

D6.4 Collection of all SWP deliverables (with
nature=P,O,D) produced during month 13-24

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Deliverable

Deliverable reference number IST-027635/D06.4/FINAL | 1.00

Deliverable title
D6.4 Collection of all SWP deliverables (with
nature=P,O,D) produced during month 13-24

WP contributing to the deliverable WP6

Due date Oct 2007

Actual submission date Nov 2007

Responsible Organisation LDV,Lehrstuhl für Datenverarbeitung, TUM

Authors Chun Hui Suen
Abstract

Keywords OpenTC WP6

Dissemination level Public

Revision FINAL | 1.00

Instrument IP
Start date of the
project

1st November 2005

Thematic Priority IST Duration 42 months

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

This deliverable is a compilation of the following software deliverables:

● D06a.2 Concept system prototype including basic DRM functionality (M 18)

● D06b.4 First MEITC prototype with 2 compartments (M24)

● D06d.2 EFS C/C++ API implementation (M22)
(No accompanying documentation)

● D06e.5 Complete MFA System Prototype (M 24)
(refer to the section D06e.5 in deliverable D06.3 on description of the system
prototype)

The source code itself is attached on an accompanying CD.

The accompanying documentation for D06a.2 and D06b.4 is compiled in the following
sections of this document.

Note: The deliverable D06d.2 is deemed incomplete and will be revised in the next
phase of the project. Thus, it will not be publicly released with the rest of this
document.

Open_TC Deliverable D06.4 2/2

D6a.2 Concept system prototype including
basic DRM functionality

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Report (see p 84/85 Annex 1 - Nature)

Deliverable reference number IST-027635/D6a.2/Final|1.1

Deliverable title Concept system prototype including basic DRM
functionality

WP contributing to the deliverable WP6a

Due date M17

Actual submission date Apr 2007

Responsible Organisation LDV

Authors LDV (Florian Schreiner, Chun Hui Suen)
Abstract

Keywords

Dissemination level Internal

Revision Final|1.1

Instrument IP
Start date of the
project

1st November 2005

Thematic Priority IST Duration 42 months

 Concept system prototype including basic DRM functionality Final|1.1

Table of Contents
1 Introduction..3
2 System description...3
2.1 Overview...3
2.2 Key exchange..3
2.3 DRM core ..4
2.4 Key database ...4
2.5 License interpretation ..4
2.6 Modified VLC player ...5

3 Features implemented to date ...6
4 Usage Instructions..6
4.1 Adding new content to the system..6
4.1.1 Encrypting content...6
4.1.2 Modifying entries in the key database..7
4.1.3 Putting entries into the license database...7

4.2 Starting the DRM Core..7
4.3 Starting media player (VLC) client...8

5 Classes description in DRM Core...9
5.1.1 OtcTest...9
5.1.2 SimpleTCPPlayerStub...9
5.1.3 CoreManager..9
5.1.4 DbManagerImpl..9
5.1.5 InterpreterInterface..10
5.1.6 MPEG21Interpreter...10
5.1.7 Item..10
5.1.8 Key...10
5.1.9 License...11
5.1.1 0Rel..11

6 features to be implemented in the future ..12

Open_TC Deliverable 6a.2 2/12

 Concept system prototype including basic DRM functionality Final|1.1

1 Introduction

This document serves as a general introduction to the prototype DRM system, with instructions
on how to setup and use the system, as well as a technical overview of the components.

2 System description

2.1 Overview

The following sections describes the internal operations of the communication chain between
the VLC media player and the DRM core, and also the internal classes implemented to date in
the DRM core.

2.2 Key exchange

The prototype key exchange protocol is based on a simple TCP/IP connection. Figure 1 shows
an overview of the key exchange between the VLC player and DRM core. The VLC player,
parses the mp4 file. In the header of the mp4 file, if a "MVID" box is found within the "MOOV"
box, the 32-bit integer stored in the "MVID" box is the MovieID. The VLC player then opens a
local connection to the DRM core and sends this 32-bit integer. The DRM core, upon receiving
the 32-bit MovieID, performs the appropriate license interpretation. If there is a positive
authorization, the DRM core returns the 16 byte AES key from the key database.

