria
Optional criteria, that are not mandatory for successful completion.

/DC 10/ Multi-user support
The security architecture should be able to handle multiple users.

/DC 20/ L4 support
The realization of the use cases should be based on an L4-based architecture.

Open_TC Deliverable 06c.1 24/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

5.4 Distinguishing Criteria
What our product does not provide.

5.5 Execution Environment

This section specifies software and hardware the user requires at least to run our
product successfully.

5.5.1 Software
e Standard Linux 2.6.x distribution
e Xenolinux 3.1.x (Linux 2.6.x running on top of Xen 3.1.x hypervisor)
e OpenOffice 2.3 or higher
e (optional) L4-Linux (Linux 2.6.x running on top of Fiasco, L4V2 u-kernel)

5.5.2 Hardware
e Intel LT/VT or AMD-V Platform
e TPM 1.2 Platform

5.6 Development Environment

This section specifies hard- and software that developers need at least to
implement the product successfully.

5.6.1 Software
e Linux 2.6.x
e Qgcc4.2.x
e eclipse-3.1
e OpenOffice 2.3 or higher

5.6.2 Hardware
e Intel LT/VT or AMD-V Platform
e TPM 1.2 Platform

Open_TC Deliverable 06c.1 25/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

6 High-Level Software Architecture

6.1 Introduction

This section contains some views of a high-level software architecture for a WYSIWYS
application. In particular the granularity of the views is at package level; each package
includes a group of components that share the same level of strength for security
requirements. Such groups can be actually compartmented using a different virtual
machines. To show the interactions among those virtual machine sequence diagrams
are used, thus overloading their semantic, since they are normally used to show
interactions among objects.

6.2 Logical views

6.2.1 Packages

In figure 2 the package diagram shows the 'use' relationships among different
packages.

Untrusted User Interface Trusted User Interface
Trusted Yiewer Sanice |

N AN |
N | L |
. | ; |
~ | ’ 1

. .
, | P 1
hS | . I
\\ | ; 1
Vi . .
WY SIS Control Service . \
|
|
|
|
|
|
|
|
T ~ I
| i |

| ~

u |

| b
~
-
v |

Signing Devices Interface Trusted Storage Senvice

Figure 2: Package diagram

Untrusted User Interface

It is the standard interface provided to the user by the environment for daily
operations (like browsing the Internet, reading e-mails and writing documents); it
allows the user to start WYSIWYS application and to choose the document file to sign
or verify.

Trusted User Interface
It is part of WYSIWYS application and it allows the user to interact with WYSIWYS

Open_TC Deliverable 06c.1 26/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

Control Service to choose the operation (sign or verify) to be executed and related
options.

WYSIWYS Control Service

It implements the application logic and controls all packages. It receives the document
file to be signed or verified from Untrusted User Interface and it manages the
interactions between all packages.

Signing Devices Interface

It exposes a simple APl to give access to the signing devices. Different types of
devices can be supported: software and hardware (commonly used smart-cards or
TPM). Each user can use a (sub)set of all devices the platform makes available. Such
devices hold the users' keys.

Trusted Viewer Service

It shows the document to be signed or verified. It guarantees a trustworthy
visualisation using the correct viewer with regards to the document format.

Trusted Storage Service

It allows a trusted storage of the document file for all WYSIWYS operations. It
implements a WORM storage (Write Once Read Many). Only who write a File can
delete it while every package can read it.

Open_TC Deliverable 06c.1 27/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

6.2.2 Use case realisation

Table 1 lists required packages for the realisation of each use case for the basic
operations. Then a possible implementation of such use cases is described through the

interaction of components grouped in packages via sequence diagrams.

Use Case

Required packages

/UC 30/ Send file to WYSIWYS application

Untrusted User Interface,
Trusted User Interface,
WYSIWYS Control Service,
Trusted Storage Service

/UC 40/ Display document

WYSIWYS Control Service,
Trusted Storage Service,
Trusted Viewer Service

J/UC 50/ Choose operation

Trusted User Interface,
WYSIWYS Control Service

/UC 60/ Choose signing device & key

WYSIWYS Control Service,
Signing Devices Interface,
Trusted User Interface

J/UC 70/ Create signed document

Untrusted User Interface,
WYSIWYS Control Service,
Trusted Storage Service,

Signing Devices Interface

J/UC 80/ Signature verification

WYSIWYS Control Service,
Trusted User Interface,
Signing Devices Interface,
Trusted Storage Service

JUC 90/ Delete file & close sessions

Trusted User Interface,
WYSIWYS Control Service,
Trusted Storage Service,
Trusted Viewer Service

Table 1: Packages required by use cases

Open_TC Deliverable 06c.1

28/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/UC 30/ Send File to WYSIWYS application

The User selects the file to be signed or verified through the Untrusted User Interface
that sends that file to WYSIWYS Control Service. The file is then sent to Trusted
Storage Service that saves it in the secure Write Only Read Many storage. Trusted
Storage Service returns a result about the correctness of the saving operation. Then
WYSIWYS Control Service immediately activates the Trusted User Interface to interact
with the User.

Untrusted User Interface: SINrS Contral Service: Trusted Storage Senrice: Trusted User Interface:

T
|
|
|
sendFile ’ |

StoreFile

Sawg File rustedStorage

<_ _______________

StoreResult

initT rustedUs%rInterface

<_ _________________________________

|
initTrustedUser pterfaceStatus

_________________ I

|
|
|
|
|
sendResult :
1
|
|
|
|
|
1

Figure 3: UC 30 sequence clliagram

Open_TC Deliverable 06c.1 29/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/UC 40/ Display document

WYSIWYS Control Service requests Trusted Viewer Service to show the document.
Trusted Viewer Service loads the document file directly from Trusted Storage Service,
then activates the proper viewer with regards to the file format and shows document.
The Trusted Viewer Service returns a result about the correctness of the display

operation.

SIS Contral Service:

Trusted YWiewer Senvice:

Trusted Starage Sernvice:

ShowFile

Selectlui

LoadFile

)

WisualisationResult

eweérDocumentFormat

cument

Figure 4: UC 40 sequence diagram

Open_TC Deliverable 06c.1

30/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/UC 50/ Choose operation

WYSIWYS Control Service requests Trusted User Interface to show the list of allowed
operations (sign or verify) to User. He/she selects the wanted operation and the choice
is then taken in charge of by WYSIWYS Control Service.

Trusted User Interface: S 1S Control Senvice:

chooseOption{operation)

aptionlD -]

r - - - - - - - - -—-=-=-=-=-==]

|
Figure 5: UC 50 sequence diagram

Open_TC Deliverable 06c.1 31/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/UC 60/ Choose signhing device & key

WYSIWYS Control Service has received the command to sign the document, so it
requests Signing Devices Interface for the list of available signing devices for the User.
Through Trusted User Interface the User chooses the signing device to be used. A
similar sequence of operations is performed to allow the User to select the wanted
signing key for the chosen device.

Trusted User Interface: SIS Contral Senvice: [Figning Dewices Inteface

T
I
I
I

gptListOfAvailableSigningDenge es)

T
I
I
I
I
I
I
I
1
I
1
I
: ListOfSigningDevices
1

I

1

ooselptionsgsigningDevicgs)
aption|Dr >

getlistOfAwailablekeys

1
1
1
1
1
1
1
1
1
: ListOfkeys
1

chooseOptionskeys)

oione o

'Figure 6: UC 60 sequence diagran'\

Open_TC Deliverable 06c.1 32/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/UC 70/ Create signed document

WYSIWYS Control Service requests Signing Devices Interface to sign the document file.
Signing Devices Interface directly loads the file from Trusted Storage Service and signs
the document using the chosen device and key. Then the file just created is sent back
to WYSIWYS Control Service that in turns returns the signed document to User through
the Untrusted User Interface.

Untrusted User Interface:

SIS Control Senvice:

[Eigning Devices Inteface

Trusted Storage Senvice:

signFile

-

signedFile

zsendFile

sendResult }

Open_TC Deliverable 06c.1

Figure 7: UC 70 sequence diagram

loadFile

gene}Signature

______ L |

33/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

/UC 80/ Signature verification

WYSIWYS Control Service requests Signing Devices Interface to verify a signed
document. Signing Devices Interface loads the file directly from Trusted Storage
Service and verifies the signature. Then it returns the result of the verification to
WYSIWYS Control Service that in turns returns the result to User through Trusted User
Interface.

Trusted User Interface: SIS Control Senice: [Figning Devices Interdface Trusted Storage Senvice:

T
|
|
|

verifySignedbocument I |

loadFile

‘Jarif;r%nature

______________ —T
werifyRezult

sendhlessage

sendResult >

Figure 8: UC 80 sequencé diagram

Open_TC Deliverable 06c.1 34/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

JUC 90/ Delete file & close sessions

WYSIWYS Control Service deletes from Trusted Storage Service the file previously
loaded upon user's choice, then it requests Trusted User Interface and Trusted Viewer
Service to close the relative session opened for the operation requested.

Trusted User Inteface: SIS Contral Service: Trusted Storage Semice: Trusted Yiewer Senvice:

deleteFile

deleteResult

shutdownTrustec#‘JiewerSenrice

R T

shutdown T ruste dWikmerSenice Status

qhutd own TrustedUsernterface

<hu downTrustedUserInterface& sult

Figure 9: UC 90 sequencé diagram

Open_TC Deliverable 06c.1 35/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

7 List of Abbreviations

Listing of term definitions and abbreviations used in the overview documents and
architectural design specification (IT expressions and terms from the application

domain).

Abbreviation Explanation

CPU Central Processing Unit
IT Information Technology
RW Read/Write

TC Trusted Computing

TCB Trusted Computing Base
TCG Trusted Computing Group
TOE Target of Evaluation

TPM Trusted Platform Module
VM Virtual Machine

VMM Virtual Machine Monitor
WORM Write Once Read Many
WYSIWYS What You See Is What You Sign

Open_TC Deliverable 06c.1

36/37

SWP06.c WYSIWYS high level requirements specification FINAL 1.00

8 Acknowledgements

The authors want to thank Ahmad-Reza Sadeghi from Ruhr University Bochum and
Chris Stuble from Sirrix AG for providing the template used for this document and ans

example on how to use it. The authors want also to thank Francesco Sartorio for the
substantial contribution to the requirements analysis.

Open_TC Deliverable 06c.1 37/37

ot
»
¥

*

BUE

Information Society

Technologies

D6e.4: Final MFA System Specification

D6e.5: Complete MFA System Prototype

Project number
Project acronym
Project title
Deliverable type

IST-027635

Open_TC

Open Trusted Computing
Internal Report

Deliverable reference number
Deliverable title

WP contributing to the deliverable
Due date
Actual submission date

IST-027635/D6e.4, D6e5/PUBLIC | 1.00

Final MFA System Specification,MFA Concept
Prototype

WP6
April 2007 M18, October 2007 M24
November 13 2007

Responsible Organisation

INTEK
Irina Beliakova, Andrej Sokolov

Authors

Abstract This document specifies MFA System which
use trusted platform features for a secure,
multifactor authentication to remote
computers. The system allows to make
remote logon by using TPM credentials
and/or password. The document contains
system architecture, components, their
interactions, data structures ,s function calls
and implementation of the MFA Concept
prototype.

Keywords PAM, TPM, Credential Manager, MFA

Dissemination level Public

Revision PUBLIC | 1.00

Instrument IP Sta."‘ LS AR 1%t November 2005

project
Thematic Priority |IST Duration 42 months

;“l MFA Final System Specification
*

Table of Contents

B o e Yo [U Tt of o o TP 4
2 Requirements DreakAOWN. 4
3 High level design specCifiCation........ ... 4
3.1 MFA system arChit@CtUre. oo e 5
3.2 Client Authentication ProtOCOlviuiiiiiii e 7
3.2.1 Registration tiCKetS. 11
4 MFA SYSEEM AP .o e 11
N I I T 1 = T IV 0T 11
4.2 Data STrUCTUNE Ty P S e ittt e e et et eneneneaes 11
4.2.1 Mfa_C typPeSerVICELISE....ccuuiiii i 12
4.2.2 mfa_C_tyPEPCRLISE ...t 12
4.2.3 mfa_C_typeRegTICKeLueie e 12
4.2.4 mMfa _C typPeUSEIPOIICYcuii e 13
4.2.5 mfa_ic_TypeContainNerHEader.........c.u i 14
4.2.6 Mfa_iC_TypeSOCKEeL ... 14
4.3 Interface defiNitioN. ... 15
4.3.1 MFA Server FUNCHIONS. . ..ot e e e ee e 15
4.3.2 MFA Clent FUNCHIONS. ... iii e 17
4.3.3 MFA Channel Module FUNCEIONS........iiiiiii e 19
4.3.4 MFA Credentials and Policy Configuration Functions.............ccoooiiiiiiinni, 24

5 MFA System Prototype Component Description...........cooiuiiiiiiiiiiiiiii e 28
5.1 PAM CoNnfigUration oo e 29
5.2 MFA PAM MOGUIE... ittt e e e e e e e e e 30
5.3 Client Credentials and POlICY DB........couiiiiiiiiie e e 30
oI I\ 1 AN O T T=T o 1Y =Y = = PPN 31
5.5 Low level interaction protoCOL.......couuviuiiiii 31
o T A 0T = Y1 1= PP 31
55,2 COMMIANAS. ..t 31
5.5.3 ReQISLration PrOCESS ...iviiiiiiii e e ens 32
5.5.4 AuthenticCation PrOCESSuiiiiiiiii e 32
5.6 Utility for work with registration tickets.........ccooiiii 33
6 MFA prototype Installation iNStruCtioNS.........couiiii e 33
7 Usage of MFA prototype for registration and authenticationocoiiini, 34
7.1 Registration a new MFA user tOo the Server.......cccoviiiiii i 34
7.2 LOQON T0 the SOV e ittt 34
7.3 MFA Prototype system list Of fil@S........ooouiiiiii e 35
8 ReferencCed DOCUMEBNES. ... v e e e 36

Open_TC Deliverable 6e.3 2/36

44;,‘
=

MFA Final System Specification

lllustration Index
Figure 1: MFA System ArChit@CtUre... ... e 5
Figure 2: Client Authentication ProtoCol...........ooouiiiiii e 7
Figure 3: Client Authentication ProtoCol..........cooeuiiiiiiiii e 8
Figure 4: Client Registration ProtoCol..........coeiiiii e 9
Figure 5: Client Registration ProtOCOl..........oou i 10
Open_TC Deliverable 6e.3 3/36

’*“l MFA Final System Specification
*

1 Introduction

The TPM Multifactor Authentication (MFA) system is an application of the Trusted
Computing technology and shows the benefits of such technology for ensuring that
only a user who owns a registered platform equipped with a TPM may have access to
the remote computer resources.