This simple key exchange protocol will be used only for the prototype, and will be replaced by a
RPC-based protocol, with options for describing playback restrictions in the final
implementation.

Open_TC Deliverable 6a.2 3/12

Figure 1: Overview of key exchange

modified VLC
player

encrypted
content

DRM Core

Player
Stub

movieID

key

key exchange

 Concept system prototype including basic DRM functionality Final|1.1

2.3 DRM core

The DRM core is implemented in Java, with a similar class hierarchy as described in the initial
design specification. The main program entry point is the OtcTest class. It starts the
SimpleTCPPlayerStub, which acts as a client player stub to the DRM core, and the
CoreManager. The CoreManager implements the 2 main external interfaces of the DRM core,
ManagementInterface and PlayerInterface.

The SimpleTCPPlayerStub acts as a TCP socket listener for the media player. Upon receiving
the MovieID from the VLC player, it calls the getDecryptionKey function in CoreManager. The
CoreManager in turn calls the DatabaseManager and MPEG21Interpreter to perform license
interpretation. In this prototype implementation, license interpretation is performed by an
external script translateMPEG21.py, which is implemented in python.

2.4 Key database

The current implementation of the key database is based on plain text file storage. Licenses
and root grants are stored as xml files, and the content keys as a text file within the database
directory. This will be stored in a relational database in the final implementation.

2.5 License interpretation

License interpretation is performed by a python script, which is called by the java-based DRM
core. The following MPEG-21 terms are recognized:

Tags Type Meaning

license general a REL License

grant general grant a right

rootGrant general root grant

keyHolder general principal in which the right is granted to

issuer general issuer of license

digitalResource general contains corresponding MovieID of content

propertyUri general Required or provided property

prerequisiteRight condition Condition: require a right which can be fulfilled

validityInterval condition Condition: within the validity interval

notBefore condition Condition: not before specified date

notAfter condition Condition: not after specified date

exerciseLimit condition Condition: right not applied more than specified

count condition Condition: specifies count

possessProperty right Grants a property to respective keyHolder

play right Right to play (default right for playback)

Open_TC Deliverable 6a.2 4/12

 Concept system prototype including basic DRM functionality Final|1.1

2.6 Modified VLC player

The media player is modified from the open source Video Lan (VLC) version 0.8.6a stable
source. VLC player was chosen as the base player, because:

● it is open-source,
● has wide support of different video and audio codecs,
● has support for MP4 based file format that is closely related to the MPEG-21 file format,
● has a well developed module/plug-in system which aids in the development of

modifications to support OpenTC DRM system.
Modifications were applied to the mp4.c file in modules/demux/mp4 . In addition to the normal
MP4 file parsing process, the additional steps were included:

● During initialization, the parser searches for a”MVID” box. If found, a 4-byte MovieID is
read from the box content, and the content is assumed to be encrypted for the OpenTC
system:
○ It then opens a TCP/IP connection to the DRM core (this is currently set to localhost

for testing), and sends the MovieID to the core. Upon receiving the content
decryption key, the AES decryption function is initialized with the decryption key,
and decryption mode is activated.

○ If decryption mode is activated, during the de-multiplexing of the main video
content in the “mdat” box, the AES decryption function is called to perform
decryption on-the-fly on the required block (in ECB mode). This allows for seeking to
different positions within the file without decrypting the entire file first.
■ Internally, the start and 16-byte block boundaries of the “mdat” is checked, so

that the blocks are decrypted with exactly the same block boundaries as the
encryption process.

Open_TC Deliverable 6a.2 5/12

 Concept system prototype including basic DRM functionality Final|1.1

3 Features implemented to date

The following features have been implemented to date:
● content decryption on media player
● encryption tool
● core:

○ inter-connection between manager classes
○ license interpretation

4 Usage Instructions

The prototype DRM system consist of 2 main components: the DRM Core and a modified VLC-
based media player. The following sections will explain how to use each of the components,
and its related tools. The modified VLC player is able to playback any unencrypted content like
the normal VLC player. Playback of encrypted content is currently limited to content packaged
in MP4 format. An encryption tool (see section 4.1.1) is provided to encrypt the MP4 content
and embed a special MovieID, which will be the main reference ID between the player and DRM
core. Sections 2.2 and 2.3 explain how the corresponding key and license database should be
modified. Sections 2.4 and 2.5 show how the DRM core and modified VLC can be started.
Included together with this document are the files DRMcore.zip which contain the DRM core
and tools, and vlc0.8.6a_OTC_Modified.tar.gz which contains the modified VLC player.

4.1 Adding new content to the system

In order to add new media content to the system, steps 4.1.1 to 4.1.3 should be taken to first
encrypt the media, and update the database entries in the DRM core.

4.1.1 Encrypting content

A tool written in C is provided to encrypt MP4 based multimedia files using 128-bit AES
encryption. This is done by:

1. extracting the DRMcore.zip file into a directory DRMcore by the command:

unzip DRMcore.zip

2. goto the DRMcore/opentc/tools/encrypter directory
3. run the encrypter program using:

./encrypter inputfile.mp4 outputfile.mp4 MovieID AES_KEY

where inputfile.mp4 is the path to the input file in mp4 format, outputfile.mp4 is the output
file path, MovieID is an integer (which will be referenced in the license), and AES_KEY is a 128-
bit AES key (represented using exactly 16 ASCII characters).

Open_TC Deliverable 6a.2 6/12

 Concept system prototype including basic DRM functionality Final|1.1

Note: Encryption is independant of codec, but only codecs supported by VLC can be played
(most codecs supported in official VLC code is enabled in compilation option).

4.1.2 Modifying entries in the key database

To insert new entries into the content key database, the following steps should be taken to edit
the respective text files:

1. in the DRMcore/opentc/database directory
2. edit the keyData.txt file and add a new line of the form:
3. MovieID=AESKEY

where MovieID corresponds to the integer used in encryption, and AESKEY is 16 pairs of hex
numbers of the corresponding AES_KEY used in the encrypter program (without space between
pairs of hex numbers).

To remove entries, simply remove the respective lines in the keyData.txt file.

4.1.3 Putting entries into the license database

To insert a new license into the content key database for a particular content file, the following
steps should be taken:

1. in the DRMcore/opentc/database directory
2. create a text file named <movidID>.xml (replace <movidID> by the MovieID integer in

the encryption process)
3. write a MPEG-21 license in this xml license file (refer to existing example for the license

structure)

The list of supported tags is given in section 2.4.

Additionally, root grants can be created by making text license files named:
Rootxxx.xml (where xxx is an integer in increasing order)

4.2 Starting the DRM Core

In order to start the DRM core, follow the instructions:

1. from the DRMcore/opentc directory.
2. start the server using the command:
3. java cp bin de.tum.ldv.opentc.OtcTest

Note: Java 5.0 or above is necessary for the DRM core, and python version 2.4 with standard
libraries.

Open_TC Deliverable 6a.2 7/12

 Concept system prototype including basic DRM functionality Final|1.1

4.3 Starting media player (VLC) client

extract the vlc0.8.6a_OTC_Modified.tar.gz file.
The tar file contains pre-compiled binaries for a Ubuntu 6.10 system. If recompilation is
necessary, please follow the standard compilation procedure for VLC given in the file INSTALL.
The demux/mp4 module is necessary for the decryption and decoding of encrypted media for
OpenTC.
start the modified VLC client by running ./vlc
Choose quick open file from the menu and select the encrypted mp4 file to open.