Multifactor authentication to remote server involves components executed at server
and client computers. Client components register User and Client TPM Platform with
the Remote server. Client components use the local TPM through TSS. The user can
login to a remote server (services/application) when the User and Client Platform
registration are completed.

The parameters of multifactor authentication system are controlled by authentication
policies.

This document gives high level design specification of a MFA system architecture,
components description, protocol of the components interaction, installation
instructions and high level API.

2 Requirements breakdown

As long as an authorized system is used to access corporate resources, the entire
infrastructure can be thought of as protected. Even if somebody's credentials have
been stolen, the intruder will have to operate from a trusted corporate platform to
gain the access to the resources. On the other hand even the authorized user may
mistakenly try to gain the access from improperly configured system, such as home
computer, untrusted device, and etc. - the platforms that by definition are outside the
corporate control.

The multifactor authentication, including both user and client platform authentication
covers up most of these threats. The access to the network is granted only if both
elements - user and platform - are successfully authenticated.

For this to work, an installed and running TSS on the client platform is required.
Implementation of Multifactor Authentication application expects the presence of an
underlying trusted framework and requires the following services from it:

e Trusted Software Stack (TSS) for Linux according to TCG specification. TSS stack
must support basic TCG functionality including Attestation Identities Keys (AIK)
generation, TPM Platform Configuration Registers (PCRs) calculation, storing,
and retrieval.

e Security services such as OpenSSL to provide secure communication protocol.
e PAM Authentication Framework

3 High level design specification

A MFA system could consist of several server and client computers connected with
each other. Each of clients has a TPM module (Server may have a TPM, too). Servers
provides to remote clients computer, services (SSH, FTP and so on) that could be
accessed remotely after successful user credential authentication. During user
authentication MFA system can check:

Open_TC Deliverable 6e.3 4/36

;“l MFA Final System Specification
*

e remote client platform attestation identities key (AIK) or user key (UK),

e remote operating system (OS) and software set by platform configuration
registers (PCRs).

MFA System is based on the PAM Framework. The Pluggable Authentication Modules
(PAM) library is a generalized API for authentication-related services which allows a
system administrator to add new authentication methods simply by installing new PAM
modules and modifying authentication policies by editing special user policy
configuration files.

One of the goals of MFA implementation is easy integration with different services
that use pluggable authentication modules (PAM) for authentication without any
changes in applications/service source code on the servers and clients.

3.1 MFA system architecture
The MFA architecture includes two component types: MFA Server and MFA Client.

The client and server components are installed by the system administrator. After the
installation is completed the user has access to the client system and the system
administrator has access to server computer.

These components can run on on a single Linux box with TSS and TPM as well as on
top of the Open_TC framework. The MFA System Architecture is presented in the
Figure 1.

MFA Client MFA Server
Client application (ssh, ftp etc) Application connection Server application (sshd, ftpd etc)
TPM driver
PAM
Configuration PAM Framework

TSS Framework

v N R | ,

MFA TPM library : : :
1 1 |

MFA Client Manager MFA PAM
Configuration Interconnect < Seclrelexahancel ge > Interconnect Configuration
library library library library
ﬁ SSL library SSL library ﬁ
Client
Servers DB credentials DB
Client
Policy DB

Figure 1: MFA System Architecture
Open_TC Deliverable 6e.3 5/36

MFA Final System Specification

*)”t
=

MFA Server includes the following components:

e Server application - standard sshd, ftpd or other that realized required
service and support PAM framework;

e MFA PAM - is a PAM standard module. It is called directly by
service/application to authenticate users. The system uses the PAM possibilities
to add multifactor authentication/registration to the services. This module
communicates with MFA Client Manager;

e PAM Configuration - system file (one for each service) that describes the list
and sequences of the actions that called from PAM Framework;

e Configuration library - library that include functions to control User and
Platform Credentials, Policy Data Base;

e Clients Credential and Policy DB - database, that keep securely User and
Platform credentials and policy. It is a set of files and directories;

e Interconnect library - library of functions for interconnection within PAM MFA
module and MFA Client Manager;

e External modules:
o TPMTSS
o SSL library for work with keys and certificates.
MFA Client includes the following components:
e Clients Application - standard applications (ssh, ftp or etc.);

e MFA Client manager - a service that processes any request from the server,
to provide the information about client credentials, certificates and any user
platform data;

e Configuration library - library that include functions to control User Platform
Credentials and Policies;

e Servers DB - database, that keep registered Servers key (certificates). It is a
set of files;

e Interconnect library - library of functions for interconnection within PAM MFA
module and MFA Client Manager;

e External modules:
o TPM TSS to access to the TPM;
o SSL library for work with keys and certificates.
Client components perform the following tasks:
e Process Server Requested actions to gather User TPM Credentials;
e Interact with TPM through TSS stack;
e Send data to the MFA PAM module on servers;
e Log MFA System activity.
Server components perform the following tasks:

Open_TC Deliverable 6e.3 6/36

MFA Final System Specification

*)H'i
=

e Authenticate and Register Client Platform & User;

e Keep Client Platform/User database;

e Control Credentials & Policy settings;

e Interact with MFA Client Manager on client machine.

3.2 Client Authentication Protocol

Client/server message flow of the client authentication process is presented on the
Figure 2.

TSS MFA Client MFA Cllgnt MFA.Ser.ver MFA PAM
Manager application application
| “\Take User & Service name for Login
\ Call Service, Send Name!
: 'D Start PAM
} } framework Check: User name,
Open connection, send Server name I User policy , .
Retrieve server public . . requested service, remote IP
key (certificate) :> . ! }
from DB Send Client ngme ‘

Retrieve client public key

Validate certificate (certificate) from DB

-

|
} Validate certificate
: Check Client name, retrieve

| | !
Request Client/Credentials according policy. Information encrypted User/platform policy, parameters
Check TPM Status by Client Publi¢ key I (key UUID, PCRS Index, pwd),

generate challenge
Get Credentials(Quote) }

|
Return Credentials Send Client Crgédentials. Information encryptedi by Server Public key
|
|

Retrieve registered Client
4 credentials from DB

Verify User/Platform Credentials

~ T

Return authentication

i SUCCESS or FAILURE
} 5 Close PAM

. MFAAuthentication finished | framework

|

I
I

- - - - - -9 - - — — - — — — + - — = — — —
i

|

|

| |

Close connectjon |
1

|

I

|

Figure 2: Client Authentication‘ Protocol

MFA server acts as one of pluggable authentication module and usage of it by different
applications can be configured in standard PAM configuration file.

When MFA PAM is started by application/service it does the next steps:

1. MFA PAM (Server side):

o get call parameters: login name, application/service name, connection
properties;

check that user has configured policy to access to the service;
connect to MFA Client Manager on remote client;
exchange by public keys (certificates) with Client;

check that access to the requested service for the user from this Client is
allowed according configured policy;

o send request for the client authentication platform and user credentials to

O O O O

Open_TC Deliverable 6e.3 7/36

X ¥,

l MFA Final System Specification

MFA Client Manager.
MFA Client Manager (Client side):
check that the remote Server is registered and enabled in the Client
configuration (during registration process);

o create the client platform credentials according Server request policy;

o send encrypted credential information to the Server.

2. MFA PAM (Server side):

o retrieve from Configuration registered reference platform credentials and
compare with credentials received from client;
return PAM_SUCCESS or PAM_AUTH_ERR;
in case PAM_SUCCESS the user logon to the service/application is completed
and service/application can be used by user on the Server;

o close connection to MFA Client Manager.

Tss MFA Client MFA Client MFA Server

Manager application application

| \Take User & Service name for Login |
\ Call Service, Send Name [

»,

g 2 Start PAM
} framework Retrieve User

policy from DB
Check: User name,
Requested service,
Remote IP

MFA PAM

Open connection, send Server name

Retrieve server
public key or
certificate from DB

Validate certificate
through CA)

Send Client name
Retrieve client

public key or
Certificate from DB,

| | >

} } Validate certificate

. ! (through CA)

} } Check Client name
|

and User policy
Retrieve Registered

Client Credentials

Check TPM Status Request Cl‘ent Credentials (transfered encrypted by Cliént Public key)
€ p ¢ from DB

Request TPM Credentials

| |
S Send Client ¢)redent|als Information transfered encryptetﬂ by Server Public key

Send Signed Credentia

Validate User/platform
i Credentials
\

‘ Close connection

iReturn authentication
MFA Authentication finished igUCCESS or FAILURE

\
|
|
|
T T DChsePAM |
i ;> fraor§2work
Figure 3: Client Authentication Protocol
Client Registration Protocol

Client/server message flow of the client authentication process is presented on the
Figure 3.

Main task of registration procedure is to collect user and platform client credentials for
future logon to the remote service and be sure that we got information exactly from
computer about we think.

Before starting the registration:
- server has to be installed server part of MFA PAM system;

Open_TC Deliverable 6e.3 8/36

MFA Final System Specification

client computer has installed TSS;

client computer has installed client part of MFA PAM system;
client and server have installed their own public key (certificates);
in the case of usaging AIKs, the client has to have own AIK (AIK certificate).

As the first step of registration user (U) need to connect with server administrator (SA)
(by defined for server or organization procedure) and describe his computer, installed
software, required services, scheduler of services usage and etc. If server
administrator approve user's request registration procedure could be started.

MFA Client
Manager

MFA Client

TS application

MFA Server
application

MFA PAM

D

Call Service, Send Name

Take User for Registration |

R

Request Registration password |

g Start PAM
| framework
[

Type Registration }
password by User, Send Registration password

o
Open connection, send Server name

|
Send Client name

Exchange by pubI}ic keys (certificates)
Validate certificate ‘
Save key(certificate) |

Request Client Ctedentials according policy.

Check TPM Status Information encrypted by Client Public key
|

Create Credentials,: |
(Platform key, Pcrs, .
key UUID) [

Return Credentials

o
Close connection|

\ \
Send Client Credeéntials. Information encrypted by Server Public key

| >

I
|
|
! MFA Registration finished

Figure 4: Client Registration Prbtocol

Registration steps:

'Return authentication
FAILURE (No logon)

! Close PAM
framework

L

Check User name,
User policy,
remote IP

Verify registration
password

Validate certificate
save key (certificate)

Check Client name,
retrieve User and
Platform policy
(PCRS Index, pwd).

Validate User/platform
Credentials and save it

Delete registration
ticket

1. SA: add new login name (if necessary), add registration ticket and policy for
new client computer for MFA server configuration: set available services, usage
policy and registration password;

2. SA: inform user about user login name, standard and registration passwords;

3. U (or user computer administrator — based on organization policy): check
condition of client computer, OS and other software;

4. U: start one of possible console-based client application (for example: ssh) with
registration user name (reg_<user name>) and server name or IP as
parameters;

5. MFA PAM (server side):

o get call parameters: login name, application/service name, connection

Open_TC Deliverable 6e.3

9/36

X ¥,

l MFA Final System Specification

properties;
o check that connection with call parameters is possible according to
configured policy;

exchange public keys (certificates) with Clients;
send request to MFA Client Manager for new user client and platform
credentials, according to policy.
6. MFA Client Manager (client side):
o exchange public keys (certificates) with Server;
o collect user platform credentials according server request and policy,
o send collected credentials to the server.
7. MFA PAM (server side):
o validate user and client platform credentials and store it in the Configuration
DB;
o return PAM_AUTH_ERR;,
o close connection to MFA client manager.
8. Registration procedure finished.

MFA Server
application

| “\Take User & Service name for Registration
\ Call Service, Send Name [

N,

} g 2 Start PAM
} framework Retrieve User

| policy from DB

: Check that User name
is OK for registration,
check Remote IP

TSS MFA Client MFA Client
Manager application

MFA PAM

\
> Request Fﬁegistration password

: Type Registration .
password by User Send Registration password
I

Verify registration

|
|
Retribve server ! Open connection, send Server name ! password
L - | |
ublic key or certificate
arom DBy } Send Client name }
i i
L | Exchange by keys or certificates (if necessary) k>
Validate certificate‘ ! [d Validate certificate
| | (through CA).
e o tiron > } } Save certificate

Save certificate | | .
Request Client Credentials (transfered encrypted by Client Public key) Check Client name
|

Chegk TPM Status | ¢ : and User policy
Cregte/Request TPM Credentials } }

Send Signed Credentials send Client Creflentials (Information transfered encrypted by Server Public key)
4 | | Validate User/platform
| | Credentials and save it

=

| |Return authentication gl?ste conp?ctitpn,

| e IFAILURE elete registration
- - - 1 - | __ _ MFARegistration finished L

: : Close PAM

! ‘ framework

Figure 5: Client Registration Protocol
Policies

The policy determines what type authentication is required to access the remote
service. Remote platform credential based on:

e client platform attestation identities key (AIK) or user key (UK);
e operating system (OS) and software set by platform configuration registers

Open_TC Deliverable 6e.3 10/36

;“l MFA Final System Specification
*

(PCRs).

3.2.1 Registration tickets

Registration tickets is used for registration process and define registration policy. It
contains following main parts:

count of possible client platform could be registered for the user;

user registration password;

configuration of Client platform credential-policy;

list of available services for user from the client platform.

4 MFA System API

MFA Prototype is implemented as a set of libraries that could be used for developing
other MFA applications. This chapter describes developed API from low level up to high
level functions.

4.1 Data Types
This section describes the basic data types defined by this API.

Pointer Size:
Pointer size becomes 32 bits on 32-bit systems and 64 bits with 64-bit system.

Basic Types:

There are some new types for 64-bit systems that were derived from the basic C
language integer and long types, so they work in existing code. These are the
expected values and definitions.

Type Definition

UINT16 Unsigned INT16

UINT32 Unsigned INT32

BYTE Unsigned character

MEFA_UNICODE MFA_UNICODE character. MFA_UNICODE characters are to be
treated as an array of 16 bits.

MFA_PVOID void Pointer (32 or 64 bit depending on architecture)

Derived Types:

Type Definition |Usage

INTERCONNECT_DATA UINT32 Interconnect Object attributes
SERVER_RESULT UINT32 result of a MFA interface command
CONFIG_RESULT UINT32 result of a MFA interface command
INTERCONNECT_RESULT UINT32 result of a MFA interface command
CLIENT_RESULT UINT32 result of a MFA interface command

4.2 Data Structure Types

Open_TC Deliverable 6e.3 11/36

> l MFA Final System Specification
*

This section describes the structures defined by this API.

4.2.1 mfa_c_typeServicelist
This structure provides list of Service that works with MFA.

Definition:
typedef struct mfa_c_tdServicesList {
UINT16 Count;
char** List;
} mfa_c_typeServicesList;
Parameters:
Count
Count of the Servces in the List
List
Pointer to List of MFA Services
mfa_c_typePCR
Definition:
typedef struct mfa_c_tdPCR {
UINTS8 Number;
BYTE Value [SHA_DIGEST_LENGTH];

} mfa_c_typePCR;

Parameters:
Number
Number of PCR
Value
Value of PCR

4.2.2 mfa_c_typePCRList
This structure provides list of MFA Client Platform PCRs.