Open_TC Deliverable 6a.2 8/12

 Concept system prototype including basic DRM functionality Final|1.1

5 Classes description in DRM Core

The following section describes the class, the interactions among the implemented classes
within the DRM core, and its public methods.

5.1.1 OtcTest

Class Description: Main entry point for prototype DRM core

5.1.2 SimpleTCPPlayerStub

Class Description: A stub class which runs as a listener thread, and waits for connection from
the media player. It acts as a player stub to the DRM core.

5.1.3 CoreManager

Class Description: Main manager class of the DRM core which implements the
ManagementInterface and PlayerInterface interface. It initializes all other manager
classes, and calls the appropriate manager upon request.

functions:
public int playerInit(String playerCapabilities)
playerStub registers with DRM core and receives playerID.

public void insertLicense(String licenseText, Rel relType, Item item)
insert license into database.

public Key getDecryptionKey(int playerID, Item item, String operation)
get content decryption key

public Key getAttestationKey(int playerID, Rel relType, String serverURL)
get attestation key

5.1.4 DbManagerImpl

Class Description: Implementation of the DatabaseManager interface.

functions:
public List<License> getLicense(Item item)
get license by item reference

public void setLicense(Item item, License license, ItemState state)
save license in database (not yet implemented)

Open_TC Deliverable 6a.2 9/12

 Concept system prototype including basic DRM functionality Final|1.1

public void deleteLicense(Item item)
delete license by item reference (not yet implemented)

public ItemState getItemState(Item item)
retrieve item state (not yet implemented)

public void setState(Item item, ItemState state)
save item state into database (not yet implemented)

public Key getDecryptionKey(Item item)
get content key for item

5.1.5 InterpreterInterface

Class Description: interface class for license interpretation

functions:
String interpretLicense(java.util.List<License> licenseGroup, Item item,

ItemState state, SystemState system, String operation)
interprets license by calling the specific interpreter based on REL type

5.1.6 MPEG21Interpreter

Class Description: License interpreter for MPEG21 license format

functions:
public String interpretLicense(List<License> licenseGroup, Item item,

ItemState state, SystemState system, String operation)
interprets license (by calling python script)

5.1.7 Item

Class Description: encapsulates a reference to content item

functions:
public int getID()
get item reference (MovieID)

5.1.8 Key

Class Description: encapsulates the content key

Open_TC Deliverable 6a.2 10/12

 Concept system prototype including basic DRM functionality Final|1.1

functions:
public byte[] getKey()
get content key
public int getKType()
get key type

public int getLength()
get key length

5.1.9 License

Class Description: encapsulates the license string

functions:
boolean isRELType(String type)
check REL type

boolean isRELType(Rel rel)
check REL type

public String getText()
get license string

5.1.10 Rel

Class Description: represents a particular REL type

functions:
public String getName()
get name of REL type

Open_TC Deliverable 6a.2 11/12

 Concept system prototype including basic DRM functionality Final|1.1

6 features to be implemented in the future

The following features are yet to be implemented:
● user-friendly response when content key not received
● time-based restriction on content playback
● packaging core and player into secured compartments
● core:

○ license and key in sealed DB storage
○ Database based license interpretation
○ license translation
○ proper RPC protocol between core and player compartment
○ utility class
○ management functions
○ attestation
○ secure time
○ user credentials based on certificates

Open_TC Deliverable 6a.2 12/12

D6b.4 First MEITC prototype with 2
compartments

Project number IST-027635

Project acronym Open_TC

Project title Open Trusted Computing

Deliverable type Deliverable

Deliverable reference number IST-027635/D06b.4/FINAL | 1.00

Deliverable title
D6b.4 First MEITC prototype with 2
compartments

WP contributing to the deliverable WP6

Due date Oct 2007

Actual submission date Oct 2007

Responsible Organisation TUBITAK

Authors Görkem Çetin
Abstract

Installation instruction for MEITC prototype

Keywords OpenTC WP6

Dissemination level Public

Revision FINAL | 1.00

Instrument IP
Start date of the
project

1st November 2005

Thematic Priority IST Duration 42 months

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

1 Installing and running the MEITC framework

This section describes how to build a Message Exchange Infrastructure for Trusted
Computing (MEITC). Currently, the TPM/TSS parts are left blank, so only a pure mailer
system will be built with the help of general purpose Linux servers.

MEITC consists of the following components:

• A web server, which handles all the incoming requests. The requests are
forwarded to the mail server in order to read, reply or delete the users' mails.

• An e-mail server, which is used to handle the incoming and outgoing mails. The
mail server runs postfix and dovecot to answer POP3/IMAP connections.

• A MySQL server, which holds the users' mailboxes.
• A CSP (certificate service provider), which is used to hold the user's certificates.

CSP is also responsible for updating and revoking the certificates in its
database.

Since MEITC will run under a hypervisor, all the components explained above need to
be installed on seperate virtual machines. These VMs need to be small in size, in order
to enable the specific binaries to be measured. Currently, the size of each of these
components are around 600 Mb, but currently work is underway to lower this number
to a reasonable point.

The figure below shows a diagram of the system. FIGURE: Diagram of the system.
Here, each of the servers take an IP mentioned below. These IP's need not be same in
your system, but for the sake of consistency, you are advised to keep the IP's.

1. Certificate Server: 192.168.1.100
2. Postfix Mail Server: 192.168.1.101
3. MySQL server: 192.168.1.102
4. Apache Web Server: 192.168.1.103

In this model, certificate service provider (CSP) will act as the dom0, which will serve
as the hypervisor system. The details on how to install a Xen server on the dom0 is
explained in section 3. First, the installation of dom0 is required, and then, the servers
mentioned above (2,3,4) will be installed.

Please proceed to the tutorial on how to install dom0 and then refer back to this
document.

2 Installing and running the Apache web server under
MEITC

Pardus Linux repositories contain Apache as the primary web server, together with
scripting languages like PHP. For the message exchange infrastructure on the web
server part, the following software should be up and running.

• Apache web server: Version 2.0.3 or more
• PHP with IMAP extensions: Version 4 or more.

Apache web server will be used for the incoming connections to the web server.
Apache will redirect the requests via PHP to the mail server, where a postfix system is
installed. According to the request, a mail can be fetched from the INBOX, forwarded
to another recipient, deleted or replied.

Open_TC Deliverable D06b.4 2/7

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

In order to install the web server, install a domU component on dom0 and configure
the IP addresses, DNS servers and gateway. The Apache server will have the IP
192.168.1.103, so executing the following commands will set up a running Apache
system, which is connected to the internet.

• Install a domU client on dom0
• Boot the domU client.
• Enter the system as root.
• Run the nano editor, opening /etc/conf.d/local.start: nano /etc/conf.d/local.start
• Enter the following lines to the end of the file. We assume that the gateway is

192.168.1.1 ifconfig eth0 192.168.1.103 netmask 255.255.255.0 route add
default gw 192.168.1.1

• Save the file, and execute it by the following command: sh /etc/conf.d/local.start
• Now, modify the DNS so that it will point to the correct DNS server. For

this, /etc/resolv.conf will be edited like the following: nameserver 192.168.1.1
Put your DNS server IP instead of "192.168.1.1"

• The web server will now have the corresponding IP and the DNS as planned.