Definition:
typedef struct mfa_c_tdPCRList {

UINT16 Count;
mfa_c_typePCR* List;
} mfa_c_typePCRList;

Parameters:
Count
Count of the Platform configuration registers in PCR List
List

Pointer to List of Platform Configuration Register (PCR) numbers

4.2.3 mfa_c_typeRegTicket
This structure provides MFA authentication Policy String.

Definition:
typedef struct mfa_c_tdRegTicket {
int TicketsCount;
char RegLogin[CONFIG_MAX_USERNAME_LENGTH + 17;

Open_TC Deliverable 6e.3 12/36

MFA Final System Specification

char RegPassword[CONFIG_MAX_REGPASS_LENGTH + 17];
mfa_c_typePCRList PCRs;

int KeyType;

mfa_c_typeServicesList ServicesList;

int TicketFile;

} mfa_c_typeRegTicket;

Parameters:

TicketsCount

Count of registration tickets

ReglLogin

Registration user name

RegPassword

Plain registration password

PCRs

List of PCRs to save/check

KeyType

Type of key for signature: CONFIG_KEY_NONE | CONFIG_KEY_USER |
CONFIG_KEY_AIK

ServiceslList

List of services available for user, service "ALL" - for all services
TicketFile

store of the open ticket file descriptor

4.2.4 mfa_c_typeUserPolicy

This structure provides information about MFA Client Platform and User data, including
credentials, services, state, policy and so on. It used with the functions:
mfa_server_GetUserCredential and mfa_server_SetUserCredentials

Structure contains policy and credential information for user and peer pair

Definition:

typedef struct mfa_c_tdUserPolicy {

Parameters:

CONFIG_TRUE_OR_FALSE EnablePolicy;

int PeerStatus;
char Login [CONFIG_MAX_ USERNAME_LENGTH + 11];
mfa_c_typePCRList PCRs;
int KeyType;
TSS_UUID KeyUUID;
char* KeyPasswordHEX;
mfa_c_typeServicesList ServicesList;
RSA* RSAPublicKey;
} mfa_c_typeUserPolicy;
EnablePolicy

Enable or disable policy flag (TRUE or FALSE)

Peer status

CONFIG_PEER _(ENABLE|DISABLE|NOT _REGISTERED)
filled in by mfa_c_GetUserPolicy function

Login

login name

PCRs

list of PCRs numbers and values

Open_TC Deliverable 6e.3 13/36

MFA Final System Specification

KeyType

type of key for signature: CONFIG_KEY_NONE | CONFIG_KEY_USER |
CONFIG_KEY_AIK

Key UUID

KeyUUID;

KeyPasswordHEX

TPM key password HEX string

ServicesList

List of services available for user, service "ALL" - for all services
RSAPublicKey

RSA public key

4.2.5 mfa_ic_TypeContainnerHeader

Definition:

typedef struct mfa_ic_tdContainerHeader {

UINT16 Data_length;
BYTE Flags;
BYTE Data_SHA1l [SHA_DIGEST_LENGTH];

} mfa_ic_typeContainerHeader;

Parameters:

Data_length

Size of data packet

Flags

INTERCONNECT DATA PLAIN
INTERCONNECT _DATA RSA_ENCRYPT
Data_SHA1

Value of SHA1 of data packet

4.2.6 mfa_ic_TypeSocket
Main structure for interconnect communication functions.

Definition:
typedef struct mfa_ic_tdSocket {
int Socket;
BYTE Local_1IP4([4];
in_port_t Local_Port;
BYTE Remote_TIP4[4];
in_port_t Remote_Port;
int Timeout;
char* Remote_host_name;
EVP_PKEY* Remote_public_key;
char* Local_host_name;
EVP_PKEY* Local_private_key;
size_t Shared_key_size;
BYTE~* Shared_key;
} mfa_ic_typeSocket;
Parameters:
Socket

Open_TC Deliverable 6e.3

14/36

X ¥,

l MFA Final System Specification

Socket handler

Local_IP4[4]

Local IP address for the socket

Local Port

Local port for the socket

Remote_IP4

Remore IP address for the socket
Remote_Port

Remote port for the socket

Timeout

Connection timeout in seconds (default is INTERCONNECT TIMEOUT)
Remote_host_name

Name of remote host
Remote_public_key

Public key of remote host
Local_host_name

Name of local host
Local_private_key

My private key

Shared_key size

Size of shred key for symmetric encryption
Shared_key

Shared key for symmetric encryption

4.3 Interface definition

The syntax used in describing the MFA application is based on the common procedural
language constructs. Data types are described in terms of ANSI C.

4.3.1 MFA Server Functions

mfa_server_reg_InitializeConnection
Initialize a connection from server to the client during registration.

Definition:
SERVER_RESULT mfa_server_reg_InitializeConnection (
mfa_ic_typeSocket* socket,
char* client_host,
char** client_name);
)
Parameters:

socket
Pointer to mfa_ic_typeSocket structure
client_host
DNS client name
client_name
Generated Client name
Return Values:
SERVER _RESULT

Open_TC Deliverable 6e.3 15/36

;“l MFA Final System Specification
*

mfa_server_auth_InitializeConnection
Initialize a connection from server to the client during authentication.

Definition:
SERVER_RESULT mfa_server_auth_InitializeConnection (
mfa_ic_typeSocket* socket,
char* client_host,
char** client_name);
)i
Parameters:

socket
Pointer to mfa_ic_typeSocket structure
client_host
DNS client name
client_name
Generated Client name
Return Values:
SERVER RESULT

mfa_server_ValidateUserCredential

This method sends request to client for credentials according to policy,

verifies credentials based on the matched and reference credentails, return Success,
or Failure.

Definition:
SERVER_RESULT mfa_server_ ValidateUserCredential (
mfa_ic_typeSocket* socket,
mfa_c_typeUserPolicy* policy,
char* client_name
)i
Parameters:
socket
Pointer to mfa_ic_typeSocket structure
policy

Pointer to structure mfa_c_typeUserPolicy
client_name
Client name
Return Values:
SERVER_RESULT

mfa_server_ObtainUserCredential
This method sends request to client for registration credentials according to policy.

Definition:
SERVER_RESULT mfa_server_ObtainUserCredential (
mfa_ic_typeSocket* socket,
char* client_name,
mfa_c_typeRegTicket* reg_ticket,
mfa_c_typeUserPolicy* policy
)i

Parameters:

Open_TC Deliverable 6e.3 16/36

X ¥,

l MFA Final System Specification

socket

Pointer to mfa_ic_typeSocket structure
client_name

Client name

reg_ticket

Pointer to mfa_c_typeRegTicket structure
policy

Pointer to structure mfa_c_typeUserPolicy

Return Values:
SERVER_RESULT

mfa_server_ClientAuthentication
This method performs the full cycle of remote User And Platform authentication.

Definition:
SERVER_RESULT mfa_server_ClientAuthentication(
char* client_name, //in
char* user_name, //in
char* service //in
)
Parameters:

client_name
Name of the client host platform
user_name
Client User Name, who wanted to be logged on
service
Service name
Return Values:
SERVER _RESULT

mfa_server_ClientRegistration
This method performs the full cycle of remote Platform User And Platform registration.

Definition:
SERVER_RESULT mfa_server_ClientRegistration (
char* client_host,
char* user_name,
char* reg_password
)
Parameters:

client_host
DNS name of the client host platform, that should be registered
user_name
Client User Name, who wanted to be registered
reg_password
Password for registration
Return Values:
SERVER RESULT

4.3.2 MFA Client Functions

Open_TC Deliverable 6e.3 17/36

;“l MFA Final System Specification
*

mfa_ichl_NewTPMPublicKeyReply
Client Response to mfa_ichl NewTPMPublicKeyRequest

Definition:
INTERCONNECT_RESULT mfa_ichl NewTPMPublicKeyReply (
mfa_ic_typeSocket* socket,
char* key_password

)i

Parameters:
socket
Pointer to mfa_ic_typeSocket structure
key_password
String with key password
Return Values:
INTERCONNECT RESULT

mfa_ichl_QuoteReply

Retrieve information about user platform Credentials from TPM and send this
information to the server.

This function is called after server have sent mfa_ichl QuoteRequest.

Definition:
INTERCONNECT_RESULT mfa_ichl_ QuoteReply (
mfa_ic_typeSocket* socket,
char* quota_param_str
)
Parameters:

socket
Pointer to mfa_ic_typeSocket structure

quota_param_str
String with requested parameters for quote action

Return Values:
INTERCONNECT RESULT

mfa_ichl_QuoteRequest
This function has two mode:

1. request PCRs values from Client and put them to response_pcrs for registration,
2. request Signature of PCRs values for authentication and verify it (this mode is

used if response_pcrs == NULL).

Definition:
INTERCONNECT_RESULT mfa_ichl_QuoteRequest (
mfa_ic_typeSocket* ic_socket,
char* key_password_hex,
TSS_UUID key_uuid,
RSA* rsa_public_key,
mfa_c_typePCRList request_pcrs,
mfa_c_typePCRList* response_pcrs)

Parameters:

Open_TC Deliverable 6e.3

18/36

X ¥,

l MFA Final System Specification

socket

Pointer to mfa_ic_typeSocket structure

key_password_hex

Pointer to Key Password

key_uuid

Key identificater

rsa_public_key

Pointer to Public key for signature verification

request _pcrs

mfa_c_typePCRList structure with Pcrs numbers that should be quote

response_pcrs

Pointer to the structure mfa_c_typePCRList with the value of the Pcrs
Return Values:

INTERCONNECT_RESULT

ClientSideAuthentication
This method performs the actions to get Platform User And Platform authentication
data.

Definition:
CONFIG_RESULT ClientSideAuthentication (
mfa_ic_typeSocket* socket,
char* server name)

Parameters:

socket
Pointer to mfa_ic_typeSocket structure
server_name
Server Name
Return Values:
CONFIG_RESULT

ClientSideRegistration
This method performs the actions to get Platform User And Platform registration data.

Definition:
CONFIG_RESULT ClientSideRegistration (
mfa_ic_typeSocket* socket,
char* server_name)

Parameters:

socket
Pointer to mfa_ic_typeSocket structure
server_name
Server Name
Return Values:
CONFIG_RESULT

4.3.3 MFA Channel Module Functions

mfa_ic_OpenConnection
This method open connection to remote host.

Open_TC Deliverable 6e.3 19/36

;“l MFA Final System Specification
*

Definition:
INTERCONNECT_RESULT mfa_ic_OpenConnection
(
char* remote_host_name, // in
in_port_t remote_port, // in
mfa_ic_type_Socket* socket // out
)

Parameters:

remote_host_name

Remote host name or IP

remote_port

Port on remote host we connect to

socket

Pointer to mfa_ic_typeSocket structure
Return Values:

INTERCONNECT RESULT

ERROR

mfa_ic_ListenConnection
Bind and listen for incoming connections.

Definition:
INTERCONNECT_RESULT mfa_ic_ListenConnection(
in_port_t local_port, // 1in
mfa_ic_typeSocket* socket // out
)i
Parameters:
local_port
Local Port for listen incoming connections
socket
Pointer to mfa_ic_typeSocket structure

Return Values:
INTERCONNECT _RESULT

mfa_ic_AcceptConnection
Accept incoming connection.

Definition:
INTERCONNECT_RESULT mfa_ic_AcceptConnection
(
mfa_ic_typeSocket* socket // 1in/out
)

Parameters:
socket

Pointer to mfa_ic_typeSocket structure
Return Values:
INTERCONNECT _RESULT

mfa_ic_CloseSocket
Close socket.

Open_TC Deliverable 6e.3

20/36

;“l MFA Final System Specification
*

Definition:
INTERCONNECT_RESULT mfa_ic_CloseSocket (
mfa_ic_typeSocket* Socket // 1in/out
)

Parameters:
socket

Pointer to mfa_ic_typeSocket structure

Return Values:
INTERCONNECT _RESULT

mfa_ic_ShutdownSocket
Shutdown socket

Definition:
INTERCONNECT_RESULT mfa_ic_ShutdownSocket (
mfa_ic_typeSocket* socket // 1in/out
)

Parameters:
socket

Pointer to mfa_ic_typeSocket structure

Return Values:
INTERCONNECT _RESULT

mfa_ic_SetPeerPublicKey
Associate Peer public key with the socket.

Definition:
INTERCONNECT_RESULT mfa_ic_SetPeerPublicKey
(
mfa_ic_typeSocket* socket, // in/out
char* peer_name
)

Parameters:

socket
Pointer to mfa_ic_typeSocket structure
peer_name
Name of remote host
Return Values:
INTERCONNECT RESULT

mfa_ic_SetLocalPrivateKey
Associate Local Private key with the socket.

Definition:
INTERCONNECT_RESULT mfa_ic_SetLocalPrivateKey
(
mfa_ic_typeSocket* socket, // 1in/out
)
Parameters:

Open_TC Deliverable 6e.3 21/36

X ¥,

l MFA Final System Specification

socket
Pointer to mfa_ic_typeSocket structure

Return Values:
INTERCONNECT _RESULT

mfa_ic_WriteToSocket
Write buffer to socket with encryption (if encryption flag set).

Definition:
INTERCONNECT_RESULT mfa_ic_WriteToSocket (
mfa_ic_typeSocket* socket, // in
UINT16 buffer_size,// in
BYTE* buffer, // in
BYTE flags // in
)i
Parameters:
socket

Pointer to mfa_ic_typeSocket structure

buffer_size

Size of buffer for transfer

buffer

Data for transfer

flags

Set of write operation flags, possible values:
INTERCONNECT DATA_PLAIN
INTERCONNECT DATA_ENCRYPT_BY_PUBLIC_KEY
INTERCONNECT _DATA ENCRYPT _BY SHARED KEY
INTERCONNECT DATA _SIGN_BY_PRIVATE_KEY

);
Return Values:
INTERCONNECT_RESULT

mfa_ic_ReadFromSocket
Read into buffer from socket with encryption (if encryption flag set).
Buffer is allocated inside function.

Definition:
INTERCONNECT_RESULT mfa_ic_ReadFromSocket (
mfa_ic_typeSocket* socket, // 1in
UINT16* buffer_size,// in
BYTE** buffer, // in
BYTE* flags // in
)i
Parameters:
socket
Pointer to mfa_ic_typeSocket structure
buffer_size
Size of received data
buffer
Received data
flags
Set of received transfer flags, possible values:

Open_TC Deliverable 6e.3 22/36

X ¥,

l MFA Final System Specification

INTERCONNECT_DATA_PLAIN
INTERCONNECT _DATA _ENCRYPT_BY_PUBLIC_KEY
INTERCONNECT DATA_ENCRYPT_BY_SHARED_KEY
INTERCONNECT _DATA SIGN_BY_PRIVATE_KEY
Return Values:
INTERCONNECT_RESULT

mfa_ichl_SendMyKey
Take local public key (or certificate or AIK) in PEM format from Configuration and send
it to peer.

Definition:
INTERCONNECT_RESULT mfa_ichl_SendMyKey (
mfa_ic_typeSocket* socket
)i
Parameters:
socket
Pointer to mfa_ic_typeSocket structure
Return Values:
INTERCONNECT RESULT

mfa_ichl_RecvAndSavePeerKey
Receive peer key (or certificate or AIK) in PEM format, compare with local one
(if exists) and store it.

Definition:
INTERCONNECT_RESULT mfa_ichl RecvAndSavePeerKey (
mfa_ic_typeSocket* socket,
char* peer_name
)i
Parameters:

socket
Pointer to mfa_ic_typeSocket structure

Return Values:
INTERCONNECT_RESULT

mfa_ichl NewTPMPublicKeyRequest
This method sends request to client for creating Pubic key, that will represent platform

Definition:
SERVER_RESULT mfa_ichl_ NewTPMPublicKeyRequest (
mfa_ic_typeSocket* socket, //in
char** new_key_password_hex, //out
TSS_UUID* new_key_uuid, //out
RSA** rsa_public_key //out
)i
Parameters:

socket

Pointer to mfa_ic_typeSocket structure
key _password_hex

Pointer to Key Password

Open_TC Deliverable 6e.3 23/36

X ¥,

l MFA Final System Specification

key_uuid
Key unique identificater
rsa_public_key
Pointer to Public key
Return Values:
INTERCONNECT _RESULT
mfa_ic_ErrorString
Error code to string

Definition:
void mfa_ic_ErrorString (
INTERCONNECT_RESULT error_code,
char* error,
int err_string_size
);
Parameters:
error_code
Error code
error
Error string
err_string_size
Error string size

4.3.4 MFA Credentials and Policy Configuration Functions
mfa_db_GetUserCredential

This Method retrieves user reference credentials and policy from DB on the server for

the authentication.

Definition:
SERVER_RESULT mfa_db_GetUserCredential (
char* client_name,
char* user_name,
char* service,
mfa_c_typeUserPolicy** policy
)i
Parameters:
client_name
Client name
user_name
User name
service
Requested service
policy
Pointer to structure mfa_c_typeUserPolicy
Return Values:
SERVER_RESULT

mfa_db_GetUserCredentialParam
The Method retrieves the user registration ticket from DB on the server.

Open_TC Deliverable 6e.3

24/36

;“l MFA Final System Specification
*

Definition:
SERVER_RESULT mfa_server_ GetUserCredentialParam (
char* client_host,
char* user_name,
char* reg_password,
mfa_c_typeRegTicket** ticket
)
Parameters:

client_host

DNS client name

user_name

User name

reg_password

Registration password

ticket

Pointer to structure mfa_c_typeRegTicket
Return Values:

SERVER_RESULT

mfa_db_SaveUserCredentials
This method save User registration credentials in DB

Definition:
SERVER_RESULT mfa_db_SaveUserCredential (
char* user_name,
char* client_name,
mfa_c_typeUserPolicy policy
)i
Parameters:

user_name
Client User Name, who wanted to be logged on
client_name
Name of the client host platform
policy
Structure mfa_c_typeUserPolicy
Return Values:
SERVER_RESULT

mfa_c_CheckClientSideConfiguration
This method checks a client side configuration.

Definition:
CONFIG_RESULT mfa_c_CheckClientSideConfiguration();

Return Values:
CONFIG_RESULT

mfa_c_CheckServerSideConfiguration
This method checks a server side configuration

Definition:
CONFIG_RESULT mfa_c_CheckServerSideConfiguration();

Open_TC Deliverable 6e.3 25/36

’*“l MFA Final System Specification
*

Return Values:
CONFIG_RESULT

mfa_c_IsPeerEnabled
This method checks that peer is enabled. On success return CONFIG_SUCCESS
else return peer status (CONFIG_PEER _DISABLED or CONFIG_PEER _NOT REGISTERED).

Definition:
CONFIG_RESULT mfa_c_TIsPeerEnabled (
char* peer_host_name)

Parameters:
peer_host_name
Pointer to String with host name

Return Values:
CONFIG_RESULT

mfa_c_EnablePeer
This method enables peer. By default registered peer is enabled.

Definition:

CONFIG_RESULT mfa_c_FEnablePeer (

char* peer_host_name)
Parameters:

peer_host_name

Pointer to String with host name
Return Values:

CONFIG_RESULT

mfa_c_DisablePeer
This method disable peer.

Definition:
CONFIG_RESULT mfa_c_DisablePeer (
char* peer_host_name,
char* disable_reason
)i
Parameters:

peer_host_name

Pointer to String with host name
disable_reason

Pointer to String with the reason

Return Values:
CONFIG_RESULT

mfa_c_GetRegTicket
Get registration ticket for user_name.

Open_TC Deliverable 6e.3 26/36

;“l MFA Final System Specification
*

after success return ticket the file opened and locked and must be closed by
mfa_c_CloseRegTicketFile

Definition:
CONFIG_RESULT mfa_c_GetRegTicket (
char* user_name,
mfa_c_typeRegTicket** ticket
)i
Parameters:
user_name
User name
ticket
Pointer to the mfa_c_typeRegTicket structure

Return Values:
CONFIG_RESULT

mfa_c_SetRegTicket

Set registration ticket for user_name.

After success return ticket the file opened and locked and must be closed by
mfa_c_CloseRegTicketFile.

Definition:
CONFIG_RESULT mfa_c_SetRegTicket (
char* user_name,
mfa_c_typeRegTicket* ticket
)
Parameters:
user_name
User name
ticket
mfa_c_typeRegTicket structure
Return Values:
CONFIG_RESULT

mfa_c_SetUserPolicy

This method set user policy and save credentials for peer. Before set policy it checks

the peer is registered and enabled. If policy == NULL delete policy file.

Definition:
CONFIG_RESULT mfa_c_SetUserPolicy (
char* user_name,
char* peer_host_name,
mfa_c_typeUserPolicy policy
)i

Parameters:

user_name

String with user name
peer_host_name

String with host name

Policy

Structure mfa_c_typeUserPolicy

Open_TC Deliverable 6e.3

27/36

’*“l MFA Final System Specification
*

Return Values:
CONFIG_RESULT

mfa_c_GetUserPolicy

This method gets user policy and credentials for peer. If policy == NULL returns new

objects otherwise reuse existing object.

Definition:
CONFIG_RESULT mfa_c_GetUserPolicy (
char* user_name,
char* peer_host_name,
mfa_c_typeUserPolicy ** policy
)i

Parameters:

user_name

String with user name

peer_host_name

String with host name

Policy

Pointer to structure mfa_c_typeUserPolicy
Return Values:

CONFIG_RESULT

5 MFA System Prototype Component Description

The following components will be described in the document :
+ PAM Configuration (eg. for sshd, ftpd);
« MFA PAM - Authentication Service-pam_mfa.so;
pam_mfa.so include the following modules:
mfa_pam.c - main PAM code;

server_side.c - registration and authentication module;
interconnect_lib.c - low level interconnect functions library;
interconnect_hl_lib.c - high level interconnect functions library

config_llc_lib.c - low level functions library to work with configuration;
config_lib.c - high level function library to work with configuration;
mfa_errors.c - error module;

log_lib.c - logging functions module;

- Utility for work with registration tickets -mfa_reg_ticket:

mfa_reg_ticket.c - main executable file;

config_lib.c - high level function library to work with configuration;
config_llc_lib.c - low level function library to work with configuration;
mfa_errors.c - error module;

log_lib.c - logging functions module;

« MFA Client Manager - mfa_client_manager
mfa_client_manager includes the following modules:

Open_TC Deliverable 6e.3

28/36

X ¥,

l MFA Final System Specification

mfa_client_manager.c- client side of the authentication and regstration
module;

interconnect_lib.c - low level interconnect functions library;
interconnect_hl_lib.c - high level interconnect functions library;

config_llc_lib.c - low level functions library to work with configuration;
config_lib.c - high level function library to work with configuration;
mfa_errors.c - error module;

log lib.c - logging functions module.

5.1 PAM Configuration

The PAM Configuration is a system file, which is part of the PAM Framework. It
provides possibility to use multifactor user authentication and registration with ability
to authenticate entities based on arbitrary combination of credentials. Authentication
providers could create new method authentication compliant with PAM requirements
that will be available for authenticate a user.

For usage MFA PAM authentication the module mfa_pam.so must be added to PAM
configuration file for required service in to auth section. See PAM documentation for
more information.

Examples of PAM configuration files for sshd and ftpd services:

[etc/pam.d/ftpd:
#

SFreeBSD: src/etc/pam.d/ftpd,v 1.18 2003/04/30 21:57:54 markm Exp $
PAM configuration for the "ftpd" service

auth

auth required pam_nologin.so no_warn

auth sufficient pam_opie.so no_warn no_fake_prompts
auth requisite pam_opieaccess.so no_warn allow_local
#auth sufficient pam_krb5.so no_warn

#auth sufficient pam_ssh.so no_warn try_first_pass
auth required pam_unix.so no_warn try_first_pass
auth required pam_mfa.so

account
faccount required pam_krb5.so
account required pam_unix.so

session
session required pam_permit.so

/etc/pam.d/sshd:

SFreeBSD: src/etc/pam.d/sshd,v 1.15 2003/04/30 21:57:54 markm Exp $
PAM configuration for the "sshd" service

S oS o H

auth

Open_TC Deliverable 6e.3 29/36

;“l MFA Final System Specification
*

auth required pam nologin.so no_warn

auth sufficient pam opie.so no_warn no_fake_prompts
auth requisite pam opieaccess.so no_warn allow_local
#auth sufficient pam krb5.so no_warn try_ first_pass
#auth sufficient pam ssh.so no_warn try_ first_pass
#auth required pam_unix.so no_warn try first_pass
auth required pam_mfa.so

account

#account required pam_krb5.so
account required pam_login_access.so
account required pam unix.so

session
#session optional pam_ssh.so
session required pam _permit.so

5.2 MFA PAM Module

MFA PAM - Authentication/Registration Service is pam_mfa.so, configured locally on
the server with a PAM Configuration System files /etc/pam.d/* . pam_mfa.so - PAM
single shared library file that can be loaded by the PAM framework. The module
registers and authenticates user with TPM credentials depends on the user policy.

This module performs its actions by opening a connection with TPM on client computer
that requested PAM Service through interconnect library and sending the command to
MFA Client Manager according to authentication or registration protocols. It requests
MFA TPM credentials from client to register or authenticate user. It save requested
credentials in configuration data base using Configuration library.

Standard PAM authentication function format is:
pam_sm_authenticate(pam_handle_t *pamh, int flags, int argc, const char *argv[])

5.3 Client Credentials and Policy DB

Client Credentials and Policy DB is located in directories and subdirectories.
Two directories used to keep these data:

One for user/platform registration policy - /usr/local/etc/mfa_pam/regtickets.
Another for User/Platform policy and credentials - /usr/local/etc/mfa_pam/peers.

/usr/local/etc/mfa_pam/regtickets — directory with registration tickets, that describes
the policy for new users. Name of file with ticket is same as user name.

/usr/local/etc/mfa_pam/peers/<client name> - main configuration directory, that
contains the list of the clients, that registered to have access to the server services,
subdirectories contains registered clients and user credentials in files:

main files: peer.disable - if file exists peer disabled, files contain reason to be disabled
peer.certificate - peer certificate in PEM format
peer.public_key - peer public key in PEM format

Open_TC Deliverable 6e.3 30/36

’*“l MFA Final System Specification
*

<user name>.policy - user policy and credentials
<Key UUID>.pub - user public key in PEM format
<Key UUID>.cert - user certificate in PEM format

5.4 MFA Client Manager

mfa_client_ manager - application that executes commands that the server sends to
the client to perform authentication or registration. It communicates with server
through the interconnect library. It communicates with TPM service through the TSS
library.

It works according the registration or authentication protocol.

5.5 Low level interaction protocol
Description of interconnect protocol

5.5.1 Container
Container structure used for transfer data block (blob)

Offset Content

00-01 Data length

02 INTERCONNECT_DATA flags
03-23 SHA1 160 of data

24-END data

5.5.2 Commands

The command system used to interact server and client through the channel:

REGISTRATION <peer name> - start registration process from peer
AUTHENTICATION <peer name> - start authentication process from peer

MY_NAME <host name> - send host name to peer

NEED_NEW_NAME - ask Server to generate a new name for Client
YOUR_NAME <new name> - response on NEED_NEW_NAME request
MY_PUBKEY

<public key in PEM format> - send public key in PEM format

MY_CERT

<certificate in PEM format> - send certificate in PEM format>

MAKE_NEW _KEY <new key password>

- request to make new TPM key with <password>
PUBLIC_KEY <UUID>
<public key in PEM format> - MAKE_NEW_KEY response

TPM_REQUEST QUOTE <parameters> - request for quote.
Parameters:
SIGN_KEY_UUID: <key uuid>
SIGN_KEY PASSWD: <hex string with password>
CHALLENGE: <hex string with challenge>
PCRs: <pcrs list>
SEND_PCRs: YES

Open_TC Deliverable 6e.3 31/36

X ¥,

l MFA Final System Specification

TPM_RESPONSE QUOTE <parameters> - quote response
Parameters:
TPM_PCR_COUNT: <TPM pcrs count>\n
QUOTE_HEADER: <first 8 bytes or quote resoponse HEX\n
PCRs: <pcrs values>\n (in necessary)\n
QUOTE_SIGNATURE: <quote signature HEX>\n

TPM_REQUEST SIGN_CHALLENGE - request for challenge signed by TPM
TPM_RESPONSE SIGN_CHALLENGE - response with signed challenge
PING <hex string with challenge> - PING request

PONG <hex string with challenge> - Response on PING request

ERROR - ERROR

QUIT - close socket

5.5.3 Registration process

Server: Connect to Client
Server: REGISTRATION <server name>
Client: Check that Server isn't disabled by configuration

If Client does not have own name,
Client: REQ_NEW_NAME request
Server: NEW_NAME response

endif

Client: MY NAME <client name>

Server: Check that Client is not disabled by configuration
Server: MY PUBKEY\n<server public key in PEM format>

Client: MY_PUBKEY\n<client public key in PEM format>

Server: MAKE_NEW_KEY <key password> (encrypted)

Client: PUBLIC_KEY <UUID>\n<public key in PEM format> (encrypted)
Server: TPM_REQUEST QUOTE <parameters> (encrypted)

Client: TPM_RESPONSE QUOTE <parameters> (encrypted)

Server: QUIT

The sample of the registration protocol can be found in the source code:
doc\examples\protocol\registration_quote.txt