Now we will install the web server components. The following packages need to be
installed using the PISI package manager:

• Apache web server
• PHP scripting language

For this, enter the following two commands as root:

sudo pisi it apache mod_php

2.1 Installing and running the Postfix mail server under MEITC

Like Apache, Pardus Linux repositories contain necessary software for Postfix (e-mail
server) and Dovecot (IMAP and POP3 server). It's enough to install cyrus-sasl, dovecot
and postfix to have a fully functional e-mail server.

sudo pisi it postfix dovecot cyrussasl

3 HOWTO - Xen under Pardus
This document tells how to install Xen under Pardus to have more than 1 working
virtual machines, i.e hypervisors. Xen packages for Pardus can be obtained from the
package repository by using package manager.

Every virtual machine running under Xen is called a "domain". The underlying
manager, which controls these domains is called Domain 0 (dom0). Likewise, the
virtual machines running on top of dom0 are called unprivileged domain (domU).
Dom0, in fact, nothing but a special kind of kernel loaded by Xen hypervisor.

3.1 Installing the required packages

The following command should be issued in order to install dom0, domU and other
helper/manager applications.

Open_TC Deliverable D06b.4 3/7

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

pisi it xen xentools kerneldom0 kerneldomU

This command will install the xen package, together with xen tools for management
and kernel for dom0 and domU respectively.

3.2 Booting with dom0

For the physical machine to booth with Xen hypervisor (dom0), we need to add a few
lines to the boot loader, grub.conf, found in /etc/grub.conf.

Note that you need to modify the lines (hd0,1) and root=/dev/hda2 lines according to
your system. (hd0,1) shows the second partition (here, noted as "1") in the first disk
(noted as "0").

title Xen [2.6.16.294dom0]
root (hd0,1)
kernel (hd0,1)/boot/xen.gz
module (hd0,1)/boot/kernel2.6.16.294dom0 root=/dev/hda2
module (hd0,1)/boot/initramfs2.6.16.294dom0

Now, after booting the system with this kernel, we can immediately start producing
virtual machines called domU's.

3.3 Creating a test domU

Before creating a domU, we need to install a pre-packaged Linux image. Run the the
following commands to install the image under Pardus.

• Download the ttylinux-xen.bz2 file from this URL.
• Unzip the file by bunzip2 ttylinuxxen.bz2
• Generate the following Xen configuration file under /etc/xen.

kernel = "/boot/kernel2.6.16.294domU"
memory = 64
name = "ttylinux"
disk = ["file:/home/username/ttylinux,sda1,w"]
root = "/dev/sda1 ro"

Note that the file URL next to "disk" parameter should be modified to reflect the
changes ttylinux file resides.

• Start the Xen management service by issuing service xentools start
commmand.

• Start ttylinux with the following command (again, under root privileges). Note
that the default password for ttylinux is "root".

xm create /etc/xen/ttylinux c

Now, you have booted your first virtual machine. Now, using another console, you can
test your unprivileged domains, and manage them by using dom0 with the help of xm
command.

xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain0 0 1165 1 r 85.7

Open_TC Deliverable D06b.4 4/7

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

ttylinux 4 64 1 b 0.2

As you have tried a prepackaged ttylinux specifically created for Xen, now it's time to
create a new virtual machine that we can seriously build or applications on. There are
different methods to boot an unprivileged domain via Xen, such as Logical Voluma
Manager (LVM), a real disk partition or a sparse file which is a filesystem itself
including a virtual machine.

xm shutdown command can be used to power off a virtual machine safely, giving its
name as a parameter.

xm shutdown ttylinux

3.4 Creating a real domU

In order to generate a file that will hold our new virtual machine, we need to create a
file with 4 Gb in size. Modify 4095 with the size you want to create, but for our
purposes to have a simple virtual machine, 4 Gb should be enough.

dd if=/dev/zero of=/var/xen/domUpardus bs=1M seek=4095 count=1

Now, format it as ext3 partition as currently Pardus best works with ext3.

mkfs.ext3 /var/xen/domUpardus

Open a temporary directory where you'll bind this file into:

mkdir p /mnt/pardus

Mount the formatted file (/var/xen/domU-pardus) under /mnt/pardus. Regardless to
say, this should be done with root privileges.