5.5.4 Authentication process

Server: Connect to Client

Server: AUTHENTICATION <server name>

Client: Check that Server isn't disabled by configuration
Client: MY _NAME <client name>

Server: Check that Client isn't disabled by configuration
Server: TPM_REQUEST QUOTE <parameters> (encrypted)
Client: TPM_RESPONSE QUOTE <parameters> (encrypted)
Server: QUIT

Open_TC Deliverable 6e.3 32/36

l MFA Final System Specification
*

The sample of the authentication protocol can be found in the source code:
doc\examples\protocol\authentication_quote.txt

5.6 Utility for work with registration tickets

mfa_reg_ticket <command> <command option>

Possible commands:

6

add <user> - Add ticket for user
change <user> — Change ticket for user
Options for add or change:

[-—count=<tickets count>]
[-—password=<registration passwors>]
[-—tpm-key-type=(none|user|aik)]
[-—pcrs=<common separated PCRs numbers list>]
[-—services=<common list of services available for user>]

show <user> - Show ticket for user
delete <user> — Delete ticket for user
list - List of available tickets

MFA prototype Installation instructions

To compile and install software you must have:

1. GCC

2. installed TSS (trousers 0.2.6) includes and libraries
3. PAM includes and libraries (only on the server)

4. GNU make

To install MFA prototype components on the clients:

1. copy tpm_mfa.tbz (bzip2 tar archive) client machines with TPM
2. unpack the archive file to some directory (archive _root_dir) by command
tar —-xjf mfa_pam.tbz -C <source directory>
3. change current directory to <source directory>/mfa
4. edit Makefile.client and make necessary changes (C compile, path to TSS
libraries and includes)
5. compile mfa_client_manager by start command
gmake —-f Makefile.client mfa_client_manager
6. after successeful compitation executable file mfa_client_manager will be in
MFA/bin directory.
7. make directory /usr/local/etc/mfa_pam:
mkdir /usr/local/etc/mfa_pam
chmod 0700 /usr/local/etc/mfa_pam
cd /usr/local/etc/mfa_pam
8. make private key
openssl genrsa -—-out my.key 2048
9. write public part of key
openssl rsa —-in my.key -pubout -out my.pub
10. set SRK password (if exists) to srk.passwd file,
echo "<SRK password>" > srk.passwd
11. copy mfa_client_manager execute file to place like /usr/local/sbin/,

Open_TC Deliverable 6e.3 33/36

;“l MFA Final System Specification
*

cp <source dir>/MFA/bin/mfa_client_manager /usr/local/sbin/

To install MFA prototype components on the servers:
1. copy tpm_mfa.tbz (bzip2 tar archive) client machines with TPM

2. unpack the archive file to some directory (archive_root_dir) by command
tar -xjf mfa_pam.tbz -C <source directory>

3. change current directory to <source directory>/mfa
4. edit Makefile.client and make necessary changes (C compile, path to TSS
libraries and includes)
5. compile mfa_client_manager by start command:
gmake —-f Makefile.server all
after successeful compitation executible file mfa_reg_ticket and shared PAM
module pam_mfa.so.1 will be in MFA/bin directory.
6. make directory /usr/local/etc/mfa_pam,
mkdir /usr/local/etc/mfa_pam,
chmod 0700 /usr/local/etc/mfa_pam
cd /usr/local/etc/mfa_pam
7. set server host name to file my.name,
echo "<server name>" > my.name
8. make private key,
openssl genrsa —-out my.key 2048
9. write public part of key,
openssl rsa —-in my.key -pubout -out my.pub
10. copy mfa_reg_ticket execute file to place like /usr/local/bin/,
cp <source dir>/MFA/bin/mfa_reg_ticket /usr/local/bin/
11. copy pam_mfa.so.1 to directory with PAM modules (/lib/security at LINUX
environment or /usr/lib/ in FreeBSD),
cd <source dir>/MFA/bin/pam_mfa.so.l /lib/security/
12.edit PAM configuration for add pam_mfa.so module
13.make symbol link from pam_mfa.so.1 to pam_mfa.so,
cd /lib/security
1ln -s pam_mfa.so.l pam _mfa.so

14.add new registration tickets by start mfa_reg_ticket utility

7 Usage of MFA prototype for registration and
authentication

7.1 Registration a new MFA user to the server

For Client platform registration execute any terminal-based application with enabled
PAM MFA at server with the next parameters:
e user name: reg_<remote user name>;
e server name or IP.
For example:
ssh reg_irina@server

7.2 Logon to the server

Open_TC Deliverable 6e.3 34/36

;“l MFA Final System Specification
*

To logon to the remote server you needn't any addition parameters. Only execute
client application. For example:

ssh irina@server

7.3 MFA Prototype system list of files

Mfa list of files:
Makefile.client
Makefile.objects
Makefile.server
doc\install.txt
doc\interconnect_protocol.txt
doc\examples\pam.d
doc\examples\pam.d\ftpd
doc\examples\pam.d\sshd
doc\examples\protocol\authentication_no_tpm.txt
doc\examples\protocol\authentication_quote.txt
doc\examples\protocol\authentication_tpm_user_key.txt
doc\examples\protocol\registration_quote.txt
doc\examples\scripts\initialize_client.sh
doc\examples\scripts\initialize_server.sh
doc\examples\ssh\sshd_config

include\config_lib.h
include\config_llc_lib.h
include\credential.h
include\interconnect_hl_lib.h
include\interconnect _lib.h
include\log_lib.h
include\mfa_errors.h
include\mfa_pam.h
include\server_side.h
include\some_types.h
include\tpmless_lib.h
include\tpm_lib.h

src\config_lib.c
src\config_llc_lib.c
src\credential.c
src\interconnect_hl_lib.c
src\interconnect_lib.c
src\log_lib.c
src\mfa_client_manager.c
src\mfa_errors.c
src\mfa_pam.c
src\mfa_reg_ticket.c
src\server_side.c
src\tpmless_lib.c
src\tpm_lib.c

Open_TC Deliverable 6e.3 35/36

> l MFA Final System Specification
*

List of abbreviations

Listing of term definitions and abbreviations used in this document (IT expressions and
terms from the application domain).

Abbreviation Explanation

AIK Attestation Identity Key

API Application Programming Interface
MFA MultiFactor Authentication

0s Operating System

PCR Platform Configuration Register
SSL Secure Sockets Layer

TC Trusted Computing

TCB Trusted Computing Base

TCG Trusted Computing Group

TPM Trusted Platform Module

TSS Trusted Software Stack

8 Referenced Documents

/1/ TCG Specification, Architecture Overview.
http://www.trustedcomputing.org
April 28, 2004,

Version 1.2

/2] TCG Software Stack (TSS) Specification
January 6, 2006,
Version 1.2

/3/ PAM
http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/Linux-
PAM_ADG.htmihttp://msdn.microsoft.com

Version 0.99.6.0, 5. August 2006.

/4/ Secure Coding Guidelines
http://msdn.microsoft.com
2004

/5/ Improving Web Application Security: Threats and Countermeasures
http://msdn.microsoft.com

/6/ Writing Secure Code, Second Edition, by Michael Howard, David C. LeBlanc

/7] OpenSSL Toolkit www.openssl.org/

Open_TC Deliverable 6e.3 36/36

l BB

Information Society

Technologies

D6.3 Collection of all SWP deliverables (with
nature=R) produced during month 13-24

ANNEX
Project number IST-027635
Project acronym Open_TC
Project title Open Trusted Computing
Deliverable type Deliverable
Deliverable reference number IST-027635/D06.3/FINAL | 1.00

D6.3 Collection of all SWP deliverables (with
nature=R) produced during month 13-24

WP contributing to the deliverable WP6

Deliverable title

Due date Oct 2007
Responsible Organisation LDV,Lehrstuhl fur Datenverarbeitung, TUM
Authors Chun Hui Suen
Abstract
Keywords OpenTC WP6
Dissemination level Public
Revision FINAL | 1.00
Start date of the o
Instrument IP project 15* November 2005
Thematic Priority IST Duration 42 months

BUE

Information Society

Technologies

WPO06d.1 Encrypted File Service

Application Programming Interface

Specification
Project number IST-027635
Project acronym Open_TC
Project title Open Trusted Computing
Deliverable type Deliverable

Deliverable reference number
Deliverable title

WP contributing to the deliverable

IST-027635/D06d.1/Final/1.0

WP06d.1: Compartmented Security

WP6d Trusted Computing Based Encrypted
File Service

Due date Mar 2007
Actual submission date April 2007
Responsible Organisation PORT

Authors
Abstract

Keywords

Burak Oguz, Baran Erdogan, Bora Glngoren

Encrypted File Service comes with number of
features that are supported by trusted
computing infrastructure and Open Trusted
Computing enhancements for
compartmented operation on Xen and L4
hypervisors. EFS Application Programming
Interface(API) simplifies inclusion EFS
features in all type of applications

Dissemination level

Public | Confidential

Revision

Start date of the o
Instrument IP project 1°* November 2005
Thematic Priority IST Duration 42 months

WPO06d.1 Encrypted File Service C/C++ API Specification

*)H'i
=

Table of Contents

B o o Yo [U T ot of o o TP 6
I A = RN =] o Yol S B 1 =Y | =] o T 6
1.2 Target AUGIENCE. ...ttt e e e e e e e et e e e e e e e e e n e en e enaenas 6
1.3 API Method DeSCriPlioN.t e e e e ennens 7
1.4 Input Parameter Limitations. 9
1.5 Return Value Limitations. ene 9
I O I B I=T oT=T o Lo [=] o Ty Y28 PSPPI 9
A Y o] o] =1V = e 9

P S o B U] oV PP UPTPTT 11
2 R O 3 =]) = PP 12

20 N T = 1 1 T 1/ 1< 12
2.1.1.7 SUGCCESSFUL. ...ttt e e e e e e enees 12
2.1.1.2 FAILED. ...t e 12
2.1.1.3 NOT_IMPLEMENTED.....ccuiiit i e e e enes 12

2.1.2 File Operation Ty PeS. ittt 13
2.1, 2.0 ENCRY P ittt ettt e et e e et e et r e 13
D N | =L 1 2 = TP 13
2.1.2.3 SIGN it e et e e e e e 13
2.1, 2.4 VERIFY o e 13
2.1.2.5 SHRED ... it 13

2.1.3 Encryption AlQOrithm TYPeS. .. et 14
2.1.3.1 AES-ECB oot e 14
2.1.3.2 AES-CB .. it en e 14
2.1.3.3 DES-ECB.. e it ea e 14
2.1.3.4 DES-CB .. ittt 14
2.1.3.5 DESEAE-ECB......couiiiiiiiiiie et en e 14
2.1.3.6 DESEAE-CBC ... ittt ettt e 14
2.1.3.7 BLOWEFISH. ... e e 14

DA R =)V Y/ o 1< PP PP 16
2.1.4.1 KEY BIND.. ittt et ettt e e et e e e ea e 16
2.1.4.2 KEY _SIGN. .. it et 16
2.1.4.3 KEY LEGACY ettt ettt e e e e e e e e 16

2.2 FilE OPEIALIONS. ...ttt ettt ettt ettt e ettt e et e et e e e eeeeee s 17

2.2.1 getlastCommandStatus.c.oeiiiiii 17

2.2.2 NASOPENSESSION. L. it ittt 18

P B o] o <1 1T =11 [] o TP 19

2.2.4 CheCKUSEIPASSWA. ... ceiiiiiii et en e ens 20

2.2.5 fileOPEIratioN. ... e 21

2.2.6 decryptIinVolatileMemOry 23

DA A o Tot= 1 a1 =T 2 =Tl o)V = Y2 24

2.2.8 FEMOTERECOVEIY . .u ittt et e n e 25

2.2.9 Sample CLI Commands for File Operations:.........ccoovviiiiiiiiiiiiiniceeee e 26

B T U 1YY g @ o 1= = 1o 1N 27

PG T R 111 V£ TP 27

2.3.2 ChangeUSEIPASSWA.t e 28

2.3.3 lISEMACPOIICIES. ..ttt e 29

2.3.4 [iISEDACPOIICIES. .. ettt et 30

2.3.5 SEEDACPOIICY et 31

Open_TC Deliverable 2/69

WPO06d.1 Encrypted File Service C/C++ API Specification

*)H'i
=

2.3.6 FESEED ACPOIICY . ittt 32
2.3.7 setTrustedSigNONVaAlUE. 33
2.3.8 CheCKTrUStEASIGNON. . e aas 34
2.3.9 clearTrustedSigNONValUe........cooiiiii i 35
2.4 KEY OPIatiONS. .. it iieiiei ettt eans 36
2.4.1 CheCKAAMINPASSWA. ... vt e e e e e e enees 36
2.4.2 geNEratEUSEIKEY ... it 37
2.4.3 addNEWUSEIKEY .. c.uiiiiii e 38
2.4.4 delet@USErKeY ... e 39
2.4.5 RATIrUSEEABACKUP. ..ccui i e 40
2.4.6 trustedKeyBaCKUP 41
2.4.7 trusStedKEY RESEOIE. .. e i e 42
2.4.8 trustedKeyMigrate. ..o 43
2.4.9 trustedUsSerKeYBaCKUp. ... i .t 44
2.4.1 OtrustedUSEerKEYRESTOME. e eaeaas 45
2.5 Recovery Agent OpPerations.o it 46
2.5.1 sendRAREQIStratioNREQUEST........ceuiiiieii e 46
2.5.2 sendRAUNregistratioNREQUEST........ciiiiiii e 47
2.5.3 recoveryAgentListUpdate.o 48
2.6 Recovery Server OpPerationsS. e 49
2.6.1 disStribDULEMACPOIICIES. . vt e 49
2.6.2 distriDULERAPTIIVIIEGES.o e 50
2.7 AdMINistrative OPerationsS........oc. i 51
2.7.1 listRegisteredPlatfiormMs. 51
2.7.2 distributeMACPoliciesToSpecified. ..o 52
2.7.3 listReqgistratioNREQUESTES.......ceuiiei e 53
2.7.4 listUnregistrationReqUESTS.cuiiii i 54
2.7.5 permitRegistrationREQUESES.iiriiii i 55
2.7.6 denyRegistrationReqUESTS.cc.iiiiiiii 56
2.7.7 permitUnregistrationReqUESES. ... 57
2.7.8 denyUnregistratioNReQUESTS. couiiiiii e 58
2.7.9 liIStRECOVEINYREQUESES. . cu it e 59
2.7.1 0permitReCcoVeryREQUEST.......oii i 60
2.7.1 1denyRECOVEINYREQUEST.ttt e e aees 61
2.7.1 200N IQUIERS ... e 62
2.7.1 3CONfIQUIERSPOIICY . .uiiii i e 63
2.7.1 4configUIreRAPTIVIIEQE. 64
3 Appendices : Other PUDIIC ClaSSEScuiviiiiiii e 65
3.1 Appendix A : Platform Classes ... 65
0 I A o =Y oY o PP 65
3.1.2 PlatformMRESUILS. ...t 66
3.2 AppendiX B : RECOVEIY ClasS@S. . .uiuiiiiiiiiiii i 67
3.2.1 RECOVEIYLISE. . et 67
3.2.2 RECOVEIYRESUIL. ... e e 68
3.3 Appendix C : Key INformation Class.........cccuiiiiiiiiiiie e 69
3.3. L KOYI N 0. et 69

Open_TC Deliverable 3/69

X ¥,

l WPO06d.1 Encrypted File Service C/C++ API Specification

List of figures
Figure 1:EFS Building Blocks and Their interactions............cooooiiiiiiiiiiee 7

Open_TC Deliverable 4/69

WPO06d.1 Encrypted File Service C/C++ API Specification

*)H'i
=

List of Tables

Table 1:General structure of an APl method entry........cooiiiiiii e, 7
Table 2:Sample method definitioN. 7
Table 3:Explanation part of method............oo e 8
Table 4:Input parameters explained in detail..........cooiiiiiiii 8
Table S:REEUIMN ValUC.. ... r e e 8
L] o] (SR T B I=] o =] g o [o Ty Y 2SR 8
Table 7:Sample USAge SCENATIIOS.ttt e e e aees 9
Table 8:Abbreviations Table. 10
Table 9:Platform Class Declaration. ... 65
Table 10:PlatformResults Class Declaration.........c.coviiiiiiiiiiii e 66
Table 11:RecoveryList Class Declaration.........c.ooiiiiii i 67
Table 12:RecoveryResult Class Declaration..........coovuiiiiiiiiii e 68
Table 13:KeyInfo Class DecClaration.o e 69

Open_TC Deliverable 5/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

1 Introduction

Encrypted File Service comes with number of features that are supported by trusted
computing infrastructure and Open Trusted Computing enhancements for
compartmented operation on Xen and L4 hypervisors. These features are also useful
by application programmers whom may want to use EFS functionalities on their
programs and may want to use trusted security service for ensuring trusted secure
data storage for their programs.

EFS Application Programming Interface(API) simplifies inclusion EFS features in all type
of applications

EFS APl is a communication interface between EFS Core Service and applications. All
inputs and output messages shall be handled externally by applications using it.
Service related messages will be given as output parameter to API calling function.

1.1 EFS Block Diagram

EFS is composed of three main building blocks :

1. EFS Core : This block is the main operator block which manages file,key and
recovery operations for each platforms. Also responsible from administrative
tasks in non-networked environments.

2. EFS Recovery Server : Recovery Server manages recovery and administrative
operations in networked environments.

3. EFS API : APl is responsible for establishing communication between user
interface (which is also an application) and EFS Core.

This relationship is shown in Figure 1

1.2 Target Audience

This document is written for application developers who are interested in using EFS's
features. In order to use this API, developer should have basic data security and
trusted computing knowledge. Furthermore, developer should know how to handle
passwords and other user-oriented important data. Also developer should have
knowledge on importing and using other API's in their source code.

Open_TC Deliverable 6/69

g WPO06d.1 Encrypted File Service C/C++ API Specification
) J[e

Figure 1:EFS Building Blocks and Their

(e
s

1

ﬁiFS Recovery Serve

SSL[Mutual Attestation
e —

Tru sted

//// onmannwnt

TC Security and Management Serv1ces

TPA

%TC Security and Management Service%

N

interactions

1.3 API Method Description
EFS API is described in the following way explained below.

<method name as header>

<method definition>
<method explanation>
<input parameters(optional)>
<return values(optional)>
<dependent methods(optional)>
<sample usage in CLI(optional)>

Table 1:General structure of an APl method entry

Each EFS method is explained under the name of the same topic.
Sample EFS APl method declaration is shown in Table 2 below.

int trustedUserKeyBackup (String backupUrl,
byte* recoveryPasswd,
byte* userPasswd)

Table 2:Sample method definition

As it is seen from Table2, method name is represented in bold. Following the
declaration, input parameters of the method is specified.

Open_TC Deliverable 7/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

Informative comment about each method is given following the method declaration.
Sample informative comment is shown in Table 3.

Start of informative comment
Trusted back up operation for user keys.

End of informative comment

Table 3:Explanation part of method

Informative comment of method is followed by detailed explanation of method
parameters. Sample “Parameters” section is shown in Table 4.

Parameters:
backupUrl - URL of the directory which user keys will be backed
up
recoveryPasswd - password for S2K encryption.
userPasswd - password for keys which are going to be backed up.

Table 4:Input parameters explained in detail
As shown in Table 5, “Returns” field follows “Parameters” field. In “Returns” field,
return parameter of the method is explained in detail.

Returns:
status flag SUCCESSFUL/FAILED

Table 5:Return value

If the method have dependencies and preconditions for execution, “Dependency” field
will be used for specifying the methods dependencies.

Dependency:
openSession(String)

Table 6:Dependency

Finally there will be usage scenarios which explain usage of the API method in EFS CLI.
These part is a guide for application programmers, which explains logical flow of input
and output data to method. Such as specifying the execution step where to ask for
passwords or how to obtain some other user originated data. For EFS, CLI usage is
taken as a reference and “Sample Usage in CLI” section is added afterwards
“Dependency” section. This is shown in Table 7.

Open_TC Deliverable 8/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

Sample Usage in CLI:
$ efscli --trusted-user-keys-backup /mnt/sdbl/foo/

Enter key password :

Enter key backup password :

Reenter key backup password :

User keys back up operation -> SUCCESSFUL/FAILED

Table 7:Sample usage scenarios

There is no sample source codes available in this document. For source code examples
EFS CLI have to be examined.

1.4 Input Parameter Limitations

Input parameters have certain limitations which should be obeyed strictly.
e Strings should not be longer than 256 characters.
e byte* should end with null character.
e boolean should be “true” or “false”.
e int should be taken as an 32 bit integer value with sign.

1.5 Return Value Limitations

Return values have certain limitations which should be obeyed strictly.
e int type return values should be one of these constant values defined in 2.1.1
int* type defines a file descriptors and should end with an EOF.
String type should be handled as in <string.h> library.
Vector type should be handled as in <vector> library
Platform* should end with an zero valued id entry.
PlatformResults* should end with an zero valued id entry.
RecoverylList* should end with an zero valued id entry.
RecoveryResults* should end with an zero valued id entry.
Keylnfo* should end with an zero valued id entry.

1.6 OS Dependency

EFS API will be platform-independent, this means EFS APl may not be restricted to any
operating systems, independent of the operating system's resource limitations and
user restrictions. However, it is the case that EFS Core should work for that OS where
APl is going to run.

1.7 Abbreviations

Open_TC Deliverable 9/69

*)”t
=

WPO06d.1 Encrypted File Service C/C++ API Specification

Abrreviation Description
API Application Programming Interface
EFS Encrypting File Service
CLI Command Line Interface
RS Recovery Server
RA Recovery Agent
TPM Trusted Platform Module
(0N Operating System

Table 8:Abbreviations Table

Open_TC Deliverable

10/69

WPO06d.1 Encrypted File Service C/C++ API Specification

2 API Units
EFS API consists of 5 main parts.

File Operations

File operations are simple generic file encryption service operations which are
encryption, decryption ,signing ,verifying and shredding.

Remark: File recovery operation is distinguished from operations mentioned
above because there is a need for administrative authorization for both local
and networked file recovery operations.

User Operations

User operations cover operations related with end user like policy management
or keystore password operations.

Key Management Operations

Key management operations contains EFS key operations which will be used by
programmers. APl programmers can create, delete, migrate, backup and restore
EFS keys. They can also import keys from GNU PG and PGP

Recovery Agent Operations

Application programmers can use EFS API for file recovery actions used in both
standalone and networked installations. They can manage file recovery actions
by using this part of EFS API.

Recovery Server Operations

EFS offers trusted central file recovery option with EFS Recovery Server.
Recovery server is also capable of distributing enforcing EFS policies to all
trusted recovery agents registered. These operations are managed by EFS API
functions explained in this section.

Administrative Operations

According to configured enforcing policies, EFS may need administrative
authentication and management actions from application programmer. These
functionalities are managed with the functions in this section.

Open_TC Deliverable 11/69

f] WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.1 Constants

EFS API calls have return values associated with the result of the action performed in
API function. In order to clarify return values between EFS API functions and
applications, constants in this section is introduced.

2.1.1 Return Types

2.1.1.1 SUCCESSFUL
static const int SUCCESSFUL

This is a static integer value which will be used as status flag that returns from a
method. It symbolizes success from the called method.

2.1.1.2 FAILED
static const int FAILED

This is a static integer value which will be used as status flag that returns from a
method. It symbolizes failure from the called method.

2.1.1.3 NOT_IMPLEMENTED
static const int NOT_IMPLEMENTED

This is a static integer value which will be used as status flag that returns from a
method. It symbolized that the called method is not implemented.

Open_TC Deliverable 12/69

‘*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.1.2 File Operation Types

2.1.2.1 ENCRYPT
static const int ENCRYPT

This is a static integer value which will be used as a parameter to fileOperation
method as operation. It symbolizes file encryption.

2.1.2.2 DECRYPT
static const int DECRYPT

This is a static integer value which will be used as a parameter to fileOperation
method as operation. It symbolizes file decryption.

2.1.2.3 SIGN
static const int SIGN

This is a static integer value which will be used as a parameter to fileOperation
method as operation. It symbolizes file signing.

2.1.2.4 VERIFY
static const int VERIFY

This is a static integer value which will be used as a parameter to fileOperation
method as operation. It symbolizes file verifying.

2.1.2.5 SHRED
static const int SHRED

This is a static integer value which will be used as a parameter to fileOperation
method as operation. It symbolizes file shredding.

Open_TC Deliverable

13/69

’*“‘ WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.1.3 Encryption Algorithm Types

2.1.3.1 AES-ECB
static const int AES-ECB

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It
symbolizes AES-ECB encryption scheme.

2.1.3.2 AES-CBC
static const int AES-CBC

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It
symbolizes AES-CBC encryption scheme.

2.1.3.3 DES-ECB
static const int DES-ECB

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It
symbolizes DES-ECB encryption scheme.

2.1.3.4 DES-CBC
static const int DES-CBC

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It
symbolizes DES-CBC encryption scheme.

2.1.3.5 DESede-ECB
static const int DESede-ECB

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It
symbolizes DESede-ECB encryption scheme.

2.1.3.6 DESede-CBC
static const int DESede-CBC

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It
symbolizes DESede-CBC encryption scheme.

2.1.3.7 BLOWFISH
static const int BLOWFISH

This is a static integer value which will be used as a parameter to fileOperation
method as symmetric encryption algorithm to be used in this single operation. It

Open_TC Deliverable

14/69

‘*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

symbolizes BLOWFISH encryption scheme.

Open_TC Deliverable 15/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.1.4 Key Types

2.1.4.1 KEY_BIND
static const int KEY_BIND

This is a static integer value which will be used as a parameter to key import operation
operation. It symbolizes that given key will be used for binding purposes.

2.1.4.2 KEY_SIGN
static const int KEY_BIND

This is a static integer value which will be used as a parameter to key import operation
operation. It symbolizes that given key will be used for signing purposes.

2.1.4.3 KEY_LEGACY
static const int KEY_LEGACY

This is a static integer value which will be used as a parameter to key import operation
operation. It symbolizes that given key will be used for both binding and signing
purposes.

Open_TC Deliverable 16/69

X ¥,

l WPO06d.1 Encrypted File Service C/C++ API Specification

2.2 File Operations

2.2.1 getLastCommandStatus
String getLastCommandStatus ()

Start of informative comment
Returns detailed log for the last executed EFS command.

End of informative comment

Returns:
This function returns detailed output log of the last executed command.
Implemented to get detailed log of EFS last EFS executed command.

Open_TC Deliverable 17/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.2 hasOpenSession

int hasOpenSession ()

Start of informative comment

Checks whether user has an ongoing EFS session. If not, program should ask for EFS
session password of the user.

End of informative comment

Returns:
This function return status flag SUCCESSFUL/FAILED.
If SUCCESSFUL is returned, user has open EFS session.

If FAILED is returned, user does not have open EFS session. Application has
to open EFS session for user with openSession command.

Open_TC Deliverable 18/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.3 openSession

int openSession (byte* password)

Start of informative comment
Opens a new EFS session for the user if supplied user name and password is valid.

End of informative comment

Parameters:
password - user session password

Returns:
If password is correct a new session will be opened for the user and function
will return SUCCESSFUL. Otherwise it will return FAILED.

Open_TC Deliverable 19/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.4 checkUserPasswd

int checkUserPasswd (byte* password)

Start of informative comment
Checks validity of user password.

End of informative comment

Parameters:
password - Password of the user who sends request
Returns:
If user password is correct and opens keystore then method will return
SUCCESSFUL. Else function will return FAILED.

Open_TC Deliverable 20/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.5 fileOperation

int fileOperation (int opera
Stri
Stri
int
bool
bool

tion,

ng inputFile,
ng outputFile,
algorithm,

ean isTar,

ean open,

boolean shred,

Stri

ng keyURL,

String keyType,
byte* userKeyPass
boolean verbose)

Start of informative comment

End of informative comment

If user does not have an ongoing session, user have to be asked for password.

Parameters:
operation - operation name (see 2.1.2)
e ENCRYPT
e DECRYPT
e SIGN
e VERIFY
e SHRED
inputFile - name of the input file (absolute URL
like /home/foo/bar.txt)
outputFile - name of the output file. If null, output file will be
named as inputFileName+".efs" . If no output file name
is supplied then EFS will decrypt file to the file's original
filename which was held in file header in decryption.
(absolute URL like /home/foo/bar.txt.efs)
algorithm - name of the algorithm to be used in bulk file
encryption. If null, Blowfish will be used as default
symmetric encryption method. (see 2.1.3)
e AES-ECB
e AES-CBC
e DES-ECB
e DES-CBC
e DESede-ECB
e DESede-CBC
e BLOWFISH
isTar - creates an archive. Input file has to be a directory
open - Opens EFS encrypted file with associated program to

Open_TC Deliverable

its MIME type. File decryption is transparent to user.

21/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

shred

keyURL

keyType

userkKeyPass

verbose
Returns:

Applicable on EFS encrypted files.
- Shreds input file after file encryption/decryption.
Default value is true.
- URL of the external asymmetric key to be used for
encryption. If null, default EFS JKS keys will be used.
(absolute URL like/home/foo/key.pub)
- type of the external asymmetric key to be used in
encryption. Possible values are

e PGP

o GPG

e JKS

- password of the keys given by the user externally.
- detailed output mode

This function returns status flag FAILED if there is an error. Otherwise it will
return file descriptor of the processed file.