mount o loop /var/xen/domUpardus /mnt/pardus

PISI command will be used to generate repository informtion under /mnt/pardus. Issue
the following command:

pisi ar pardus1.1 http://paketler.pardus.org.tr/pardus1.1/pisiindex.xml.bz2
D /mnt/pardus/

Install the base system under /mnt/pardus with the following command:

pisi it system.base D /mnt/pardus ignorecomar

Use the chroot command to start working under the new Pardus directory.

chroot /mnt/pardus

Copy a ld.so.conf file and generate a library path cache by issuing ldconfig command:

cp /usr/share/baselayout/ld.so.conf /etc/ && ldconfig

Start COMAR, aka Pardus configuration manager.

service comar start

Open_TC Deliverable D06b.4 5/7

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

Let the postinstall scripts run by COMAR

pisi configurepending

Modify the password of the root user by passwd command

passwd
New UNIX password:
Retype new UNIX password:
passwd: password updated successfully

Modify the /etc/fstab file to mention from which virtual disk the virtual machine will
boot.

/dev/xvda / ext3 noatime 0 1
none /proc proc nosuid,noexec 0 0
none /dev/shm tmpfs defaults 0 0

Generate and modify /etc/xen/pardus file according to the following:

name = "pardus";
memory = 256;
kernel = "/boot/kernel2.6.16.294domU";
disk = ["file:/var/xen/domUpardus,xvda,w"];
root = "/dev/xvda ro";
vif = [""];
dhcp = "dhcp";

Provide the necessary device nodes in order to be able to boot. The rest will be
handled by udev during boot time.

/usr/bin/mknod /dev/console c 5 1 /usr/bin/mknod /dev/null c 1 3

Modify the following portion of the /etc/inittab, so that only the line "... tty1" will stay
(i.e c1:12345:respawn:/sbin/mingetty noclear tty1). That is, delete tha last 5
lines. Under Xen, we only need one tty.

c1:12345:respawn:/sbin/mingetty noclear tty1
c2:12345:respawn:/sbin/mingetty noclear tty2
c3:12345:respawn:/sbin/mingetty tty3
c4:12345:respawn:/sbin/mingetty tty4
c5:12345:respawn:/sbin/mingetty tty5
c6:12345:respawn:/sbin/mingetty tty6

Use exit command to logout from the chroot environment, and from dom0
unmount /mnt/pardus by issuing umount /mnt/pardus command. Now we are ready to
power on the virtual machine:

xm create pardus c

Now you can enter your root password, and start playing with Pardus. One thing to
mention immediately is that, you can install other packages to have a full featured
system. For example, "desktop" component will install a KDE desktop system,
applications will install all types of applications (network, printing, editors, emulators
etc), and server will install all servers (apache, PHP, mysql etc) from the repository.

Open_TC Deliverable D06b.4 6/7

 D06a.1 Preliminary DRM System Specification FINAL | 1.00

You need a fast internet access to do this though.

In order to list all the accessible components, the following command can be issued

pisi lc

3.5 Graphical login to domU

In order to login to domU via KDE, tightvnc package will be used. Tightvnc server is
required both on the server side (i.e domU) and the client side (dom0). Vncserver
command which comes with tightvnc is run under a normal system user (i.e, not root).

vncserver

This command will ask for a password, which in turn will be used on the client side.
Now, the client should be able to reach the desktop of the dom0, and run "startkde".
However, the file which is run as a VNC request is asked from vncserver does not
include a "startkde" line. In order to run KDE on dom0, ~/.vnc/xstartup file should be
modified only to show the line "startkde". Giving the following command will achieve
this:

echo "startkde" > ~/.vnc/xstartup

It's time to run vnc from dom0:

vncviewer machine

This command will ask for a password, and then connect to the IP/hostname specified
by "machine" above.

Open_TC Deliverable D06b.4 7/7