Dependency:

openSession(byte *)

checkUserPasswd(byte*)

Sample Usage in CLI:

1. Authenticate user.

Password for key id : Xxxxxxx

User authentication -> SUCCESFUL/FAILED
2. No Message (means successful operation)
3. File processes in verbose mode.

file name before operation -> operation name -> file name after operation
4. |d of the key and type which is going to be used in file operation
Keyid = <int>, Type = <string {PGP,GPG,JKS} >

Open_TC Deliverable

22/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.6 decryptinVolatileMemory

int* decryptInVolatileMemory (String inputFile,
boolean open,
String keyURL,
String keyType,
byte* userKeyPass,
boolean verbose)

Start of informative comment

Decrypts an EFS encrypted file to volatile memory(RAM) instead of hard disk. In case
of sudden power disruption, decrypted open data does not reside on hard disk.

Remark: If user does not have an ongoing EFS session, user have to be asked for EFS
session password

End of informative comment

Parameters:
inputFile - Name of an EFS encrypted input file (absolute URL like
/home/foo/bar.txt.efs)
open - Opens EFS encrypted file with associated program to

its MIME type. File decryption is transparent to user.
Applicable on EFS encrypted files.

keyURL - url of the external asymmetric key to be used in
encryption. If null, default EFS JKS keys will be used.
(absolute URL like /home/foo/key.pub)

keyType - type of the external asymmetric key to be used in
encryption. Possible values are
e PGP
e GPG
e JKS
userKeyPass - password of the keys given by the user externally.
verbose - detailed output mode
Returns:

This function returns status flag FAILED if there is an error. Otherwise it will
return a memory pointer to the processed file.

Dependency:
openSession(String)

checkUserPasswd(byte*)

Open_TC Deliverable 23/69

; l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.7 localFileRecovery

int localFileRecovery (String inputFile,

byte* recoveryPasswd, String X509CerPath, String
X509PrivPath)

Start of informative comment

Local file recovery command. Requires administrator authorization to get Recovery
Agent Keys on local platform.

End of informative comment

Parameters:

inputFile - name of the file to be recovered(absolute URL
eg. /home/foo/bar.txt.efs)

recoveryPasswd - password for recovery agent keys.

X509CerPath - absolute path to X.509 certificate file which contains
user's new certificate. If null EFS will generate new keys
for user.

X509PrivPath - absolute path to X.509 private key file which contains
user's new private key. If null EFS will generate keys for
user.

Returns:

status flag SUCCESSFUL/FAILED
Sample Usage in CLI:
$ efscli --recover foo.txt,bar.pdf

Password for Recovery Keys : XXXxX
Authorization Granted/Denied.
Recovery -> SUCCESFUL/FAILED

Open_TC Deliverable 24/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.8 remoteRecovery
int remoteRecovery (String inputFile, String X509CerPath, String X509PrivPath)

Start of informative comment

Command for networked recovery. Recovery is performed on EFS Recovery Server.
Requires administrative authority on recovery server.

End of informative comment

Parameters:

inputFile - name of the file to be recovered. (absolute url
like /nome/foo/bar.txt.efs)

X509CerPath - absolute path to X.509 certificate file which contains
user's new certificate. If null EFS will generate keys for
user.

X509PrivPath - absolute path to X.509 private key file which contains
user's new private key. If null EFS will generate keys for
user.

Returns:

status flag SUCCESSFUL/FAILED
Sample Usage in CLI:
$ efscli --recovery-request foo.txt,bar.pdf

Recovery Request is sent to Recovery Server. Waiting for administrative
approval.

Request approved/denied.
Recovery SUCCESFUL/FAILED

Open_TC Deliverable 25/69

% l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.2.9 Sample CLI Commands for File Operations:

$ efscli -i /home/xxx/bar.txt -op encrypt

Enter user password :
User authentication -> SUCCESFUL/FAILED

$ efscli -v -i /home/xxx/bar.txt.efs -op decrypt
Keyid = <int> , Type = <string {PGP,GPG,JKS}>
bar.txt.efs -> decrypt -> bar.txt -> SUCCESSFUL

$ efscli -v -i /home/xxx/foo.odt -0 /home/xxx/myfoo.efs -op encrypt -
uk /mnt/sdbl/mykey.pub -kt GPG

Password for key '/mnt/sdbl/mykey.pub' :
foo.odt -> encrypt -> myfoo.efs -> SUCCESSFUL

$ efscli -v -i /home/xxx/foo.odt -op decrypt —uk /mnt/sdbl/mykey.priv -kt GPG

Password for key '/mnt/sdbl/mykey.priv' :
myfoo.efs -> decrypt -> foo.odt -> SUCCESSFUL

Open_TC Deliverable 26/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3 User Operations
Operations under this section is dedicated to single specific user who has open EFS

session.

2.3.1 listKeys
KeyInfo* listKeys (byte* userPasswd)

Start of informative comment
Returns detailed list of user EFS keys.

End of informative comment

Parameters:
userPasswd - password for the user's current keystore.

Returns:
status flag SUCCESSFUL/FAILED

Dependency:
Keylnfo Class(see 3.3.1)

Sample Usage in CLI:
$ efscli --list-keys

Enter user password :
User authentication -> SUCCESFUL/FAILED

Keyid = 1, Name=MyKey, Hash=.... , Type = JKS

Keyid = 4, Name=FooKey, Hash=.... , Type = JKS

Open_TC Deliverable 27/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.2 changeUserPasswd
int changeUserPasswd (byte* oldpassword,byte* newpassword)

Start of informative comment
Changes EFS session password of the user.

End of informative comment

Parameters:
oldpassword - Old user password
newpassword - New user password
Returns:

This method returns SUCCESSFUL if it can open keystore with old password
and save it with new password.

Sample Usage in CLI:
$ efscli --change-user-passwd

Enter old user password :

User authentication -> SUCCESSFUL/FAILED
Enter new user password :

Enter new user password (again):

User password change -> SUCCESSFUL/FAILED

Open_TC Deliverable 28/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.3 listMACPolicies
Vector<String[]> listMACPolicies ()

Start of informative comment
Lists mandatory access policies enforced by EFS specified by administrator.

End of informative comment

Returns:

This function returns a map which contains mandatory policy names with

regarding policy value.

Open_TC Deliverable

29/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.4 listDACPolicies

Vector<String[]> listDiscretionaryPolicies (byte* password)

Start of informative comment
Lists discretionary access policies which are specified by individual EFS user.

End of informative comment

Parameters:
password - Current user password

Returns:
This function returns a map which contains discretionary policy names
matched with specified policy value. Also whole policies are followed by
value formats(i.e. date Y-m-d)

Open_TC Deliverable

30/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.5 setDACPolicy
int setDACPolicy (byte* password,

String policyName,

String policyValue)

Start of informative comment

Sets discretionary access policy with given name to a given value. If policy value
does not fit to given format, function will return failure. If policy value does not fit

mandatory access policy EFS will return error.

End of informative comment

Parameters:

password - Current user password

policyName - Name of the policy that user want to change

policyValue - Value of the policy that user want to change
Returns:

This function returns successful if given password and policy name are
correct and policy value fits into the predefined for the specified policy.

Open_TC Deliverable

31/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.6 resetDACPolicy
int resetDACPolicy (byte* password)

Start of informative comment
Resets discretionary access policies to default predefined values.

End of informative comment

Parameters:
password - Current user password
Returns:

This function returns successful if given password is correct.

Open_TC Deliverable

32/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.7 setTrustedSignOnValue

int setTrustedSignOnValue (byte* userPassword,

String signOnPhrase)

Start of informative comment
Sets trusted sign on value which can be used in checking platform authentication.

End of informative comment

Parameters:
password - Current user password
signonvalue - 256 byte authentication value which will be used
for trusted sign on.
Returns:

This function returns successful if given password is true and trusted sign on
value is not null.

Open_TC Deliverable 33/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.8 checkTrustedSignOn
String checkTrustedSignOn ()

Start of informative comment
Returns the trusted sign on value which has been predefined by the user

End of informative comment

Returns:
This function returns trusted sign on value if password is correct and a
trusted sign on value is set before.

Open_TC Deliverable 34/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.3.9 clearTrustedSignOnValue

int clearTrustedSignOnValue (byte* password)

Start of informative comment
Clears the trusted sign on value and unregisters TPM key dedicated to it.

End of informative comment

Parameters:
password - Current user password

Returns:
This function returns successful if user password is correct and a trusted
sign on value is defined before.

Open_TC Deliverable 35/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4 Key Operations

2.4.1 checkAdminPasswd

int checkAdminPasswd (byte* password)

Start of informative comment
Checks whether compartment administrator password is correct or not.

End of informative comment

Parameters:
password - Password of the EFS administrator on
compartment
Returns:

If platform administrator password is not correct, method returns FAILED.
Else it returns SUCCESSFUL.

Open_TC Deliverable 36/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.2 generateUserKey

int generateUserKey (byte* userPass,int force, byte* adminPass)

Start of informative comment

Generates file encryption key for user to be used for file operations. If user has
generated keys, must be used with force=1 parameter to regenerate keys.

End of informative comment

Parameters:
userPass - Authentication password for user keys
force - If force is used method will generate a new
keystore by deleting the old one.
adminPass - Password of the administrative user.
Returns:

If one of the user or administrator passwords is wrong, function will return
FAILED. If there exists a user keystore and force=1 will return FAILED.

Sample Usage in CLI:
$ efscli --generate-user-key

Enter administrator password :
Enter key password :

User key generation -> SUCCESSFUL/FAILED

Open_TC Deliverable 37/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.3 addNewUserKey

int generateUserKey (byte* userPass, int keyType)

Start of informative comment
Generates new file encryption key for user to be used for file operations.

End of informative comment

Parameters:
userPass - Authentication password for user keys
adminPass - Type of the key (see 2.1.4)
e KEY _BIND
e KEY SIGN
e KEY LEGACY
Returns:

If user password is wrong, function will return FAILED.

Open_TC Deliverable

38/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.4 deleteUserKey
int deleteUserKey (byte* userPasswd, int keyid)

Start of informative comment
Deletes asymmetric key pair of the user which are used in file operations.

End of informative comment

Parameters:
userPasswd - Password for user keys
keyid - Identification number of the key which is going to
be deleted.
Returns:
If user password and key identification is correct method will return
SUCCESSFUL.

Sample Usage in CLI:
$ efscli --delete-user-key 3

Enter user password :
User key deletion -> SUCCESSFUL/FAILED

Open_TC Deliverable 39/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.5 RATrustedBackup
int RATrustedBackup (String backupUrl,byte* recoveryPasswd, byte*
backupPasswd)

Start of informative comment
Trusted backup of the Recovery Agent keys on local platform.

End of informative comment

Parameters:
backupURL - url of the directory which recovery agent keys will
be backed up(absolute url like /mnt/sdal/keys)
recoveryPasswd - Password for recovery agent keys
backupPasswd - Backup password for restore operation.
Returns:

If back up URL is valid, recovery password is correct and backup password is
not null it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --trusted-backup-ra-keys /mnt/sdbl/foo/

Enter Recovery password :
Authorization granted/denied
RA keys back up -> SUCCESSFUL/FAILED

Open_TC Deliverable 40/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.6 trustedKeyBackup

int trustedKeyBackup (String backupUrl,
byte* backupPasswd, byte* adminPass)

Start of informative comment
Trusted backup of EFS Key tree.

End of informative comment

Parameters:
backupUrl - URL of the directory which EFS keys will be
backed up(absolute url like /mnt/sdal/keys)
backupPasswd - password for S2K encryption.
adminPass - Password of the administrative user.
Returns:

If back up URL is valid, administrator password is correct and backup
password is not null it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --trusted-key-backup /mnt/sdb1l/foo/

Enter administrator password :

Authorization granted/denied

Enter EFS Key Tree Recovery password :
Reenter EFS Key Tree Recovery password :
EFS Key Tree back up -> SUCCESSFUL/FAILED

Open_TC Deliverable

41/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.7 trustedKeyRestore

int trustedKeyRestore (String restorelUrl,
byte* backupPasswd, byte* adminPass)

Start of informative comment

Restore operation of keys on a platform. Needs EFS key tree password and a recovery
password for S2K decryption.

End of informative comment

Parameters:
restoreurl - URL of the directory which EFS keys will be
restored. If null, they will be restored to default
directory.(absolute url like /mnt/sdal/keys)
backupPasswd - password for S2K decryption.
adminPass - Password of the EFS administrator.
Returns:

If restore URL is valid, administrator password is correct and backup
password is not null it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --trusted-key-restore

Enter administrator password :

Authorization granted/denied

Enter EFS Key Tree password :

EFS Key Tree restore -> SUCCESSFUL/FAILED

Open_TC Deliverable 42/69

; l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.8 trustedKeyMigrate

int trustedKeyMigrate (byte * migrationPassword)

Start of informative comment

This command migrates EFS key tree from one trusted platform/compartment to
other one.

Note: WPO5 Key migration and backup services are unspecified. Waiting for further
clearance.

End of informative comment

Parameters:

migrationPassword - Migration password
Returns:

status flag SUCCESSFUL/FAILED

Open_TC Deliverable 43/69

% l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.9 trustedUserKeyBackup

int trustedUserKeyBackup (String backupUrl,
byte* backupPasswd,
byte* userPasswd)

Start of informative comment
Trusted back up operation for user keys.

End of informative comment

Parameters:
backupUrl - URL of the directory which user keys will be
backed up(absolute url like /mnt/sdal/keys)
backupPasswd - password for S2K encryption.
userPasswd - password for keys which are going to be backed
up.
Returns:

If back up URL is valid, user password is correct and backup password is not
null it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --trusted-user-keys-backup /mnt/sdbl/foo/

Enter key password :

Enter key backup password :

Reenter key backup password :

User keys back up operation -> SUCCESSFUL/FAILED

Open_TC Deliverable 44/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.4.10 trustedUserKeyRestore

int trustedUserKeysRestore (String restoreUrl,
byte* backupPasswd,
byte* userPasswd)

Start of informative comment
Trusted restore operation of user keys.

End of informative comment

Parameters:
restoreulrl - URL of the directory which user keys will be
restored. If null they will be restored to default
directory. (absolute url like /mnt/sdal/keys)
backupPasswd - password for S2K decryption.
userPasswd - password for keys which are going to be restored.
Returns:

If back up URL is valid, user password is correct and backup password is not
null it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --trusted-user-keys-restore

Enter key backup password :
Enter user password :
User keys restore operation -> SUCCESSFUL/FAILED

Open_TC Deliverable 45/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.5 Recovery Agent Operations

2.5.1 sendRARegistrationRequest

int sendRARegistrationRequest (byte* adminPass)

Start of informative comment
Sends registration request to recovery server for this recovery agent.

End of informative comment

Parameters:
adminPass - Password of the administrative user.

Returns:
If administrative password is true and an established trusted channel exists,
then it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --register-ra

Enter Administrative Password :
Request delivery SUCCESFUL/FAILED

Open_TC Deliverable 46/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.5.2 sendRAUnregistrationRequest

int sendRAUnregistrationRequest (byte* adminPass)

Start of informative comment
Sends unregistration request to recovery server for this recovery agent.

End of informative comment

Parameters:
adminPass - Password of the administrative user.

Returns:
If administrative password is true and an established trusted channel exists,
then it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --unregister-ra

Enter Administrative Password :
Request delivery SUCCESFUL/FAILED

Open_TC Deliverable 47/69

; l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.5.3 recoveryAgentListUpdate
int recoveryAgentListUpdate (byte* adminPass)

Start of informative comment

Updates recovery agent list on registered Recovery Server if AIK credential is
reissued manually.

End of informative comment

Parameters:

adminPass - Password of the administrative user.
Returns:

If administrative password is true and an established trusted channel exists,
then it will return SUCCESSFUL.
Sample Usage in CLI:
$ efscli --ra-list-update

Enter Administrative Password :
Request delivery SUCCESFUL/FAILED

Open_TC Deliverable 48/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.6 Recovery Server Operations

2.6.1 distributeMACPolicies
int distributeMACPolicies (byte* adminPass)

Start of informative comment
Distributes current MAC policy to all registered Recovery Agents on Recovery Server.

End of informative comment

Parameters:
adminPass - Password of the administrative user in RS.
Returns:
If administrative password is true and an established trusted channel exists,
then it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --policy-distribution newpolicyfile.pol

Enter Administrative Password :
Distribution SUCCESFUL/FAILED

Open_TC Deliverable 49/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.6.2 distributeRAPrivileges

int distributeRAPrivileges (byte* adminPass)

Start of informative comment

Distributes or updates privilege levels assigned to individual trusted compartments or
platforms which are represented by Recovery Agents

End of informative comment

Parameters:

adminPass - Password of the administrative user.
Returns:

If administrative password is true and an established trusted channel exists,
then it will return SUCCESSFUL.
Sample Usage in CLI:

$ efscli --distribute-privileges newpriviledgefile.priv

Enter Administrative Password :
Distribution SUCCESFUL/FAILED

Open_TC Deliverable 50/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7 Administrative Operations
In order to complete administrative operations administrative user should have to be
logged in RS. Credential checks for this administrative user will be done by RS.

2.7.1 listRegisteredPlatforms
Platform* listRegisteredPlatforms ()

Start of informative comment
Lists registered platforms on Recovery Server.
This command is only valid in Recovery Server

End of informative comment

Returns:
List of registered platforms

Dependency:
Platform Class(see 3.1.1)

Sample Usage in CLI:
$ efscli --list-registered-platforms
RA id - Registration Date - Update Date - Meta

1-12.03.2007 -17.03.2007 - PlatformLocationAndSomeOtherMetaData

23 — 14.03.2007 — 17.03.2007 — PlatformLocationAndSomeOtherMetaData

Open_TC Deliverable 51/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.2 distributeMACPoliciesToSpecified

PlatformResults* distributeMACPoliciesToSpecified (int*
targetPlatformIds,int length)

Start of informative comment
Distributes policy file to the specified target platforms.

End of informative comment

Parameters:
targetPlatformsIds - Platform ids which policies are going to be
distributed
length - number of target platforms
Returns:

Returns policy distribution results per platform, if specified target platform
identifications are correct.

Dependency:
PlatformResults Class(see 3.1.2)

Sample Usage in CLI:
$ efscli --policy-distribution-platforms newpolicyfile.pol --target-platforms 4,7,12

Distribution of policies to the platform 4 -> SUCCESFUL/FAILED
Distribution of policies to the platform 7 -> SUCCESFUL/FAILED
Distribution of policies to the platform 12 -> SUCCESFUL/FAILED

Open_TC Deliverable 52/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.3 listRegistrationRequests
Platform* listRegistrationRequests ()

Start of informative comment

Lists the platform which have sent registration request to Recovery Server

End of informative comment

Returns:
List of the platforms which have registration requests

Dependency:
Platform Class(see 3.1.1)

Sample Usage in CLI:
$ efscli --list-registration-requests
RA id / Operation Request
27 -> Registration

32 -> Registration

Open_TC Deliverable

53/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.4 listUnregistrationRequests
Platform* listUnregistrationRequests ()

Start of informative comment
Lists the unregistration requests pending on Recovery Server

End of informative comment

Returns:
List of the platforms which have unregistration requests

Dependency:
Platform Class(see 3.1.1)

Sample Usage in CLI:
$ efscli --list-unregistration-requests
RA id / Operation Request
3 -> Unregistration

15 -> Unregistration

Open_TC Deliverable

54/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.5 permitRegistrationRequests
PlatformResults* permitRegistrationRequests (int* platformIds, int length)

Start of informative comment
Approval of registration requests

End of informative comment

Parameters:
platformIds - ids of the platforms which are going to be
approved for registration
length - number of platform identification numbers
Returns:

Registration approval results per platform, if specified platform identification
numbers are correct.

Dependency:
PlatformResults Class(see 3.1.2)

Sample Usage in CLI:
$ efscli --permit-registration-request --target-platforms 4,7,12
Plaform 4 - Registration Request Approval -> SUCCESFUL/FAILED
Plaform 7 - Registration Request Approval -> SUCCESFUL/FAILED

Plaform 12 - Registration Request Approval -> SUCCESFUL/FAILED

Open_TC Deliverable 55/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.6 denyRegistrationRequests
PlatformResults* denyRegistrationRequests (int* platformIds, int length)

Start of informative comment
Denial of registration requests

End of informative comment

Parameters:
platformIds - ids of the platforms whose registration requests
are going to be rejected
length - number of platform identification numbers
Returns:

Registration denial results per platform, if specified platform identification
numbers are correct.

Dependency:
PlatformResults Class(see 3.1.2)

Sample Usage in CLI:
$ efscli --deny-registration-request --target-platforms 4,7,12
Plaform 4 - Registration Request Denial -> SUCCESFUL/FAILED
Plaform 7 - Registration Request Denial -> SUCCESFUL/FAILED

Plaform 12 - Registration Request Denial-> SUCCESFUL/FAILED

Open_TC Deliverable 56/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.7 permitUnregistrationRequests

PlatformResults* permitUnregistrationRequests (int* platformIds, int length)

Start of informative comment
Approval of unregistration requests

End of informative comment

Parameters:
platformIds - ids of the platforms which are going to be
approved for unregistration
length - number of platform identification numbers
Returns:

Unregistration approval results per platform, if specified platform
identification numbers are correct.

Dependency:
PlatformResults Class(see 3.1.2)

Sample Usage in CLI:
$ efscli --permit-unregistration-request --target-platforms 4,7,12

Plaform 4 - Unregistration Request Approval -> SUCCESFUL/FAILED
Plaform 7 - Unregistration Request Approval -> SUCCESFUL/FAILED

Plaform 12 - Unregistration Request Approval -> SUCCESFUL/FAILED

Open_TC Deliverable 57/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.8 denyUnregistrationRequests
PlatformResults* denyUnregistrationRequests (int* platformIds, int length)

Start of informative comment
Denial of unregistration requests

End of informative comment

Parameters:
platformIds - ids of the platforms whose unregistration
requests are going to be rejected
length - number of platform identification numbers
Returns:

Unregistration denial results per platform, if specified platform identification
numbers are correct.

Dependency:
PlatformResults Class(see 3.1.2)

Sample Usage in CLI:
$ efscli --deny-unregistration-request --target-platforms 4,7,12
Plaform 4 - Unregistration Request Denial -> SUCCESFUL/FAILED
Plaform 7 - Unregistration Request Denial -> SUCCESFUL/FAILED

Plaform 12 - Unregistration Request Denial-> SUCCESFUL/FAILED

Open_TC Deliverable 58/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.9 listRecoveryRequests

Recoverylist* listRecoveryRequests ()

Start of informative comment
Lists the recovery request that comes in Recovery Server

End of informative comment

Returns:
List containing recovery items

Dependency:
RecoveryList Class(see 3.2.1)

Sample Usage in CLI:
$ efscli --list-recovery
Recovery id / RA id / RA Meta / Operation / fileName
1/4/ PlatformLocationAndSomeOtherMetaData / Recovery / foo.txt.efs

2/34/ PlatformLocationAndSomeOtherMetaData / Recovery / bar.pdf.efs

Open_TC Deliverable 59/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.10 permitRecoveryRequest

RecoveryResults* permitRecoveryRequest (int* recoveryIds, int length)

Start of informative comment
Approval of recovery requests

End of informative comment

Parameters:
recoverylds - ids of the recovery requests which are waiting for
administrative approval
length - number of platform identification numbers
Returns:

Recovery results per platform, if specified platform identification numbers
are correct.

Dependency:
RecoveryResults Class(see 3.2.2)

Sample Usage in CLI:
$ efscli --permit-recovery 2

Recovery request approved
File bar.pdf has been recovered

Open_TC Deliverable 60/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.11 denyRecoveryRequest

RecoveryResults* denyRecoveryRequest (int* recoveryIds, int length)

Start of informative comment
Denial of recovery requests

End of informative comment

Parameters:
recoverylds - ids of the recovery requests which are waiting for
administrative approval
length - number of platform identification numbers
Returns:

Recovery denial results per platform, if specified platform identification
numbers are correct.

Dependency:
RecoveryResults Class(see 3.2.2)

Sample Usage in CLI:
$ efscli --permit-recovery 2

Recovery request denied
File bar.pdf could not be recovered

Open_TC Deliverable 61/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.12 configureRS

int configureRS (String confFile)

Start of informative comment
Configures Recovery Server with the given configuration file.

End of informative comment

Parameters:
confFile - new configuration file(absolute url like /root/efsrs.conf)
Returns:
If configuration of RS has errors, function will yield FAILED. Else it will return
SUCCESSFUL.

Sample Usage in CLI:
$ efscli --rs-conf

RS Configuration update -> SUCCESFUL / FAILED

Open_TC Deliverable 62/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.13 configureRSPolicy
int configureRSPolicy (String policyFile)

Start of informative comment
Configures policies in Recovery Server with the given policy file.

End of informative comment

Parameters:
policyFile - new policy file (absolute url like /root/efsrs.pol)
Returns:
If policy file of RS has syntax or semantic errors, function will yield FAILED.
Else it will return SUCCESSFUL.
Sample Usage in CLI:
$ efscli --rs-policy

RS Policy update -> SUCCESFUL / FAILED

Open_TC Deliverable 63/69

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

2.7.14 configureRAPrivilege

int configureRAPriviledge (String privilegeFile)

Start of informative comment
Configures priviledges in Recovery Server with the given privilege file.

End of informative comment

Parameters:
priviledgeFile - new privileges file (absolute url
like /root/efsrs.priv)
Returns:
If privilege file of RS has syntax or semantic errors, function will yield
FAILED. Else it will return SUCCESSFUL.

Sample Usage in CLI:
$ efscli --rs-priviledge

RS Priviledge Table update -> SUCCESFUL / FAILED

Open_TC Deliverable 64/69

% l WPO06d.1 Encrypted File Service C/C++ API Specification
*

3 Appendices : Other Public Classes

These classes will be used as helper classes which can be used both in delivering and
formatting the command output.

3.1 Appendix A : Platform Classes

3.1.1 Platform

Platform class helps keeping and processing information about the platforms that are
registered to RS or have registration request to RS. This class will be used to output
platform data which is easy to format.

Constructor :

Platform (int id,
String registrationDate,
String lastUpdateTime,
String metaInformation)

Creates a platform object with given information.
Parameters:
id - - identification number of the platform
registrationDate - - registration date of the platform

lastUpdateTime - - Last list update time of the platform.
metaInformation - - Other information like physical place and users

Getters :

int getId()

String getLastUpdateTime ()

String getMetaInformation ()

String getRegistrationDate ()

Setters :

void setId (int id)

void setLastUpdateTime (String lastUpdateTime)
void setMetaInformation (String metalnformation)

void setRegistrationDate (String registrationDate)

Table 9:Platform Class Declaration

Open_TC Deliverable 65/69

% l WPO06d.1 Encrypted File Service C/C++ API Specification
*

3.1.2 PlatformResults

A helper class for displaying results of platform RA registration and unregistration
requests to RS.

Constructor :

PlatformResults (Platform platforms,
int result)

Creates a PlatformResults object which can keep the results of operations like
permitRegistrationRequest etc.

Parameters:

platforms - platform that send the request
result - result of the registration/unregistration request

Getters :

Platform getPlatforms ()

int getResult ()

Setters :

void setPlatforms (Platform platforms)

void setResult (int result)

Table 10:PlatformResults Class Declaration

Open_TC Deliverable 66/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

3.2 Appendix B : Recovery Classes

3.2.1 Recoverylist
Helps keeping and listing recovery requests which arrives RS.

Constructor :

Recoverylist (int recoveryId,
Platform platform,
String filename)

Helps keeping recovery request lists.
Parameters:
recoveryld - identification number of the recovery request

platform - platform which the recovery request comes from
filename - name of the file which is going to be recovered

Getters :
String getFilename ()

Platform getPlatform ()

int getRecoveryId ()

Setters :

void setFilename (String filename)
void setPlatform (Platform platform)

void setRecoverylId (int recoveryId)

Table 11:Recoverylist Class Declaration

Open_TC Deliverable

67/69

»*

’*“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

3.2.2 RecoveryResult
Helps keeping and listing results of recovery requests which arrives RS.

Constructor :

RecoveryResults (int recoveryld,
RecoverylList list,
int result)

Keeps the result of remote recovery opration.

Parameters:
recoverylId - identification number of the recovery id
list - list which keeps Recovery request
result - result of the recovery process

Getters :
Recoverylist getList ()

int getRecoveryId ()
int getResult ()
Setters :

void setList (RecoverylList list)

void setRecoverylId (int recoveryId)

void setResult (int result)

Table 12:RecoveryResult Class Declaration

Open_TC Deliverable 68/69

;“l WPO06d.1 Encrypted File Service C/C++ API Specification
*

3.3 Appendix C : Key Information Class

3.3.1 Keyinfo
Helps keeping and listing user keys which is in user's keystore.

Constructor :

KeyInfo (int keyid,
String keyName,
byte* keyHash)
Creates a KeyInfo object for listing keys in he desired format.s
Parameters:
keyid - identification number of the key

keyName - name of the key
keyHash - hash value of the key

Getters :

byte* getKeyHash ()

int getKeyid ()

String getKeyName ()

Setters :

void setKeyHash (byte* keyHash)
void setKeyid (int keyid)

void setKeyName (String keyName)

Table 13:KeyInfo Class Declaration

Open_TC Deliverable

69/69

